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Abstract. Events provide a fundamental abstraction for represent-
ing time-evolving information. Complex event recognition focuses
on tracking and analysing streams of events, in order to detect pat-
terns of special significance. The event streams may originate from
various types of sensor, such as cameras and GPS sensors. Further-
more, the stream velocity and volume pose significant challenges
to event processing systems. We propose dRTEC, an event recog-
nition system that employs the Event Calculus formalism and oper-
ates in multiple processing threads. We evaluate dRTEC using two
real-world applications and show that it is capable of real-time and
scalable event recognition.

1 Introduction

Today’s organisations need to act upon Big Data streams in or-
der to support their resource management, capitalise on opportu-
nities and detect threats. Towards this, event recognition systems
have been particularly helpful, as they support the detection of com-
plex events (CE)s of special significance, given streams of ‘simple,
derived events’ (SDE)s arriving from various types of sensor [9].
A CE is a collection of events (SDEs and/or CEs) that satisfy a
(spatio-)temporal pattern. In the maritime domain, for example,
event recognition systems have been used to make sense of position
streams emitted from thousands of vessels, in order to detect, in real-
time, suspicious and illegal activity that may have dire effects in the
maritime ecosystem and passenger safety [2].

In previous work, we developed the ‘Event Calculus for Run-
Time reasoning’ (RTEC), a formal computational framework for
event recognition [3]. RTEC is an Event Calculus dialect [18] that
includes optimisation techniques supporting efficient event recogni-
tion. A form of caching stores the results of sub-computations in the
computer memory to avoid unnecessary re-computations. A simple
indexing mechanism makes RTEC robust to events that are irrelevant
to the computations we want to perform. A set of interval manipu-
lation constructs simplify event patterns and improve reasoning effi-
ciency. Furthermore, a ‘windowing’ mechanism makes event recog-
nition history-independent.

RTEC is a logic programming implementation of the Event Cal-
culus. This way, event patterns have a formal, declarative semantics
[3]. On the other hand, RTEC does not have built-in support for dis-
tributed processing. This is a significant limitation, as Big Data appli-
cations, such as maritime monitoring, require the processing of high
velocity SDE streams. Moreover, the integration of RTEC into non-
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Prolog systems is not always straightforward, requiring workarounds
that hinder performance.

To deal with the increasing velocity and volume demands of to-
day’s applications, we developed ‘dRTEC’, a distributed implemen-
tation of RTEC. dRTEC employs Spark Streaming4, an extension of
the Apache Spark API that enables scalable, high-throughput and
fault-tolerant stream processing. Reasoning in Spark Streaming may
be performed exclusively in memory, where the input SDE stream is
aggregated into a series of batch computations on small time inter-
vals. dRTEC uses Spark Streaming’s inherent support for distributed
processing to take advantage of modern multi-core hardware for scal-
able event recognition.

The use of Spark Streaming additionally facilitates the integration
of dRTEC, as an event recognition module, into existing (large-scale)
stream processing systems. dRTEC has been evaluated in the con-
text of two such systems. First, in the context of the SYNAISTHISI
project5, dRTEC is the human activity recognition module detecting
‘long-term activities’, such as fighting and leaving unattended ob-
jects, given ‘short-term’ activities detected on video frames by the
underlying visual information processing components. In this appli-
cation, we evaluated dRTEC using a benchmark activity recognition
dataset. Second, in the datACRON project6, dRTEC recognises sus-
picious and illegal vessel activities given a compressed vessel posi-
tion stream produced by a trajectory processing module. To evaluate
dRTEC on the maritime domain, we used a real position stream from
over 6,000 vessels sailing through the Greek seas in the summer of
2009. The empirical analysis showed that dRTEC scales better than
RTEC, both to increasing velocity SDE streams and larger numbers
of CEs.

The remainder of the paper is organised as follows. In the follow-
ing section we briefly review RTEC. Then, we introduce they key
components of dRTEC. Section 4 presents our empirical analysis,
while in Section 5 we summarise our approach, discuss related work
and outline directions for further research.

