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Christian Thies, Mark Oliver Güld, Benedikt Fischer and Thomas M. Lehmann

Department of Medical Informatics, Aachen University of Technology

cthies@mi.rwth-aachen.de

Abstract

Recent research has suggested that there is no general similarity measure which can
be applied parameter free on arbitrary databases. In contrast the optimal combination
of similarity measures and parameters must be identified for each new image repository.
This optimization loop is time consuming and depends on the experience of the designer
as well as the knowledge of the medical expert. It would be useful if results that have
been obtained for one dataset could be transferred to another image repository without
extensive re-design of all relevant components. Transfer of data corpora is vital if
image retrieval is integrated into complex environments such as picture archiving and
communication systems (PACS). Image retrieval in medical applications (IRMA) is
a framework that strictly separates data administration and application logic. This
permits an efficient transfer of the data abstraction from one database to another
without re-designing the software. It supports the loop of estimating a combination of
distance measures, parameter adaption and result visualization, which is characteristic
if an image retrieval application is used for varying data corpora. In this work the
casimage dataset has been added as a data corpus to the IRMA system. Thereon the
query performance has been evaluated without optimization of the currently applied
feature combination. It consists of scaled representations of the images, global texture,
aspect ratio, and an evaluation of deformation between pixels of different images.

1 Introduction

Classical architectures of image retrieval systems consist of an image repository, along with visu-
alization tools and query functionality. The principle of data storage and visualization does not
vary significantly for different databases whereas classes of retrieval approaches are differentiated
by the query principle. In medical applications this becomes a fundamental question since several
requirements for data entry, retrieval time, and content representation must be considered [1].

The first class of approaches associates and stores the secondary annotated content descriptions
with each image. In general this means textual information, which makes the retrieval task a
text search in the descriptions. Since the information is added by a human observer it is likely
to be correct and considers the semantical context of the image content. However inter- and
intra-individual variance in perception, knowledge and capability of expression leads to different
descriptions for a single issue, as do the homonyms and synonyms in medical terminology. Due
to the fact that each image has to be categorized manually, the effort at data entry time is high,
which is infeasible in clinical applications. Furthermore there is no mean of objective verification
for the added data.

The second class of retrieval approaches overcomes the data entry problem by making use of
information that is exclusively contained in the image, i.e. image content. Here the retrieval task is
the detection of the nearest-neighbors to the query image in the image database. This is based on
the similarity of abstract representations of images in a feature space. Consequently content based
image retrieval depends on an appropriate selection of the similarity measure which again depends



on the considered image features. In general, selection of features and similarity measures cannot
be done by a physician in clinical routine. Thus an abstraction layer from the feature handling is
required.

Besides the data entry cost and the content representation a third problem is the state of the
image database: In a clinical environment the set of available images continuously grows. This
must be considered since it is one aim of content based image retrieval to make clinical routine
data available as a source of knowledge for education and diagnosis. Consequently the feature
selection and similarity computation must be as flexible as possible to adopt to the current state
of the database.

The image retrieval in medical applications (IRMA) project integrates these three aspects of
query design into a single framework [2]. In this paper the application of the IRMA framework
to the previously unknown casimage database of the University Hospitals of Geneva is described.
Therefore the general query principle of the IRMA System is introduced (Sec. 2), then the specific
features and similarity computations for query execution are described (Sec. 3). Based on these
methods a suite of experiments was conducted (Sec. 4). The results that were obtained are
summarized (Sec. 5) and discussed (Sec. 6). Finally a conclusion is drawn (Sec. 7).

2 Designing a query

As stated in the introduction a content based query consists of an automated feature extraction
combined with a similarity measure.

2.1 Feature Computation

Existing literature describes numerous features, which can be extracted from an image. They are
roughly categorized in shape descriptions such as edges [3], and color information, for instance
texture features [4, 5]. Those features are extracted from an image and form a size reduced rep-
resentation of the content. The first task in query design is the definition of relevant features. On
behalf of the large variety it is useful to provide as many features as possible, and to select an
appropriate subset for a distinct task. In the IRMA system each newly presented image, either
for a query or for a database entry, is automatically transformed into all available feature repre-
sentations. This ensures short update cycles when entering new images as well as implementing
new features since only the new results must be integrated. For this purpose IRMA provides
an automated storage concept that applies the implemented image to feature mappings at data
entry time. A new feature computation is integrated into an image processing chain by providing
the transformation code. The actual database handling is hidden to this implementation by an
interface which provides a view on the image exclusively.

