Teaching Empirical Software
Engineering Using Expert Teams

Marco Kuhrmann, University of Southern Denmark

kuhrmann@acm.org

Abstract

Empirical software engineering aims at making soft-
ware engineering claims measurable, i.e., to analyze
and understand phenomena in software engineering
and to evaluate software engineering approaches and
solutions. Due to the involvement of humans and
the multitude of fields for which software is crucial,
software engineering is considered hard to teach. Yet,
empirical software engineering increases this difficulty
by adding the scientific method as extra dimension. In
this paper, we present a Master-level course on empir-
ical software engineering in which different empirical
instruments are utilized to carry out mini-projects, i.e.,
students learn about scientific work by doing scientific
work. To manage the high number of about 70 stu-
dents enrolled in this course, a seminar-like learning
model is used in which students form expert teams.
Beyond the base knowledge, expert teams obtain an
extra specific expertise that they offer as service to
other teams, thus, fostering cross-team collaboration.
The paper outlines the general course setup, topics
addressed, and it provides initial lessons learned.

1 Introduction

Software engineering aims at the systematic applica-
tion of principles, methods, and tools for the develop-
ment of complex systems. This comprises the software
technology as well as the software management part of
this discipline [5], and in each of these parts, humans
are involved. Due to this human involvement and
the multitude of fields for which software has become
crucial, software engineering is considered hard to
teach. Literature is rich and discusses different experi-
mental settings [15], in-class projects [23], or project
courses [6] in general—each addressing technology
(e.g., analysis, coding, and testing) or management is-
sues (e.g., project management, the software process,
and teams and soft skills [7,30]).

However, most of the software engineering courses
address the system/product development. Yet, when
can a project be considered efficient? How to select
methods having a higher probability of success in a
specific context? How can the dis-/advantages of cer-
tain technologies, methods, or tools be evaluated?
In order to make software engineering claims mea-

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

surable, empirical software engineering is applied to
(i) analyze/understand phenomena in software de-
velopment, (ii) identify/evaluate strengths and weak-
nesses of software engineering approaches, and (iii)
investigate the state of the art/practice to identify
promising solutions/approaches. This makes empiri-
cal software engineering hard to apply for researchers
and practitioners, but it makes it even harder to teach.
Wohlin et al. [45] consider the engineering method
and the empirical method variants of the scientific
method [3]. That is, teaching empirical software en-
gineering means teaching the scientific method and
their adaptation to software engineering. However,
scientific work differs from “pure” system develop-
ment. For example, while a development project can
be carried out in a semester project, a sound empirical
investigation is harder to implement, since resources
required for this purpose would then be missing in
the development. Also, students would need to know,
e.g., how to set up experiments or surveys, how to
conduct them, and how to analyze and make use
of the findings—again, not directly contributing to a
small project with a deadline and a working piece of
software as the desired outcome.

So, what to do? Wohlin [43] considers three gen-
eral options to teach empirical software engineering:
integration in software engineering courses, as a sepa-
rate course, and as part of a research method course.
Yet, these approaches have some difficulties. For in-
stance, in a theoretical course, students would hear
about different empirical instruments, could train se-
lected methods, or review and discuss research papers.
According to Dale’s Cone of Learning [10], those ac-
tivities would largely remain at the passive level (see
further Section 2). So, what would remain? Under-
standing the scientific method in general and empir-
ical software engineering in particular and to see its
value requires hands on. That is, staying in Dale’s
model, a course on empirical software engineering
also needs to cover the active levels of the cone.

Objectives This paper aims at providing a course
that helps students learning scientific work by do-
ing scientific work. However, scientific work requires
collaboration, causes effort, and consumes time. Fur-
thermore, quite often, students lack skills crucial to

20

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

scientific work, such as to carry out a comprehensive
literature research, exact problem definition, statistics,
or professional writing.

Therefore, the main challenge to be addressed is
to define a teaching format that (i) provides students
with the basic knowledge concerning scientific work,
(ii) enables students to understand the role of em-
pirical research in software engineering, and (iii) to
train scientific work by carrying out (small) research
projects and to run through a research cycle, including
presentation, writing, and reviewing.

Contribution The paper at hand contributes a
course design for an empirical software engineering
course and experiences from a first implementation.
The overall design follows an approach that brings
teaching closer to research [27], and that was suc-
cessfully applied to different methodical topics, in
particular software process modeling [24] and ad-
vanced project management [26]. Different that the
other implementations of the base concept, the course
presented in the paper at hand addresses large classes
(50+ students). To keep this course manageable, ex-
pert teams were introduced. Each of these teams fo-
cuses on a specific competency beyond the general
knowledge and offers this competency to other teams.
That is, in addition to the intra-team collaborations, a
cross-team collaboration pattern is implemented. The
course evaluation shows the selected approach reason-
able; in particular, students consider the course chal-
lenging yet good. More important, students changed
their view on scientific work and started to consider it
valuable.

Outline The remainder of this paper is organized as
follows: Section 2 sets the scene by providing back-
ground information. Section 3 presents the course
design including learning goals, organization, course
layout, team structures, and deliverables. Section 4
provides insights into the initial implementation and
and evaluation. The paper is concluded in Section 5
with discussion on the lessons learned so far.

2 Fundamentals and Related Work

Empirical software engineering and its integration
with software engineering curricula was for instance
elaborated by Wohlin [43], who mentioned three gen-
eral levels of integration: integration in software engi-
neering courses, as a separate course, and as part of a
research method course. Wohlin argues that introduc-
ing empirical software engineering will provide more
opportunities to conduct empirical studies in student
settings. However, he also mentions a need to balance
educational and research objectives. Similar argu-
ments are provided by Dillon [12], who states that
successful observation of a phenomenon as part of an
empirical study should not be an end in itself, and that
students should have enough time to get familiar with

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

the related ideas and concepts associated with the
phenomenon. However, this shows the two different
streams in using empirical instruments in teaching:
On the one hand, students are educated such that they
can serve as subjects in empirical studies (including
all the risks as mentioned by Runeson [37]), and, on
the other hand, empirical studies are used as teach-
ing tools (as for instance done in economy for years,
cf. [1,33]). And it must not be questioned that em-
pirical instruments provide a good basis to organize
whole courses or individual sessions, e.g., [24, 26].