2 Event Calculus for Run-Time Reasoning

dRTEC is a distributed implementation of RTEC7, the ‘Event Cal-
culus for Run-Time reasoning’ [3]. The time model of RTEC is lin-
ear including integer time-points. Where F is a fluent—a property
that is allowed to have different values at different points in time—
the term F =V denotes that fluent F has value V . Table 1 presents
the main RTEC predicates. Variables start with an upper-case letter,
while predicates and constants start with a lower-case letter. The hap-
pensAt predicate defines the event instances, the initiatedAt and termi-

4 http://spark.apache.org/streaming/
5 http://iot.synaisthisi.iit.demokritos.gr/
6 http://www.datacron-project.eu/
7 https://github.com/aartikis/RTEC
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natedAt predicates express the effects of events, while the holdsAt and
holdsFor predicates express the values of the fluents. holdsAt and
holdsFor are defined in such a way that, for any fluent F ,
holdsAt(F =V, T ) if and only if T belongs to one of the maximal
intervals of I for which holdsFor(F =V, I).

We represent instantaneous SDEs and CEs by means of happensAt,
while durative SDEs and CEs are represented as fluents. The ma-
jority of CEs are durative and thus, in CE recognition the task is to
compute the maximal intervals for which a fluent representing a CE
has a particular value continuously.

Table 1. RTEC Predicates.

Predicate Meaning

happensAt(E, T ) Event E occurs at time T

initiatedAt(F =V, T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T ) At time T a period of time
for which F =V is terminated

holdsAt(F =V, T ) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

union all(L, I ) I is the list of maximal intervals
produced by the union of the lists of
maximal intervals of list L

intersect all(L, I ) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

relative complement all(I ′,L, I ) I is the list of maximal intervals
produced by the relative complement
of the list of maximal intervals I′
with respect to every list
of maximal intervals of list L

Fluents in RTEC are of two kinds: simple and statically deter-
mined. For a simple fluent F , F =V holds at a particular time-
point T if F =V has been initiated by an event that has occurred
at some time-point earlier than T , and has not been terminated
in the meantime. This is an implementation of the law of inertia.
To compute the intervals I for which F =V holds continuously,
i.e. holdsFor(F =V, I), we compute all time-points Ts at which
F =V is initiated, and then, for each Ts, we find the first time-point
Tf after Ts at which F =V is terminated. Consider the following
example from activity recognition:

initiatedAt(leaving object(P ,Obj )= true, T )←
happensAt(appear(Obj ), T ),
holdsAt(inactive(Obj )= true, T ),
holdsAt(close(P ,Obj )= true, T ),
holdsAt(person(P)= true, T )

(1)

terminatedAt(leaving object(P ,Obj )= true, T )←
happensAt(disappear(Obj ), T )

(2)

The above rules are intended to capture the activity of leaving an
object unattended. appear and disappear are instantaneous SDEs
produced by the underlying computer vision algorithms. An entity
‘appears’ when it is first tracked. Similarly, an entity ‘disappears’
when it stops being tracked. An object carried by a person is not
tracked—only the person that carries it is tracked. The object will
be tracked, that is, it will ‘appear’, if and only if the person leaves it
somewhere. inactive is a durative SDE. Objects (as opposed to per-
sons) can exhibit only inactive activity. close(P ,Obj ) is a statically
determined fluent indicating whether the distance between two enti-
ties P and Obj, tracked in the surveillance videos, is less than some

threshold of pixel positions. person(P) is a simple fluent indicating
whether there is sufficient information that entity P is a person as
opposed to an object. According to rule (1), ‘leaving object’ is ini-
tiated when an inactive entity starts being tracked close to a person.
Rule (2) dictates that ‘leaving object’ stops being recognised when
the entity is no longer tracked. The maximal intervals during which
leaving object(P ,Obj )= true holds continuously are computed us-
ing the built-in RTEC predicate holdsFor from rules (1) and (2).

In addition to the domain-independent definition of holdsFor,
RTEC supports application-dependent holdsFor rules, used to define
the values of a fluent F in terms of the values of other fluents.
Such a fluent F is called statically determined. holdsFor rules of this
type make use of interval manipulation constructs—see the last three
items of Table 1. Consider the following example:

holdsFor(greeting(P1 ,P2 )= true, I )←
holdsFor(close(P1 ,P2 )= true, I1 ),
holdsFor(active(P1 )= true, I2 ),
holdsFor(inactive(P1 )= true, I3 ),
holdsFor(person(P1 )= true, I4 ),
intersect all([I3 , I4 ], I5 ),
union all([I2 , I5 ], I6 ),
holdsFor(person(P2 )= true, I7 ),
holdsFor(running(P2 )= true, I8 ),
holdsFor(abrupt(P2 )= true, I9 ),
relative complement all(I7 , [I8 , I9 ], I10 ),
intersect all([I1 , I6 , I10 ], I )

(3)

In activity recognition, we are interested in detecting whether two
people are greeting each other. A greeting distinguishes meetings
from other, related types of interaction. Similar to inactive , active
(mild body movement without changing location), running and
abrupt are durative SDEs produced by the vision algorithms. Ac-
cording to rule (3), two tracked entities P1 and P2 are said to be
greeting, if they are close to each other, P1 is active or an inac-
tive person, and P2 is a person that is neither running nor moving
abruptly.