2.2 Feature Comparison

In this concept a query corresponds to a nearest-neighbor classification of the query image to
all images in the currently considered image corpus. Consequently it is designed by defining
a similarity measure as a metric in the images’ feature space. Result of this computation is a
representation of the corpus as a sorted list, where the most similar images with the smallest
distance form the head. It must be considered how many of the first images in the list are
relevant images matching the query. This question is task specific and cannot be determined
in advance. Furthermore it depends on the actual number of relevant images in the database.
Thus a sufficient set of results must be presented to the user who has to take the final decision.
For this purpose the IRMA system offers a set of database processing sequences which enable
the sequential or parallel access to the stored image features via iteration or fan-in/fan-out over
the corpus respectively. Those processing sequences are combined on a binary execution level by
abstract methods. Consequently the data handling is also hidden from the application by special
data flow interfaces.



2.3 Integration of new image data

The component based software architecture provides a platform where new data is integrated with-
out re-implementing the available features and distance measures. New images typically require
the adoption of existing feature extractions and similarity computations. Yet when introducing a
new image corpus there is no knowledge on the classes of images and their sizes. Thus finding the
appropriate features and similarity measures is similar to an optimization task, without knowing
the target function. However, brute force learning approaches for the optimal query parameters
can only be performed if the ground truth is known. Alternatively a manual optimization of query
methods to a distinct database is inapplicable for clinical routine solutions, since there is simply
no time to supervise the learning process. Thus the designer of an application combines a set of
features and similarity methods in advance and then hands it over to the medical expert who has
to verify the results. Once such a retrieval engine is integrated for instance into a picture archiv-
ing and communication system (PACS) it can hardly be changed, since the database continuously
evolves. In contrast the IRMA framework allows a hot swap of the feature extraction, similarity
computation and database without affecting each other.

In case of the casimage data set there was no ground truth given, so the results could only
be generated by transfer of query settings successfully applied in other applications. This was
the choice of query design for the ImageCLEF task. Main objective was the transfer of already
implemented code and associated experience from recent experiments onto a new database without
considering parameter adaption.

3 Applied features and queries

The methods applied here have been taken without optimization for the casimage image set from
recent applications on the IRMA database. This database consists of 10,000 images from clinical
routine which have been categorized by medical experts and is used to train parameters and verify
query quality [6]. From the medical point of view it was assumed, that the distribution of image
classes from clinical routine in two comparable university hospitals does not vary significantly.
Thus the unmodified transfer of the methods is reasonable. There is one difference since the IRMA
system processes only gray-scale versions of the images. For color images that are contained in a
new database the gray-scale conversion is done by using the standard color weighting

Y =
6969 · R + 23434 · G + 2365 · B

32768
.

Furthermore recent experiments have indicated that spatial and intensity features must be con-
sidered coevally to obtain reasonable results [7, 8]. Those were the global texture features by
Tamura et al. and the image distortion model [9, 11]. In the following descriptions Q means the
query image and R denotes a reference image from the database.

3.1 Texture features by Tamura

Tamura et al. use coarseness, contrast and directionality to capture an image’s texture properties
[9]. Those features are computed per pixel and reflect the texture affiliation. The value ranges for
coarseness, contrast and directionality in the current image are quantized into 6, 8, 8 equidistant
intervals respectively. They form the 6 × 8 × 8 = 384 bins of a three dimensional histogram,
which serves as the global texture description. However, different image sizes result in different
and therfore incomparable histogram counts. To obtain comparable features, each image is scaled
to a size of 256 × 256 pixels. This, on the other hand, ignores the aspect ratio.

To compare the Tamura histograms of two images TH(Q) and TH(R) with M = 384 bins
each, the Jensen-Shannon divergence is used [10]:

JST(Q,R) =
1

2

M
∑

m=1

[

THm(Q) log
2THm(Q)

THm(Q) + THm(R)
+ THm(R) log

2THm(R)

THm(Q) + THm(R)

]



3.2 Aspect ratio

Comparing the aspect ratio of images is an unspecific measure yet it is useful if the dimension of
images has to be considered. Since normalization for some texture features requires the deforma-
tion of the image dimensions to a square shape the aspect ratio of an original image is a mean of
image comparison. Furthermore the aspect ratio is characteristic for different classes of medical
images. MRI slices have identical edge dimensions while radiographs of limbs are rectangular
elongated in direction of the principal bone. The aspect ratio is compared by:

AR(Q,R) =
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Where X(I) and Y (I) are the size of the x- and y-dimension of an image I.