After 2 weeks, we tend to remember...

10% of what we

Reading read

[}
I
20% of what we 1
hear '

I

30% of what we |
|
I

Seeing see

Watching a movie, looking at
an exhibit, watching a
demonstration, seeing it done
on location

50% of what we
see and hear

Participating in a discussion, giving a talk :2;6 of what we
90% of what we
say and do

Doing a dramatic presentation, simulating
the real experience, doing the real thing

Figure 1: Dale’s cone of learning (according to [10]).

However, these approaches aim at utilizing em-
pirical instruments to support courses. Usually, stu-
dents only get in touch with empirical instruments
as subjects in an empirical inquiry, and they have
to carry out tasks, e.g., in a controlled experiment,
e.g., [15-17,25,26]. Teaching empirical software en-
gineering as a subject, however, would require a self-
contained course—or as Wohlin [43] mentioned: a
self-contained course or as part of a course on research
methods. In respect of Dale’s Cone of Learning [10],
such a course would need to cover the different levels
of the learning cone (Figure 1). Yet, while the passive
parts of the cone are easy to implement, addressing
the active levels is way more challenging, since this
requires the students to carry out actual research.

In [27], we proposed a teaching model to better
align research with Master-level courses—mainly uti-
lizing empirical instruments to re-organize exercise
parts to bring students closer to real cases, but in a pro-
tected environment, which, inter alia, allows for simu-
lation of critical or even failure situations [25,26]. Ap-
plying this approach to several more method-focused
courses, experience gathered so far was used to apply
this approach to empirical software engineering. The
paper at hand thus provides a new building block in
software engineering education, which proposes an
initially evaluated template for setting up courses on
empirical software engineering.

21

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

Learning Goals Instrument | Summary

G1 | Learn the scientific way of work: Students are intro- Experiment | Experiments investigate effects of treat-
duced to the scientific method, learn the relevant ments under controlled conditions. They
terminology and concepts, and learn about the are rigorously designed and results consti-
process of planning, conducting, and reporting sci- tute tests of a theory. Experiments can be,
entific work. for instance, (semi-)formal, address mul-

Go | Learn to work with scientific literature: Students tiple factors, and they can be conducted
learn how to find, read, and how to critically evalu- under lab conditions or in the field [45].
ate scientific literature. Students carry out reviews Case Study | Case studies aim to investigate a phe-
of real conference papers (training with given cri- nomenon in its natural context. They
teria), and students carry out group-based peer help answering explanatory questions,
reviews of the essays written in the course. and they should be based on an articu-

Gs | Obtain detailed knowledge about scientific methods: lated theory regarding the phenomenon
Complementing the overview, students get detailed of interest. Case studies can be imple-
knowledge about selected scientific methods. The mented in a variety of setups, e.g., sin-
students are enabled to explain, discuss, and apply gle case, multi-case, and longitudinal case
the chosen methods. studies [39].

Gy | Carry out a scientific study: In small teams, students Survey A survey aims at collecting information
learn science by doing science. Studies are carried Research from or about people to describe, compare
out by team setups comprising theory and practice or explain their knowledge, attitudes, and
teams; cross-cutting teams provide support, e.g., behavior [14]. Surveys can, for instance,
for reporting, data analysis, and data visualization. be i.mplemen.ted as interview studies or as

Gs | Train and improve communication and collabora- online questionnaire [29].
tion skills: Students go through large parts of a Simulation | Simulation refers to the use of a simu-
scientific investigation and, thus, need to collab- lation model as an abstraction of a real
orate with other teams. Furthermore, they need system or process. Typical purposes for
to give presentations about their topics and they using such models are experimentation,
have to write “conference” papers (course essays) increased understanding, prediction, or
to report their findings. decision support. Simulations can, for in-

stance, be carried out as people-based or

Table 1: Summary of the course’s learning goals. computer simulations [31,45].

Literature | A literature study aims at collecting re-

Study ported evidence to (i) capture and struc-

3 Overall Course Design ture a domain of interest, (ii) to aggre-

This section presents the learning goals, the general gate available knowledge, and (iii) to

organization model, the overall course design, the synthes%ze ge.nerahzed k.nOWkdge abqut

. the topic of interest. Literature studies

group setup and the.toplcs hapded out to Fhe stu- in software engineering come as system-

dents.. Furthermore, in the section, we explain how atic review [19] or as systematic mapping
the different student groups form the team of experts study [36].

throughout the course.

Learning Goals With the course contents, structure
and the team setup presented, the course addresses
the learning goals summarized in Table 1.

Empirical Methods A variety of empirical meth-
ods/techniques is subject to teaching. Before going
into the details, we briefly summarize the methods
selected for the course in Table 2. The instruments
listed in Table 2 are of interest when setting up the
actual “research work” for the students, since every
method has certain constraints. For instance, while
smaller experiments or (partial) literature studies are
suitable for an educational setting, a real case study
is difficult to implement (time and effort). The actual
selection is further discussed in Section 3.3.

3.1 General Organization Model

To address the different learning goals, and, at the
same time, to cover the variety of different empiri-

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

Table 2: Summary of the main empirical instruments
(study types) to be considered.

cal instruments, the course implements expert teams
according to the general organization model as illus-
trated in Figure 2. For each empirical method, two

Method Joint research
request 0.*
1 advice -
| Theory Team Practice Team
. provide N N *
0.. ‘advice 1. 0.. 0..
provide provide shared
advice advice research design

I Cross-cutting Team |

Figure 2: Overall organization model of the Scientific
Methods course.

22

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

types of teams are built. A theory team is supposed
to build competency about the actual method, e.g.,
what is the method about in detail, how to apply
it, and how to report findings. Practice teams take
over an actual research task to be implemented fol-
lowing a specific method, e.g., an experiment or a
literature review. Theory teams then provide advice
to the practice teams and monitor the implementation
of the task, and practice teams request services from
the theory team, e.g., feedback on the procedures.
Furthermore, practice teams can be connected with
each other. Figure 2 defines the two relationships
“I” (Interface) for joint research, i.e., research on one
topic but from different perspectives, and “S” (Shared)
for an independently conducted research task, i.e., a
shared research design is independently implemented
by multiple teams. Finally, for specific topics that ad-
dress cross-cutting concerns, like statistical analyses or
data visualization, cross-cutting teams are established.
These teams serve all theory and practice teams.