RTEC restricts attention to hierarchical formalisations, those
where it is possible to define a function level that maps all fluents
and all events to the non-negative integers as follows. Events and
statically determined fluents of level 0 are those whose happensAt and
holdsFor definitions do not depend on any other events or fluents. In
CE recognition, they represent the input SDEs. There are no simple
fluents in level 0. Events and simple fluents of level n (n>0) are
defined in terms of at least one event or fluent of level n−1 and a
possibly empty set of events and fluents from levels lower than n−1.
Statically determined fluents of level n are defined in terms of at least
one fluent of level n−1 and a possibly empty set of fluents from lev-
els lower than n−1.

RTEC performs CE recognition by means of continuous query
processing, and concerns the computation of the maximal intervals
of fluents. At each query time Qi, the input entities that fall within
a specified sliding window ω are taken into consideration. All input
entities that took place before or at Qi−ω are discarded/‘forgotten’.
This constraint ensures that the cost of CE recognition depends only
on the size of ω and not on the complete SDE history. The size of ω,
and the temporal distance between two consecutive query times—the
‘step’ Qi−Qi−1—are tuning parameters that can be chosen by the
user.

When ω is longer than the step Qi−Qi−1, it is possible that an
SDE occurs in the interval (Qi−ω,Qi−1] but arrives at RTEC only
after Qi−1; its effects are taken into account at query time Qi. This
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Figure 1. Windowing in RTEC.

is illustrated in Figure 1. The figure displays the occurrences of in-
stantaneous SDEs as dots and durative ones as line segments. For
CE recognition at Q138, only the SDEs marked in black are con-
sidered, whereas the greyed out ones are neglected. Assume that all
SDEs marked in bold arrived only after Q137. Then, we observe that
two SDEs were delayed i.e. they occurred before Q137, but arrived
only after Q137. In this example, the window is larger than the step.
Hence, these SDEs are not lost but considered as part of CE recogni-
tion at Q138.

After ‘forgetting’ SDEs, RTEC computes and stores the intervals
of CEs. At Qi, the CE intervals computed by RTEC are those that
can be derived from SDEs that occurred in the interval (Qi−ω,Qi],
as recorded at time Qi. RTEC adopts a caching technique where flu-
ents are processed in a bottom-up manner; this way, the intervals of
the fluents that are required for the processing of a fluent of level
n will simply be fetched from the cache without the need for re-
computation. More details about the reasoning engine of RTEC (in-
cluding a complexity analysis), as well as its expressivity, may be
found at [3].

3 Distributed Event Calculus

dRTEC is a distributed implementation of RTEC in Spark Stream-
ing using the Scala programming language. Like RTEC, dRTEC per-
forms CE recognition by means of continuous temporal projection,
i.e. at each query time dRTEC computes the maximal intervals of
fluents given an incoming SDE stream. Other tasks offered by other
Event Calculus implementations, such as abduction, are not sup-
ported. In addition to the optimisation techniques of RTEC, such as
windowing, dRTEC supports CE recognition using a structured set of
operations for distributed reasoning. dRTEC follows a syntax-based,
application-independent approach to translate query processing into
distributed reasoning. Figure 2 illustrates the basic components of
the engine using the activity recognition application. dRTEC accepts
SDE streams through MQTT8, a lightweight publish-subscribe mes-
saging transport. Spark Streaming separates the incoming stream into
individual sets, called ‘micro-batches’. The window in dRTEC may
contain one or more micro-batches. Each micro-batch may contain
events, expressed by happensAt, and fluents, expressed by holdsFor.
For example, according to the SDEs in the first micro-batch shown
in Figure 2, the entity id0 started being tracked—‘appeared’—at
time/video frame 80. Moreover, the entity id1 was running contin-
uously in the interval [90,100).

dRTEC performs various tasks on the incoming SDE streams.
These are presented in the sections that follow. (We focus on the
novel components of dRTEC, discussing only briefly the implemen-
tation of the RTEC reasoning techniques in Spark Streaming.) The
CEs that are recognised using the incoming SDEs are streamed out
through MQTT (see ‘Output Stream’ in Figure 2).