3.3 Image distortion model

While histogram-based methods provide invariance against some transformations, e.g. translation,
scaled representations of the original images can preserve spatial properties, which are especially
important to recognize medical images [11]. A drastic reduction in size also reduces noise and small
image defects. The image distortion model (IDM) expands the näıve pixel-by-pixel comparison of
the scaled representations. It allows local displacements for each pair of pixels compared within
the distance measure. This is especially useful for medical images due to individual anatomical
properties in each image. The policy is to match each pixel of the sample image to one in the
reference image. This ensures that all sample information is evaluated. To prevent a completely
unordered vector field of pixel mappings between two images, it is useful to include the local
context into the search process for a correspondence hypothesis. Denoting the coordinate offsets
by x′′ and y′′, while x′ and y′ denote the offsets within the search window for a corresponding
pixel, the distance is computed by

IDM(Q,R) =
X

∑

x=1

Y
∑

y=1

min
|x′|,|y′|≤W1







∑

|x′′|,|y′′|≤W2

||R(x + x′ + x′′, y + y′ + y′′) − Q(x + x′′, y + y′′)||2







Where I(x, y), I ∈ {R,Q} indicates the pixel value of an image R,Q at position (x, y). The results
are improved if the image gradient is used instead of the intensity values. For our experiment, we
used W1 = 2 (5×5 pixel-sized search window for corresponding pixels) and W2 = 1 (3×3 pixels of
local context). The images were scaled to a fixed height of 32 pixels keeping their original aspect
ratio.

3.4 Classifier combination

Classifier combinations can be grouped into three main categories [12]: parallel, serial (like a sieve),
and hierarchical (comparable to a tree). In the current application a parallel classifier combination
is used, since it is a straightforward method to integrate results that were obtained from the single
classifiers. Normally this is a linear combination of the single classifier results such as the weighted
sum. However, the result depends of the value ranges of the single addends. If there is a single
large addend that dominates the sum, it will eventually shadow discriminative results with low
value ranges. In order to avoid such value domination the results of each single classifier for each
image are transformed to a common scale first. This is done by dividing each result for a single
classifier by the sum of all distances of the respective classifier. The weighting for each addend
determines the combined vote for a distinct classifier. The described similarity measures in this
paper determine the metric:

ρ(Q,R) = α · JST (Q,R) + β · IDM(Q,R) + γ · AR(Q,R).

As a matter of fact α, β and γ are parameters of the function ρ. Yet for the retrieval applica-
tion described in this paper they are considered as constants that were empirically determined
beforehand on the IRMA medical image corpus.



3.5 Relevance Determination

Relevance of an image with respect to the query image Q is computed by sorting the database
DB with the similarity metric into a sequence:

REL(Q,DB) = (R1, ..., Rn)|ρ(Q,R1) ≤ ρ(Q,R2) ≤ ... ≤ ρ(Q,Rn), R1..Rn ∈ DB,n = |DB|.

DB denotes the entire image repository that is to be searched and n = |DB| is the number of
images in the repository. Relevance determination applies the classifier to all elements of the
database. Consequently time consuming ρ-functions are computed for many irrelevant compar-
isons. For this purpose a sieve is applied to reduce the number of potentially relevant references.
In this work the sieve is applied to the IDM classifier by the following steps. First, compute a
neighbor list using Euclidian distance on 16 × 16 representations of the query image and the
database images. Afterwards, the IDM is applied to the closest k database images. Consequently,
the computation time is reduced by the factor n/k. On the other hand, the IDM can only reorder
the results. The sieve is defined by:

1. DS(I, S),Compute a S × S representation for I
2. δ(A,B) = ||DS(A, 16),DS(B, 16)||2
3. DB′(Q,DB, k) = (R1, ..., Rk)|δ(Q,R1) ≤ δ(Q,R2) ≤ ... ≤ δ(Q,Rn), R1..Rn ∈ DB,n = |DB|

Based on the sieve DB′(Q,DB, k), the most relevant images are now selected by application of

REL(Q,DB′(Q,DB, k))

4 Experiments

Aim of the experiments is the verification whether the query design that yielded good results
on the IRMA database could be transferred to another database with minimal changes to the
parameterization.