3.2 General Course Layout

Figure 3 illustrates the overall structure of the course
Scientific Methods and shows how the different topics
(Section 3.3) are aligned in the course.

Introduction and }4 hours per

Fundamentals session

@
% Presentation and
S . e et
5 E Scientific Writing

o
gs
.3 Paper Reviews
@
=

\4 Introduction to

Empirical Research

Presentations: Theory and
Tutorial Topics

Status Control and :
Guest Lectures | theory experts
help practice

teams...

Status Control and |
Guest Lectures |

Presentations: Secondary Studies

Presentations: Experiments and
Simulations

Presentations: Survey Research

Self-directed learning: working on the selected topics,
e.g., SLRs or surveys (incl. presenting and writing)

<.__

Group Papers’
Peer Review

Evaluation and
Wrap-Up

Figure 3: Overview of the overall structure of the
Scientific Methods course.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

The course starts with a general introduction to
the topic, which covers the foundations of scientific
work (session 1) and basic knowledge regarding re-
porting and presenting scientific work (session 2).
In the first session, the different “Mini-Projects” are
introduced, and students select their topics for the
semester (the final selection from the topic pool is
shown in Table 3). In the second session (as part of
an introduction to publication processes) the review
process is introduced. Based on this introduction, stu-
dents are handed out an assignment in which they
have to review 2 randomly selected papers following a
review template (session 3; homework). In session 4,
students get an introduction (or re-cap) on the basic
maths of empirical research, e.g., hypothesis construc-
tion, statistical tests, and errors. In the first part of
the course (4 weeks), students are introduced to the
subject, basic elements of the work procedures are
introduced, and students carry out first activities.

While the actual scientific methods (Table 2) were
only presented as “teasers” in the first block, the sec-
ond part of the course starts with detailed elaborations
on these methods. The teams, which opted for theory
topics (Table 3) present their respective methods. The
presentations include an overview of the method, a
description of how the method is applied (in general
and illustrated by examples), and the presentations
conclude with recommendations regarding the imple-
mentation for the practice teams. After the presenta-
tions, the theory teams switch their role and become
“consultants” for the practice teams (cf. Figure 2).

The following five weeks are fully devoted to project
work, i.e., the practice teams work on their topics. In
this 5-weeks slot, two in-class sessions are scheduled
in which the teams report the current project state.
These sessions comprise guest lectures by researchers,
who present their research and explain how it was
conducted, and tutorials are implemented, such as
implementing a survey as online questionnaire.

In the next slot, the outcomes of the respective
projects are presented. In parallel, students started
writing their essays, which have to be handed in the
week after the last student group presentation. These
essays are written as conference papers following the
rules of a scientific conference, i.e., structure, page
limits, and so forth. These papers are collected and
distributed for peer-review among the groups.

The course layout from Figure 3 directly addresses
the learning goals (Table 1): the first part addresses
the learning goals G; and G,, the second part ad-
dresses the learning goals Gs, G4, and Gs, and the last
part addresses G, again.

3.3 Topic Overview

The choice of topics for the course presented is influ-
enced by (i) available topics from ongoing research,
(ii) available options to replicate completed research,
and (iii) a share of theoretical topics for students that

23

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

No. | Topic Kind Team References

M| A R S
1 What is a Survey? Theory 312 [20,29] [4,13]
2 What is an Experiment? Theory 313 [2,45] [7,8]
3 What is a Systematic Review? Theory 313 [19] [11,42]
4 What is a Systematic Mapping Study? Theory 3 | 3| [35,36] | [21,34,44]
5 What is a Simulation? Theory 313 [31,45] [28,32,41]
6 What is a Case Study? (C) Theory 313 [38,39] [9,40]
7 What are Threats to Validity? (C) Theory 313 [45] —
8 Introduction to R (C) Tutorial | 4 | 4 | self-search
9 Introduction to Data Visualization (C) Tutorial | 4 | 4 | self-search
10 | Test approaches in Agile SW-development Experiment | 4 | 3 [45] [15-17]
11 Perception of SE Semester Projects (Students) Survey 4 | 4 [20,29] —
12 Perception of SE Semester Projects (Teachers) Survey 4 | 4 [20,29] —
13 Quality Management in SPI SLR 4 | 3 [19] [11,18,42]
14 | Industry exceptions on Testing Research (Group A) Survey 4 | 4| [20,29] —
15 | Industry exceptions on Testing Research (Group B) Survey 4 | 4| [20,29] —
16 Success Factors in SPI SMS 4 | 3 [19] [11,21,42]
17 Agility as SPI Paradigm (Group A) SLR 4 | 4 [19] [11,21,42]
18 Agility as SPI Paradigm (Group B) SLR 4 | 3 [19] [11,21,42]
19 Comparison of Place Cell Models Simulation 4 | 4 [31,45] [28,32]
20 Comparison of Navigation Strategies Simulation 4 | 4 [31,45] [41]

Table 3: Overview of the topics in the Scientific Methods course including a classification (kind), team setup (M:
max. team size, A: actual team size), and provided references (R: reference publications explaining the method,
S: reference/input studies on this particular research project).

are reluctant towards working “in the wild”. Table 3
gives a short overview by naming the topics, categoriz-
ing them, and providing information regarding maxi-
mum team size and references to respective research
projects/publications if applicable. These topics repre-
sent the finally selected topics from a pool of about 30
proposals. As mentioned before, the list comprises a
number of theory and tutorial topics. Groups having
selected those topics did not carry out “real” research,
but built the methodical competence and consulted
the practice teams. That is, it was ensured that each
practice team has a consultant team (in addition to
the teacher) available.