8 http://mqtt.org/

3.1 Dynamic Grounding & Indexing
At each recognition time Qi, RTEC grounds the CE patterns using
a set of constants for the variables appearing in the patterns, except
the variables related to time. Moreover, RTEC operates under the as-
sumption that the set of constants is ‘static’, in the sense that it does
not change over time, and known in advance. For instance, in the
maritime surveillance domain, RTEC operates under the assumption
that all vessel ids are known beforehand. Similarly, in activity recog-
nition all ids of the tracked entities are assumed to be known. For
many application domains, this assumption is unrealistic. More im-
portantly, there are (many) query times in which RTEC attempts to
recognise CEs for (many) constants, for which no information exists
in the current window.

To address this issue, dRTEC supports ‘dynamic’ grounding. At
each query time Qi, dRTEC scans the SDEs of the current window
ω to construct the list of entities for which CE recognition should
be performed. Then, it appends to this list all entities that have CE
intervals overlapping Qi−ω. Such intervals may be extended or (par-
tially) retracted, given the information that is available in the current
window. In this manner, dRTEC avoids unnecessary calculations by
restricting attention to entities for which a CE may be recognised at
the current query time.

Indexing is used to convert the input SDEs into a key-value pair
format for data partitioning. The partitions are distributed among the
available cores (processing threads) of the underlying hardware for
parallel processing. Each SDE is indexed according to its entity. In
activity recognition, for example, the index concerns the ids of the
tracked entities (see ‘Dynamic Grounding & Indexing’ in Figure 2).
For each window, the SDEs concerning the same entity are grouped
together and subsequently sent to the same processing thread.

3.2 Non-Relational Processing
Indexing is followed by non-relational fluent processing performed at
each thread in parallel (see the ‘Non-Relational Processing’ boxes of
Figure 2). Non-relational processing refers to the computation of the
maximal intervals of fluents involving a single entity. (In the absence
of such fluents, dRTEC proceeds directly to ‘pairing’.) In activity
recognition, for example, we want to determine whether a tracked
entity is a human or an object (see the rules presented in Section 2).
An entity is said to be a person if it has exhibited one of the ‘running’,
‘active’, ‘walking’ or ‘abrupt movement’ short-term behaviours since
it started being tracked. In other words, the classification of an en-
tity as a person or an object depends only the short-term activities
of that entity. The distinction between non-relational and relational
processing allows us to trivially parallelise a significant part of the
CE recognition process (non-relational CE patterns). The processing
threads are independent from one another, avoiding data transfers
among them that are very costly.

Non-relational, as well as relational processing, concerns both
statically determined and simple fluent processing, and windowing.
These tasks are discussed in Section 3.4.

3.3 Pairing & Relational Processing
Relational processing concerns CE patterns that involve two or more
entities. In activity recognition, we want to recognise whether two
people are moving together or fighting. Prior to relational CE recog-
nition, dRTEC produces all possible relations that may arise from
the list of entities computed by the dynamic grounding process—
see ‘Pairing’ in Figure 2. Then, these relations are distributed to all
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Figure 2. dRTEC processing.

available processing threads for parallel CE recognition. Note that,
in contrast to non-relational processing, the information available to
each processing thread is not disjoint. Assume, for example, that the
pair (id0, id1) is processed by processing thread 1, while the pair (id1,
id2) is processed by thread 2. Then both threads will have the output
of non-relational processing concerning id1 (e.g. the list of maximal
intervals during which id1 is said to be a person). However, there is no
replication of computation, as the output of non-relational process-
ing is cached, and the sets of relations of the processing threads are
disjoint. Furthermore, similar to non-relational processing, each pro-
cessing thread has all the necessary information, thus avoiding costly
data transfers.