4.1 Reference Data

The casimage database consists of 8,723 images and represents a mixture of images from clinical
routine and drawings from medical education. Furthermore there are images with secondary added
contents such as pseudo-colorings of segmented ultrasound images or manually placed marker
arrows for operation planning, which do not represent original data.

From this dataset 26 samples have been arbitrarily selected as query images. The experimental
task was to extract similar images to each of the 26 samples and provide a list of query results for
manual evaluation. Thus the ground truth for each query was a-priori unknown and could not be
optimized. This setting corresponds to free database exploration without any knowledge about
its structure and not to mention the relevance of the results. On behalf of that there is no specific
quantization and threshold computation to cut off the list from REL(Q,DB) with respect to each
Q. Since the actual amount of relevant images to a query Q that are contained in the database is
unknown, a fixed set of possible results is to be presented. In the experiments the cutoff is set to
100 images since this number is manually manageable in a browser view. These are lifelike values
for free database exploration as used to understand the structure of a database. For comparable
quantitative evaluation, a ground truth is mandatory. It was provided by three medical experts
form the Geneva University Hospital for the casimage dataset for analysis after deadline for result
submission.

4.2 Quality of results

The capacity of the concept is best verified by examination of the effect of different query designs
on the results. Since the function ρ(Q,R) provides the central query functionality it is manipulated



α β γ
AR 0 0 1
JST 1 0 0
IDM 0 1 0

Comb 1 0.25 0.75 0.0
Comb 2 0.225 0.675 0.1
Comb 1’ 0.25 0.75 0.0
Comb 2’ 0.225 0.675 0.1

Table 1: The weights for the classifiers as used for the experiments

to optimize the results. As explained in section 3.4 this means the adaptation of the parameters
α, β and γ. Table 1 lists the settings for the combined classifier weights, that have been used for
the experiments.

For each of the 26 query images Q the first 100 images from the sequence REL(Q,DB) have
been considered. They have been compared to the ground truth provided for the casimage data by
the usual measures of precision and recall. Precision quantifies the percentage of relevant images
that were among the 100 images returned. Recall denotes the ratio of relevant images to all images
that should have been returned. Due to the restriction to 100 replies, recall will never reach 100
percent for queries with more than 100 relevant results in the database. Also precision will be low
for query images which have significantly less than 100 images among the dataset.

4.3 Runtime behavior

Besides the quality of results the runtime of the algorithms must be considered. Especially if
parameters must be adjusted in a feedback cycle. Furthermore the retrieval system must be
capable of handling several queries at a time with the respective response times. And finally
the setup of the parameters has to be efficient for efficient verification cycles. For this purpose
the extraction of features at the image entry time (Sec. 2.1) must be considered separately from
the feature comparison (Sec. 2.2). Furthermore runtime is reduced by preliminary application
of the sieve DB′(Q,DB, k) to reduce the number of necessary comparisons. In the conducted
experiments the cutoff value k was set to 500. For quality comparison the the combinations Comb
1 and Comb 2 are also applied on DB′(Q,DB, k) which extends the experiment set by Comb 1′

and Comb 2′.

5 Results

5.1 Quality of results

The results for precision and recall for each of the classifier combinations are listed in Table 2
and Table 4. For the combined classifiers Comb 1 and Comb 2 the best precision was obtained
for image 24 and the worst precision for image 14. While best recall for the combined measures
was also for image 14 the worst recall for Comb 1 and Comb 2 was for image 23. Overall Comb
2 yielded the highest average precision. The results for Comb 1′ and Comb 2′ on the reduced
datasets are only slightly inferior in the average precision. Several single results are even better
such as for query 5. Figure 1 illustrates excerpts from the results for three queries. For four query
images, precision is perfect or near perfect, whereas several query images yielded unsatisfactory
results, especially queries 4 (43 relevant images), 11 (9), 14 (11), 17 (31), and 23 (74).