The practice topics from Table 3 are selected from
ongoing research (or from completed research that
was identified worth replication). For these topics, ex-
isting research collaborations were triggered to iden-
tify topic sponsors. For instance, potential topic spon-
sors were asked: Do you have ongoing research that we
could contribute to?, Do you have research designs that
we could use?, Do you have data that you would like
to have a preliminary analysis for? However, the con-
ditions were made clear: (i) the topics must be man-
ageable within 4 weeks, (ii) for secondary studies, a
pre-digested dataset has to be delivered, (iii) sponsors
must not expect a full and mature, i.e., publication-
ready, result set, and (iv) sponsors should be willing
to carry out quality assurance tasks and, if applicable,

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

some consultancy, or even give a guest lecture on the
respective research.

3.4 Team Structure and Collaboration

This section introduces the actual team setup of the
initial implementation. Figure 4 illustrates the bird’s-
eyes perspective on the team setup and shows the
relation of the theory teams and the practice teams..
The teams’ numbers in Figure 4 correspond with the
topic numbers from Table 3.

Due to the sponsors and the research they brought
to the table, practice teams had three different types
of projects: individual projects, interfaced projects,
and shared projects. In interfaced projects (teams 11
and 12), students set up a study on the same sub-
ject, but had to take different perspectives and slightly
different methods to be applied. Nevertheless, both
teams needed coordination, notably concerning the
questionnaire designs and the scheduling of interview
slots. In shared projects, students either shared a
study design (and applied it to different target groups,
e.g., teams 14, 15) or implemented independently con-
ducted research based on an identical task (e.g., teams
17, 18).

Survey Research Teams The survey research teams
(Figure 5) worked on two tasks: one interfaced task
and one shared task. The interfaced task means that

24

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

Cross-cutting

Theory Teams Practice Teams Conearns
2:::;3;‘:'1 Team1 |P|E| [Team 11 2 [P|E| |Team 14 o [P|E] [Team6 [P|E]
[Team12 — |P|E| |Team15 — |P|E] [Team7 [P|E]
[Teams |P[T|E]
Exporment [Team2__[P[E] [Team 10 [P]E] [Team9 [P[T]E|
Roviews [Team3__[P[E] [Team 13 |P[E] [Team 17 o P[E]
|Team18°|P|E|
Systematic |E| Presentation
Mapping [Team 4 |P|E] [Team16 |P|E] Essay
Computer Tutorial
Simuiation | Team5 | P|E| | Team 1ge| P|E| a Interface
[Team 20 % | P E| © S sy
Design

Figure 4: Overview of the teams structure: theory and practice teams, method-based team clusters, and teams
addressing cross-cutting concerns. Deliverable types are explained in detail in Table 4.

ext. Sponsor

Toacher 7 Sy [Toam 14 oTP]E
/ DTopic —>
Research EE
Design Practice

Topic I:jTopic
[foan 1 [P[E]

Theory

Research

Design 1
}->{Tear 11 TP
1
Tean 12 O [Pe]

Cross-cutting Research Practice
Teams Design 2

Figure 5: Group setup of the survey teams (theory,
practice, cross-cutting).

both teams worked on related research designs de-
rived from the shared topic: Analyze the perception
of the semester projects from the perspective of the
students and from the perspective of the teachers.
For this, several individual and joint sessions were
organized, inter alia, to elaborate shared questions of
the respective questionnaires to allow for discussing
the overall topic from different perspectives, e.g., stu-
dents’ vs. teachers’ perspectives of project topics or
group setups.

The shared task means that an external sponsor
shared a research design, which was handed out to

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

two groups. Both groups implemented the research
designs, yet surveying different groups of which the
contact information was provided by two local indus-
try clusters. In this case, the two groups received a
predefined research kit and had to implement this kit,
i.e., organize and conduct interviews.

Systematic Review Teams Two systematic review
(SLR) topics were selected from the topic pool. Since
SLRs are time-consuming, especially the actual search
and selection stages, both teams were provided with
pre-digested datasets emerging from a systematic map-
ping study (scoping study: [21]) and two selected sub-
studies [18,22] thereof. For the SLRs, two external
sponsors were acquired, who contributed to the topic
and research design definition, provided pre-digested
datasets, and supported the quality assurance of pre-
liminary results.

The general organization follows the setup shown
in Figure 5, yet, the shared study design followed
a slightly different approach. Both teams 17 and 18
received the same research kit and were asked to carry
out the same tasks in an independent manner. The
purpose was to carry out the systematic review from
two different groups to, eventually, demonstrate the
expected difference in the results caused by personal
decisions of the respective reviewers.

Cross-cutting Concerns The teams covering the
cross-cutting concerns have a special role in this setup.
In particular, every team has to report their results.

25

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

Deliverable Types

Id ‘ Question Type

Ry | Review: In the first individual assignment, students
have to deliver reviews for two randomly selected
conference papers (following a given template,
about 1 page per review).

P Presentation: Each team has to give a 15-minute
presentation on its topic. The presentations are
scheduled in topic slots as shown in Figure 3.

T Tutorial: For the teams 8 and 9, the students have

to prepare a 15-minute tutorial, which can be done
in class as well as “offline”.

E | Essay: Each team has to submit an up to 10-page es-
say in which the project is described. For the theory
teams, the essay must comprise definitions, sum-
maries about the application of a method based on
further studies, check lists for the practice teams,
and observations of the practice teams. The prac-
tice teams report their findings from their respec-
tive projects. The essay is developed in KIiX fol-
lowing the latest ACM conference templates.

R2 | Review: Each team has to review two papers from
other project teams. Other than R;, this review is
carried out as a group task.

Table 4: Summary of the expected deliverable types
(related to the teams from Figure 4).

Since there were no case studies among the topic pro-
posals', team 6 was asked to focus on (case) study
reporting and to offer respective knowledge to the
practice teams. The topics 7, 8, and 9 are true cross-
cutting topics, i.e., all practice teams have to discuss
threats to validity, have to carry out some sort of data
analysis, and have to visualize their findings. There-
fore, the cross-cutting concerns teams are (potentially)
consulted by all the other teams.

3.5 Deliverables and Examination

Each team has to deliver a number of deliverables,
which are summarized in Table 4.

4 Evaluation and Discussion

We report our experiences and lessons learned from
the initial implementation of the course. Furthermore,
we provide some discussion using the in-course feed-
back collected in two evaluation rounds.

4.1 Course Evaluation

The evaluation presented in this section is based on
two evaluation rounds, which were carried out in the
seventh session (mid-term) and the closing session
(final). The evaluation was conducted using the ques-
tionnaire presented in Table 5.