3.4 Fluent Processing

As mentioned earlier, both relational and non-relational processing
concern the computation of the list of maximal intervals of fluents.
For both types of fluent, simple and statically determined, dRTEC
follows the reasoning algorithms of RTEC. For example, in the case
of a simple fluent CEs , dRTEC checks, at each query time Qi, if
there is a maximal interval of CEs that overlaps Qi−ω. If there is
such an interval then it will be discarded, while its initiating point
will be kept. Then, dRTEC computes the initiating points of CEs in
(Qi−ω,Qi], and appends them to initiating point (if any) prior to
Qi−ω. If the list of initiating points is empty then the empty list of
intervals is returned. Otherwise, dRTEC computes the terminating
points of CEs in (Qi−ω,Qi], and pairs adjacent initiating and ter-
minating points, as discussed in Section 2, to produce the maximal
intervals.

Definitions 1 and 2 show, respectively, the initiating and termi-
nating conditions of the ‘leaving object’ CE that were presented in
Section 2 in the language of RTEC. Recall that ‘leaving object’ is a
simple fluent. The GI function (GETINTERVAL, in full) retrieves the
list of maximal intervals of a fluent. GI has three parameters: (a) the

Definition 1 Initiation of leaving object in dRTEC.
I1← GI(occurrences , Obj , Fluent(happensAt , appear ))
I2← GI(occurrences , Obj , Fluent(holdsFor , inactive, true))
I3← GI(occurrences , (P ,Obj ), Fluent(holdsFor , close, true))
I4← GI(occurrences , P , Fluent(holdsFor , person , true))
I ← I1.INTERSECT ALL(I2).INTERSECT ALL(I3).INTERSECT ALL(I4)

‘collection occurrences’, i.e. a map pointing to the list of maximal
intervals of a fluent, (b) the list of entities/arguments of the fluent,
and (c) the fluent object. dRTEC uses exclusively intervals in its pat-
terns. The occurrence of an event (e.g. ‘appear’) is represented by
an instantaneous interval. This way, in addition to statically deter-
mined fluents, the interval manipulation constructs can be used for
specifying simple fluents. In dRTEC these constructs are supported
by ‘interval instances’ (see e.g. the last line of Definition 1).

Definition 2 Termination of leaving object in dRTEC.
I ← GI(occurrences , Obj , Fluent(happensAt , disappear ))

Statically determined fluents in dRTEC are specified in a similar
manner. Definition 3, for example, shows the specification of ‘greet-
ing’ (see rule (3) for the RTEC representation).

Definition 3 Statically determined fluent greeting in dRTEC.
I1← GI(occurrences , (P1 ,P2 ), Fluent(holdsFor , close, true))
I2← GI(occurrences , P1 , Fluent(holdsFor , active, true))
I3← GI(occurrences , P1 , Fluent(holdsFor , inactive, true))
I4← GI(occurrences , P1 , Fluent(holdsFor , person , true))
I5← I3.INTERSECT ALL(I4)
I6← I2.UNION ALL(I5)
I7← GI(occurrences , P2 , Fluent(holdsFor , person , true))
I8← GI(occurrences , P2 , Fluent(holdsFor , running , true))
I9← GI(occurrences , P2 , Fluent(holdsFor , abrupt , true))
I10← I7.RELATIVE COMPLEMENT ALL(I8.UNION ALL(I9))
I ← I1.INTERSECT ALL(I6).INTERSECT ALL(I10)
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Figure 3. Activity recognition. Figures (a)–(c) (respectively (d)–(f)) concern the dataset with 10 (20) tracked entities.

4 Empirical Analysis
dRTEC has been evaluated in the context of two stream processing
systems. In the system of the SYNAISTHISI project, dRTEC is the
long-term activity recognition module operating on short-term ac-
tivities detected on video frames. In the datACRON project, dRTEC
recognises suspicious and illegal vessel activities given a compressed
vessel position stream produced by a trajectory processing module.
The empirical analysis presented below was performed on a com-
puter with dual Intel Xeon E5-2630 processors, amounting to 24
processing threads, and 256GB RAM, running Ubuntu 14.04 LTS
64-Bit with Linux kernel 3.13 and Java OpenJDK 1.8. dRTEC is
implemented in Apache Spark Streaming 1.5.2 using Scala 2.11.7.
The source code, including the CE patterns for both applications, is
publicly available9. dRTEC’s warm up period is excluded from the
presented results. In all cases, dRTEC recognises the same CEs as
RTEC.

4.1 Activity Recognition
The SYNAISTHISI project aims at developing customisable, dis-
tributed, low-cost security and surveillance solutions. To evaluate
dRTEC, we used the CAVIAR benchmark dataset10 which consists
of 28 surveillance videos of a public space. The CAVIAR videos
show actors which are instructed to carry out several scenarios. Each
video has been manually annotated by the CAVIAR team to pro-
vide the ground truth for activities which take place on individual
video frames. These short-term activities are: entering and exiting the
surveillance area, walking, running, moving abruptly, being active
and being inactive. We view these activities as SDEs. The CAVIAR
team has also annotated the videos with long-term activities: a per-
son leaving an object unattended, people having a meeting, moving
together, and fighting. These are the CEs that we want to recognise.

The CAVIAR dataset includes 10 tracked entities, i.e. 90 entity
pairs (most CEs in this application concern a pair of entities), while
the frame rate is 40 milliseconds (ms). On average, 179 SDEs are
detected per second (sec). To stress test dRTEC, we constructed a

9 https://github.com/blackeye42/dRTEC
10 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1

larger dataset. Instead of reporting SDEs every 40 ms, the enlarged
dataset provides data in every ms. The SDEs of video frame/time k
of the original dataset are copied 39 times for each subsequent ms
after time k. The resulting dataset has on average of 3,474 SDEs per
sec. Figures 3(a)–3(c) show the experimental results on this dataset.
We varied the window size from 10 sec to 110 sec. The slide step
Qi−Qi−1 was set to be equal to the size of the window. Figure 3(a)
shows the average number of SDEs per window size. The 10 sec
window corresponds to approximately 36K SDEs while the 110 sec
one corresponds to 365K SDEs. Figure 3(a) also shows the number
of recognised CEs; these range from 80 to 230.

The average CE recognition times per window (in CPU seconds)
for both dRTEC and RTEC are shown in Figure 3(b). dRTEC made
use of all 24 processing threads. With the exception of the smallest
window size, dRTEC outperforms RTEC. To allow for a fairer com-
parison, we invoked 24 instances of RTEC, each using in parallel one
processing thread of the underlying hardware. Every RTEC instance
was set to perform CE recognition for at most 4 entity pairs, and was
provided only with the SDEs concerning the entities of these pairs
(no load balancing was performed). In this setting, dRTEC outper-
forms RTEC for most window sizes, but only slightly.

Figure 3(c) shows the effect of increasing the number of avail-
able processing threads on the performance of dRTEC and RTEC.
We varied the number of available threads from 2 to 24; the win-
dow size was set to 110 sec. RTEC achieves its best performance
early—the increase of processing threads affects it only slightly. In
contrast, dRTEC requires all 24 processing threads to match (slightly
outperform) RTEC. The cost of data partitioning through dynamic
grounding and indexing in dRTEC pays off only in the case of 24
threads.

To stress test further dRTEC, we constructed an even larger dataset
by adding a copy of the previous dataset with new identifiers for
the tracked entities. Thus, the resulting dataset contains a total of 20
tracked entities and 380 entity pairs, while approximately 7K SDEs
take place per sec. Figures 3(d)–3(e) show the experimental results.
We varied again the window size from 10 sec to 110 sec. In this case,
however, the SDEs range from 72K to 730K (see Figure 3(d)). The
number of recognised CEs is also much higher; it ranges from 390 to
1100.
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(c) dRTEC vs RTEC: 24 hour window.

Figure 4. Event recognition for maritime surveillance.

Figure 3(e) shows the average CE recognition times per window
when all 24 processing threads were available both to dRTEC and
RTEC. Each RTEC instance was set to perform CE recognition for at
most 16 entity pairs, having available only the SDEs concerning the
entities of these pairs. Both dRTEC and RTEC remain real-time, even
in the presence of 730K SDE windows. In this set of experiments,
dRTEC outperforms RTEC in all window sizes, and the difference
is more significant. This is an indication that dRTEC scales better to
larger datasets. Figure 3(f) shows the effect of increasing the number
of processing threads. We observe a similar pattern to that of the
previous experiments (see Figure 3(c)).