1As this was the first time the course was run this way, case study
research was excluded from the portfolio due to the expected effort
of running a “true” case study. Also, only one experiment group
was accepted. Yet, these methods will be included in upcoming
course instances as soon as there is sufficient experience available
regarding the options to integrate these methods properly.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

General Criteria

GC; | Please rate the course according to the | LI
following criteria: general cause com-
plexity, course speed, cause content vol-
ume, and the appropriateness of the
course in terms of ECTS

GC; | Please rate the following course compo- | LI
nents: lecture, exercise, relation to prac-
tice

Free-form comments (1-minute paper)

FF1 | Please name up to 5 points you consid- | Text
ered good

FF, | Please name up to 5 points you consid- | Text
ered bad and that need improvement

FF; | Anything else you want to say? Text

Course-integrated Mini-Projects

MP; | What is your general opinion about the | 0/1
mini-projects?
MP, | Please evaluate the statements: changed | LI
my view on science, improved learning
experience, better understanding of con-
cepts, helpful for later career, and built
expertise to share.

MP; | If you had the choice, would you have | LI
more focus on mini-projects or more clas-
sic exercises?

MP, | Is there anything else you want to say? | Text

GC and MP Extension (final evaluation only)

MP; | Looking back, the mini-projects con- | LI
tributed to my learning experience.
MPg | Looking back, the team work within the | LI
mini-projects was good.
MP; | Looking back, the cross-team collabora- | LI
tion among the different project groups
was good.

GCs; | What is your major take-home asset | Text
from the course?

Table 5: Questionnaire used for the mid-term
evaluation (simplified version for space limitations;
LI=Likert scale, 0/1=decision on a statement).

The questionnaire comprises quantitative as well
ans qualitative questions: the general criteria (GC)
serve the general analysis whether students consider
the course fair?. The second part of the questionnaire
comprises the 1-minute-paper part (FF) in which stu-
dents are asked for providing feedback to capture the
current mood in the course and to support the course’s
improvement. Finally, in the third part, the perceived
value of the course-integrated mini-projects (MP) is
evaluated. The subsequent sections provide the quan-
titative and qualitative analysis of the mid-term feed-

2Note: These questions are kept stable since [27] in order to
also validate the teaching model proposed; see also [24].

26

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

back, and present the evaluation of the mini-projects
and the perceived value.

4.1.1 Standard Quantitative Evaluation

In total, 68 students are active in the course of which
39 students participated in the mid-term evaluation
and 38 in the final evaluation respectively. The sub-
sequent discussion is focused on the final evaluation,
and results from the mid-term evaluation are pre-
sented, but only used for discussing changing percep-
tions over time.

The question GC; addresses the general rating of
the course and whether the students consider the
course appropriate. Figure 6 shows the absolute rating
and shows that students consider the course’s volume
high to very high (19 out of 38), but at the same time,
the majority of the students consider complexity and
speed fair. In summary, 24 out of 38 students consider
the appropriateness of the ECTS for this course fair to
absolutely appropriate.

& Final |4 12 8 13 1
g

o

;& Mid [12 8 10 5

o Final 3 16 5 2 2
5

o

> Mid 8 16 12 3
o Final 8 5% 6 |2
[0}

[

Q.

D Mid 11 23 5

2 Final 10 24 3R
)

g

§ Md 2 12 22 2

0% 20% 40% 60% 80% 100%

Very High 0OHigh CFair CLow mVery Low

Figure 6: Evaluation of the general criteria part GC;.

_g Final 6 18 10 4
3]

o

5 Mid 8 13 12 5 1
o Final 1 12 13 2
3

E

- Mid 1 15 7 5 1
8 _

S Final 1" 17 6 3 1
©

a

= Mid 8 19 8 4
&

0% 20% 40% 60% 80% 100%

Very Good [Good CIFair [Bad ®VeryBad

Figure 7: Evaluation of the general criteria part GCs.
Question GC, aims at computing an overall grade
for the course and considered the three components

lecture, exercise, and the relation of the course to
practice. Figure 7 shows the absolute mentions, and

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

the figure shows that the majority of the students rate
the course good to very good. The overall grades from
the parts GC; and GC, are shown in Table 6 (with
1.00 as best and 5.00 as worst grade).

Criterion Mid-Term Final
MD | Avg MD | Avg
Course Complexity 3 2.69 || \ 3 2.87
Course Speed 3 2.85 || \ 3 3.05
Content Volume 2 2.26 || \ 2 2.58
Appropriateness 2 3.00 || / 4 2.87
Lecture 2 223 || - || 3 2.21
Exercise 2 244 || 7 2 2.32
Relation to Practice 2 221 || / 2 2.11

Table 6: Overall rating of the course (MD: modal
values; Avg: average ratings; mid-term: n=39, final:
n=38; arrows indicate the trend from the mid-term
to the final evaluation).

4.1.2 Qualitative Standard Evaluation

For the qualitative evaluation, the I-minute-paper
part of the questionnaire is used (Table 5, ques-
tions FF,). In particular, for question FF;, 35/32
(mid/final) students provided (positive) feedback; for
FF,, 32/29 students provided feedback regarding neg-
ative points/aspects to be improved, and, finally, for
FF3, 10/6 students provided further comments. In
total, we received about 130 statements for the mid-
term evaluation and about 125 comments in the final
evaluation, which we group and analyze in the follow-
ing. The statements of the students were categorized
based on keywords; the threshold for a category was
set to three mentions.

Category Mid-Term Final
Pro | Con || Pro | Con
Group work, feedback, com- | 11 7
munication
Content and understanding | 8 9
Mini-projects 8 5 11 4
Work pattern 8 4 10 1
Content/material volume 12 4
Class size 3 3
Relevance 4 4
Guest lectures* 3 1 6 5
Volume for ECTS* 6 4

Table 7: Categorized and condensed qualitative feed-
back (free-form text questions) Categories marked
with “*” were added during the final evaluation.

Table 7 provides the condensed qualitative feed-
back in nine categories. Group work, in particular,
the involvement of students, the communication and
quick feedback cycles were considered positive. Also,
the content collection and the understandability of

27

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

the content was considered positive; whereas the vol-
ume of the content was considered critical (comment,
mid-term: “maybe 20% less would be more manage-
able.”). The chosen way of work, i.e., expert teams in
combination with the mini-projects, shows an indif-
ferent picture. On the one hand, students appreciate
this approach as it allows for focusing, continuous
work on one subject, and building expertise in specific
methods. However, on the other hand, students con-
sider certain aspects critical. For instance, the focus
brought by the mini-projects allows for obtaining de-
tailed knowledge on one method, yet, the students are
concerned about the other approaches, which were
not in their respective scope. One argument presented
was a non-optimal synchronization among the expert
teams. Arguments presented in favor of the work
model were real research and cross-team collabora-
tion, arguments against this work model regarded a
late availability of the research kits and the size of the
projects. Few students also suggested to reduce the
mini-projects to “normal” assignments that would al-
low for covering more topics/methods: “Mini-projects
are basically good, but more variety would be nice.”).

Another critical aspect of the course was the amount
of reading material provided. While two students ex-
plicitly mentioned “learning to analyze scientific pa-
pers”—and later on also “write”—positive, six (mid-
term) students considered the material to read and
analyze too much, yet, in the final evaluation, this
aspect was not mentioned anymore. In the mid-term
evaluation, six students stated the number of ECTS
points for this course to small; in the final evaluation,
four students (still) think the the amount of credit
points inappropriate. Furthermore, students from
other study programs than Software Engineering, MSc
were enrolled. Hence, the relevance for their specific
education lines was questioned. Also, three students
explicitly questioned the relevance to their current
studies and future activities. Finally, the course had
almost 70 students enrolled, which is almost thrice
the class size for which the pattern was applied so far.
And this class size was mentioned critical, especially
the “crowded class room”.

4.1.3 Evaluation of the Course-integrated
Mini-Projects

For the question MP; (What is your general opinion
about the mini-projects?), 36 students mentioned that
they like the mini-project approach, and two students
mentioned that they would prefer the classic lecture-
exercise model to the mini-project approach. Figure 8
further shows that, eventually, five out of 38 students
tend towards applying more classic teaching elements,
i.e., the classic lecture-exercise model (question MP3).
Yet, 11 students would prefer putting even more focus
on the mini-projects.

Figure 9 shows the absolute mentions for MP,. The
figure shows that the mini-projects are considered
valuable to improve understanding of concepts and

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

Final 11 16 6 4 1
Mid 9 14 9 6 1
0% 20% 40% 60% 80% 100%

More focus on mini-projects Somewhat focus...

Indifferent Somewhat more...

More classic lectures/exercises

Figure 8: Perception of the mini-project approach
compared to the classic lecture-exercise model (mid-
term: n=39; final: n=38).

2 Final 16 1 6 1
=R
3%
-_— [}
I3 Mid 6 11 21 1
()
[})
® . Final 9 15 9 2 3
— o
&2 Md 8 13 1 5 B
T
o
cn
. © o Final 13 22 2 il
253
355
3 wMmd 19 8 11 1
c o
=}
T %8 Final 17 19 i
°2c
>£ 0
o c-¢T
5628
E2x Md 16 18 1131
>
E _ o Final 9 23 3 112
T OO
(7] =
o 30
c Q3G
>0 Mid 6 21 8 31
[&]
0% 20% 40% 60% 80% 100%
Fully Agree Somewhat Agree Indifferent

Somewhat Disagree mFully Disagree

Figure 9: Evaluation (absolute) of the general criteria
section MP, (mid-term: n=39; final: n=38).

to improve the general learning experience. Since
the mini-projects aim at building expert teams, i.e.,
teams that build a specific expertise to share with
other teams, it is important to see the students’ per-
spective regarding this goal. The figure shows that,
finally, 20 out of 38 students think they have built a
respective expertise to share, yet, 11 students are indif-
ferent. Compared to the numbers from the mid-term
evaluation, the data shows the students evaluating
their gained knowledge and experience better to the
end of the course. Another point of interest is the
students’ perception of scientific work. Quite often,
students have little contact with scientific work until
the late stages of their studies, which makes scientific
work somewhat abstract and hard to align with the
students’ day-to-day work®. Thus, it is of certain in-

3In [26], we already mentioned that a strong focus on projects
might influence the willingness of students to accept and apply
methods/techniques not directly addressing the actual project goals.

28

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

terest to learn whether the “practical” scientific work
changed the students perception and if they see posi-
tive impact for their later professional development.
Figure 9 shows 32 students (fully) agreeing that the
course changed their view, and 24 also see impact on
their later career—both increased toward the course’s
end. A statement from the free-text form (mid-term
evaluation) provides a good summary: “in my opin-
ion lecturing scientific method without working with
the methods it’s only knowing about the methods, not
learning them.”

Looking back, the cross-team
collaboration among the different |3 8 6 14 7
project groups was good.

Looking back, the team work within

the mini-projects was good. i e [-
Looking back, the mini-projects
contributed to my leaming 13 21 31
experience.
0% 20% 40% 60% 80% 100%
Fully Agree Somewhat Agree Indifferent

Somewhat Disagree® Fully Disagree

Figure 10: Final evaluation of the mini-project ap-
proach by the students (n=38).

Finally, Figure 10 provides a reflection. The general
perception of the mini-projects and the team work is
positive. However, the students considered the cross-
team collaboration not optimal, which shows room
for improvement. Studying the feedbacks shows that
some teams just “disappeared” and the other teams
could not interact anymore, yet, this requires further
analysis of the evaluation data.

5 Conclusion

In this paper, we presented a course design to teach
empirical software engineering, which follows the
principle learn scientific work by doing scientific work.
The concept presented aims at implementing such
a course with larger classes, and, in order to man-
age a large number of students, utilizes expert teams
to allow for specialization and fostering cross-team
collaboration. Expert teams are supposed to build
a specialization beyond the base knowledge and to
bring in this specialized knowledge in a cross-team
collaboration, e.g., a (theoretical) expertise on a spe-
cific method is used to consult practice teams that
apply this method and, vice versa, practice teams that
report experience to a theory team of how the method
“feels” like in practice.