4.2 Maritime Surveillance
The datACRON project aims to develop novel methods for detecting
threats and abnormal activity in very large numbers of moving enti-
ties operating in large geographic areas. In the stream processing sys-
tem of datACRON, dRTEC serves as the component recognising var-
ious types of suspicious and illegal vessel activity. We conducted ex-
periments against a real position stream from the Automated Identi-
fication System11, spanning from 1 June 2009 to 31 August 2009, for
6,425 vessels sailing through the Aegean, the Ionian, and part of the
Mediterranean Sea12. The trajectory detection module of datACRON
compresses the vessel position stream to a stream of critical move-
ment events of the following types: ‘low speed’, ‘speed change’,
‘gap’, indicating communication gaps, ‘turn’, and ‘stopped’, indicat-
ing that a vessel has stopped in the open sea. Each such event includes
the coordinates, speed and heading of the vessel at the time of crit-
ical event detection. This way, the SDE stream includes 15,884,253
events. Given this SDE stream, we recognise the following CEs: il-
legal shipping, suspicious vessel delay and vessel pursuit.

We varied the window size from 1 hour, including approximately
26K SDEs, to 24 hours, including 285K SDEs (see Figure 4(a)). The
slide step Qi−Qi−1 is always equal to the window size. The number
of recognised CEs ranges from 5K to 86K. In other words, the recog-
nised CEs are almost two orders of magnitude more than the CEs in
the activity recognition application.

Figure 4(b) shows the average CE recognition times per window
when all processing threads were used by both implementations.
Similar to the previous experiments, each RTEC instance was given
only the SDEs of the vessels for which it performs CE recognition.
Although RTEC matches the performance of dRTEC for small win-
dow sizes (1 hour and 2 hour windows), dRTEC scales much better to
larger window sizes. In other words, dRTEC seems to perform much
better in the presence of a large number of CEs. Figure 4(c) shows

11 http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
12 This anonymised dataset (for privacy, each vessel id has

been replaced by a sequence number) is publicly available at
http://chorochronos.datastories.org/?q=content/imis-3months

the effect of increasing the processing threads. Unlike the activity
recognition application, dRTEC outperforms RTEC even when just
a few processing threads are available. Similar to the activity recog-
nition domain, dRTEC makes better use of the increasing number of
threads.

5 Discussion

Several techniques have been proposed in the literature for complex
event processing in Big Data applications, including pattern rewrit-
ing [26], rule distribution [25], data distribution [13, 4] and parallel
publish-subscribe content matching [21]. See [15, 16] for two recent
surveys. Moreover, Spark Streaming has been recently used for com-
plex event processing13. The key difference between our work and
these approaches is the use of the Event Calculus. dRTEC inherits
from RTEC the ability to represent complex temporal phenomena,
explicitly represent CE intervals and thus avoid the related logical
problems [23], and perform reasoning over background knowledge.
This is in contrast to other complex event recognition systems, such
as [8, 19], the well-known SASE engine14 [27], and the Chronicle
Recognition System [12].

Concerning the Event Calculus literature, dRTEC includes a win-
dowing technique. On the contrary, no Event Calculus system ‘for-
gets’ or represents concisely the SDE history. Moreover, dRTEC em-
ploys a data partitioning technique using dynamic grounding and
indexing. This way, dRTEC can take advantage of modern multi-
core hardware. This is in contrast to Event Calculus approaches
[7, 5, 24, 6, 22], where the implementations have no built-in sup-
port for distributed processing. For instance, our empirical evaluation
verified that dRTEC scales better than RTEC, both to SDE streams
of increasing velocity and larger numbers of CEs. Note that RTEC
has proven efficient enough for a variety of real-world applications
[3, 2], and already outperforms the well-known Esper engine15 in a
wide range of complex event recognition tasks [1].

Several event processing systems, such as [14, 11, 8, 10, 20], op-
erate only under the assumption that SDEs are temporally sorted. On
the contrary, dRTEC supports out-of-order SDE streams and may dy-
namically update the intervals of recognised CEs, or recognise new
CEs, as a result of delayed SDE arrival.

The use of Spark Streaming in dRTEC facilitates the integration
with other modules not implemented in Prolog, such as the computer
vision modules of the SYNAISTHISI project and the trajectory com-
pression module of datACRON. The integration of RTEC with such
modules was often problematic, due to issues of the libraries integrat-
ing Prolog with other programming languages. Moreover, dRTEC

13 https://github.com/Stratio/Decision
14 http://sase.cs.umass.edu/
15 http://www.espertech.com/esper/
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avoids the memory management issues of Prolog systems that arise
from continuous query computations.

For further work, we are investigating the use of a streaming in-
frastructure that does not rely on micro-batching (e.g. Flink16). Fur-
thermore, we aim to integrate (supervised) structure learning tech-
niques for the automated construction of Event Calculus patterns
[17].
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