A reference implementation was run at the Univer-
sity of Southern Denmark in the fall semester 2016

At SDU’s engineering faculty, project-based learning is foundational
principle, which continuously puts students in project situations
and leaves little space to reflect on topics such as scientific meth-
ods, since those do not directly and immediately contribute to the
product development.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

with about 70 students enrolled. The students formed
20 teams carrying out mini-projects, which are of the-
oretical, practical, or cross-cutting nature, and that
addressed a variety of different empirical methods.
All practical projects comprised “real” research tasks
sponsored by internal or external researchers, and
that come from either ongoing research or from com-
pleted research that was considered worth replication.
An evaluation by the students shows the course and
the work pattern considered appropriate. In partic-
ular, students valued the collaborative work on real
research tasks. Yet, they were also concerned about
the effectiveness of the work pattern, in particular, stu-
dents are concerned about potentially missing insights
to further methods. However, the initial evaluation
shows a generally positive attitude towards the expert
team and mini-project approach.

However, since it was the first time that (i) this
course was run this way and (ii) the used teaching
model [27] was yet not implemented at this scale, the
initial implementation revealed potential for improve-
ments. For instance, the class size was considered
critical, whereas the heterogeneity of the class needs
to be considered, too. For future implementations, the
course should be limited to one study program only.
This would allow for better tailoring the course for the
respective audience. Due to the explorative nature of
the reported course instance, no teaching assistants
were involved, which resulted in a dramatically high
workload. For future instances, teaching assistants
should be involved to reduce the workload, e.g., to
speed up organization processes like topic sponsor
acquisition or research kit preparation. Furthermore,
the volume of the course contents needs adjustment.

Finally, several aspects await an in-depth analysis,
e.g., analysis of the work load and the work distribu-
tion. That is, is the topic selection and task assignment
fair? Is the cross-team collaboration working as ex-
pected? Future work will therefore focus on analyzing
the communication within the course (based on ap-
prox. 650 emails, more than 50 meetings in total,
paper and presentation reviews, and confidential writ-
ten evaluation of the cross-team collaboration by the
students). Also, an independent quality assurance
of the students’ deliverables beyond the examination
(e.g., supplemental material like extra article sources,
or quality and completeness of research data) is an
option to better understand the appropriateness of the
tasks and the suitability of the topic composition, and
helps improving the course’s goal definitions.

Acknowledgement

We owe special thanks to all the students actively
participated in the course and who accepted the chal-
lenge to be the “guinea pigs”, and that jumped into
cold water and conducted real research. We also want
to thank the different topic sponsors, who shared their
research topics and (ongoing) work in this course.

29

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

References

[1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

S. Ball, T. Emerson, J. Lewis, and J. T.
Swarthout. Classroom experiments. Avail-
able from http://serc.carleton.edu/sp/
library/experiments/index.html, 2012.

V. Basili, R. Selby, and D. Hutchens. Experi-
mentation in software engineering. Trans. on
Software Engineering, 12(7):733-743, 1986.

V. R. Basili. The experimental paradigm in soft-
ware engineering. In Proceedings of the Interna-
tional Workshop on Experimental Software En-
gineering Issues: Critical Assessment and Future
Directions, volume 706 of LNCS, pages 3-12.
Springer, 1993.

J. D. Blackburn, G. D. Scudder, and L. N. V.
Wassenhove. Improving speed and productivity
of software development: a global survey of soft-
ware developers. Trans. on Software Engineering,
22(12):875-885, Dec 1996.

M. Broy and M. Kuhrmann. Projektorganisa-
tion und Management im Software Engineering.
Xpert.press. Springer, 2013.

B. Briigge, S. Krusche, and L. Alperowitz. Soft-
ware engineering project courses with industrial
clients. Trans. Comput. Educ., 15(4):17:1-17:31,
Dec. 2015.

R. O. Chaves, C. G. von Wangenheim, J. C. C.
Furtado, S. R. B. Oliveira, A. Santos, and E. L.
Favero. Experimental evaluation of a serious
game for teaching software process modeling.
Trans. on Education, 58(4):289-296, Nov 2015.

M. Ciolkowski, C. Differding, O. Laitenberger,
and J. Miinch. Empirical investigation of
perspective-based reading: A replicated exper-
iment. Technical Report 13/97, International
Software Engineering Research Network (IS-
ERN), 1997.

D. S. Cruzes, N. B. Moe, and T. Dyba. Com-
munication between developers and testers in
distributed continuous agile testing. In Interna-
tional Conference on Global Software Engineering,
pages 59-68. IEEE, Aug 2016.

E. Dale. Audiovisual methods in teaching. Dryden
Press, 3 edition, 1969.

K. Dikert, M. Paasivaara, and C. Lassenius. Chal-
lenges and success factors for large-scale agile
transformations. J. Syst. Softw., 119(C):87-108,
Sept. 2016.

J. Dillon. A Review of the Research on Practical
Work in School Science. Technical report, King’s
College, 2008.

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

D. M. Fernandez and S. Wagner. Naming the
pain in requirements engineering: A design for
a global family of surveys and first results from
germany. Inf. Softw. Technol., 57:616-643, 2015.

A. Fink. The Survey Handbook. Sage Publications
Inc., 2 edition, 2002.

D. Fucci and B. Turhan. A replicated experiment
on the effectiveness of test-first development. In
International Symposium on Empirical Software
Engineering and Measurement, pages 103-112.
IEEE, Oct 2013.

D. Fucci, B. Turhan, and M. Oivo. Impact of pro-
cess conformance on the effects of test-driven
development. In International Symposium on Em-
pirical Software Engineering and Measurement,
pages 10:1-10:10. ACM, 2014.

D. Fucci, B. Turhan, and M. Oivo. On the effects
of programming and testing skills on external
quality and productivity in a test-driven devel-
opment context. In International Conference on
Evaluation and Assessment in Software Engineer-
ing, pages 25:1-25:6. ACM, 2015.

J. W. Jacobson, M. Kuhrmann, J. Miinch,
P. Diebold, and M. Felderer. On the role of soft-
ware quality management in software process
improvement. In International Conference on
Product-Focused Software Process Improvement.
Springer, Nov 2016.

B. A. Kitchenham, D. Budgen, and P. Brereton.
Evidence-Based Software Engineering and System-
atic Reviews. CRC Press, 2015.

B. A. Kitchenham and S. L. Pfleeger. Personal
Opinion Surveys, pages 63-92. Springer London,
London, 2008.

M. Kuhrmann, P. Diebold, and J. Miinch. Soft-
ware process improvement: A systematic map-
ping study on the state of the art. PeerJ Computer
Science, 2(1):1-38, 2016.

M. Kuhrmann, P. Diebold, J. Miinch, and P. Tell.
How does software process improvement ad-
dress global software engineering? In Interna-
tional Conference on Global Software Engineering,
pages 89-98. IEEE, Aug 2016.

M. Kuhrmann, D. M. Fernandez, and A. Knapp.
Who cares about software process modelling? a
first investigation about the perceived value of
process engineering and process consumption.
In International Conference on Product-Focused
Software Process Improvement, volume 7983 of
LNCS, pages 138-152. Springer, 2013.

30

http://serc.carleton.edu/sp/library/experiments/index.html
http://serc.carleton.edu/sp/library/experiments/index.html

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Marco Kuhrmann - Teaching Empirical Software Engineering Using Expert Teams

M. Kuhrmann, D. M. Fernandez, and J. Miinch.
Teaching software process modeling. In Interna-
tional Conference on Software Engineering, pages
1138-1147, 2013.

M. Kuhrmann and J. Miinch. Distributed soft-
ware development with one hand tied behind
the back: A course unit to experience the role
of communication in gsd. In 1st Workshop on
Global Software Engineering Education (in con-
junction with ICGSE’2016). IEEE, 2016.

M. Kuhrmann and J. Miinch. When teams go
crazy: An environment to experience group dy-
namics in software project management courses.
In International Conference on Software Engineer-
ing, ICSE, pages 412-421. ACM, May 2016.

Kuhrmann, M. A practical approach to align
research with master’s level courses. In Interna-
tional Conference on Computational Science and
Engineering. IEEE, 2012.

T. Kulvicius, M. Tamosiunaite, J. Ainge, P. Dud-
chenko, and F. Worgotter. Odor supported place
cell model and goal navigation in rodents. Jour-
nal of Computational Neuroscience, 25(3):481-
500, December 2008.

J. Linéker, S. M. Sulaman, R. M. de Mello, and
M. Host. Guidelines for conducting surveys in
software engineering. Technical report, Lund
University, January 2015.

Miinch, J., Pfahl, D., and Rus, I. Virtual software
engineering laboratories in support of trade-off
analyses. International Software Quality Journal,
13(4), 2005.

J. J. Nutaro. Building Software for Simulation:
Theory and Algorithms, with Applications in C++.
Number ISBN: 978-0-470-41469-9. John Wiley
& Sons, Ltd., 2010.

J. O’Keefe and N. Burgess. Geometric determi-
nants of the place fields of hippocampal neurons.
Nature, 381:425-428, May 1996.

J. Parker. Using laboratory experiments to teach
introductory economics. Working paper, Reed Col-
lege, http://academic.reed.edu/economics/
parker/ExpBook95.pdf, accessed 2014-10-23.

N. Paternoster, C. Giardino, M. Unterkalmsteiner,
T. Gorschek, and P. Abrahamsson. Software
development in startup companies: A systematic
mapping study. Inf. Softw. Technol., 56(10):1200-
1218, Oct. 2014.

K. Petersen, R. Feldt, S. Mujtaba, and M. Matt-
son. Systematic mapping studies in software

Bernd Bruegge, Stephan Krusche (Hrsg.): SEUH 2017

[36]

[37]

[38]

[391]

[40]

[41]

[42]

[43]

[44]

[45]

engineering. In International Conference on Eval-
uation and Assessment in Software Engineering,
pages 68-77. ACM, 2008.

K. Petersen, S. Vakkalanka, and L. Kuzniarz.
Guidelines for conducting systematic mapping
studies in software engineering: An update. Inf.
Softw. Technol., 64:1-18, August 2015.

P. Runeson. Using students as experiment
subjects—an analysis on graduate and freshmen
student data. In International Conference on Em-
pirical Assessment in Software Engineering, pages
95-102, 2003.

P. Runeson and M. Host. Guidelines for con-
ducting and reporting Case Study Research in
Software Engineering. Empirical Software Engi-
neering, 14(2):131-164, 2009.

P. Runeson, M. Host, A. Rainer, and B. Reg-
nell. Case Study Research in Software Engineer-
ing: Guidelines and Examples. John Wiley &
Sons, 2012.

A. Sarma, X. Chen, S. Kuttal, L. Dabbish, and
Z. Wang. Hiring in the global stage: Profiles
of online contributions. In International Confer-
ence on Global Software Engineering, pages 1-10.
IEEE, Aug 2016.

M. Tamosiunaite, J. Ainge, T. Kulvicius, B. Porr,
P. Dudchenko, and F. Worgotter. Path-finding
in real and simulated rats: assessing the in-
fluence of path characteristics on navigation
learning. Journal of Computational Neuroscience,
25(3):562-582, 2008.

G. Theocharis, M. Kuhrmann, J. Miinch, and
P. Diebold. Is Water-Scrum-Fall reality? On
the use of agile and traditional development
practices. In International Conference on Prod-
uct Focused Software Development and Process
Improvement, volume 9459 of LNCS, pages 149—
166. Springer, Dec 2015.

C. Wohlin. Empirical software engineering:
Teaching methods and conducting studies. In
Proceedings of the International Workshop on Em-
pirical Software Engineering Issues: Critical As-
sessment and Future Directions, volume 4336 of
LNCS, pages 135-142. Springer, 2007.

C. Wohlin, P. Runeson, P. A. da Mota Sil-
veira Neto, E. Engstrom, I. do Carmo Machado,
and E. S. de Almeida. On the reliability of map-
ping studies in software engineering. J. Syst.
Softw., 86(10):2594-2610, 2013.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.
C., Regnell, B., and Wesslén, A. Experimentation
in Software Engineering. Springer, 2012.

31

http://academic.reed.edu/economics/parker/ExpBook95.pdf
http://academic.reed.edu/economics/parker/ExpBook95.pdf