Query AR JST IDM Comb 1 Comb 2 Comb 1′ Comb 2′

1 0.10 0.63 0.97 0.97 0.97 0.97 0.97
2 0.01 0.70 0.66 0.82 0.81 0.72 0.71
3 0.08 0.23 0.25 0.29 0.35 0.27 0.27
4 0.09 0.02 0.02 0.03 0.04 0.02 0.02
5 0.03 0.03 0.36 0.39 0.40 0.42 0.43
6 0.20 0.81 0.94 0.99 0.97 0.95 0.96
7 0.00 0.24 0.24 0.31 0.36 0.33 0.35
8 0.09 0.06 0.11 0.20 0.23 0.11 0.11
9 0.01 0.16 0.15 0.29 0.25 0.26 0.26

10 0.04 0.17 0.41 0.38 0.42 0.42 0.37
11 0.00 0.01 0.00 0.03 0.03 0.00 0.00
12 0.23 0.47 0.69 0.72 0.67 0.71 0.72
13 0.02 0.10 0.36 0.38 0.42 0.35 0.37

14 0.01 0.03 0.01 0.04 0.01 0.01 0.02
15 0.14 0.96 0.87 0.98 0.97 0.89 0.88
16 0.02 0.57 0.34 0.51 0.58 0.34 0.34
17 0.00 0.04 0.07 0.11 0.10 0.11 0.11
18 0.20 0.10 0.43 0.38 0.36 0.39 0.38
19 0.01 0.81 0.50 0.78 0.73 0.68 0.67
20 0.06 0.06 0.10 0.09 0.10 0.08 0.09
21 0.02 0.11 0.52 0.39 0.40 0.33 0.35
22 0.10 0.36 0.68 0.64 0.59 0.60 0.59
23 0.03 0.06 0.10 0.08 0.15 0.09 0.15

24 0.15 0.80 1.00 1.00 1.00 1.00 0.99
25 0.38 0.41 0.36 0.41 0.46 0.40 0.42
26 0.13 0.21 0.02 0.20 0.30 0.21 0.32

avg 0.08 0.31 0.39 0.44 0.45 0.41 0.42

Table 2: Precision results for the experiments. Comb 1 combines JST and IDM Comb 2 combines
AR, JST, and IDM, while Comb 1′ and Comb 2′ use the sieve DB′(Q,DB, k). The best result
was obtained for query 24, and the least precise result for query 14 respectively (Fig. 1). Both
were obtained with Comb 2.

5.2 Runtime behavior

Computation of all requires feature representations takes approximately 7.5 hours while the query
computation for the combined measures for a single image takes about 5 minutes (Tab. 3) on a
standard Pentium PC running at 2.4 GHz. The sieve based computation of the combined measures
Comb 1′ and Comb 2′ yields a significantly faster runtime of 18.7 seconds for a single query.

6 Discussion

The application of image features and their respective distance measures, including a parameter
set, which was optimized on the IRMA database, yields useful retrieval results on the previously
unknown casimage image data set. However, the casimage data set also includes color images,
which demand additional features to capture their specific properties.

The variability of the precision computed for all queries is high, since the actual number of
relevant images for all queries varies. For 16 query images there are less than 100 relevant images
in the database. Consequently the number of false positive results is at least the difference between
the relevant images and the preset threshold. On the other hand the recall is biased, for the ten
images for which more than 100 relevant results exist. Thus methods for an automated threshold
estimation are needed to improve query results.



feature Query Single
extraction 26 Images Query

AR 0.5 h < 1 sec << 1 sec
JST 4 h 13 sec < 1 sec
IDM 3 h 150 min 5 min

Comb 1 7 h 150 min 5 min
Comb 2 7.5 h 150 min 5 min
Comb 1′ 7 h 9.3 min 18.7 sec
Comb 2′ 7.5 h 9.3 min 18.7 sec

Table 3: Integral running times of the feature extraction for all 8728 images, of the feature
comparison for all 26 query images and of a single query on a standard PC running at 2.4GHz.

By application of the query related sieve on the database the number of costly IDM comparisons
is significantly reduced. On the other hand the query results have only slightly lost in average
precision and recall. This encourages the use of more sophisticated classifiers for online retrieval
applications such as PACS integration.

7 Conclusion

The presented approach considers the entire application cycle of an image retrieval system. By
separating the application logic from the storage concept the transfer of new features classifiers
and image data in the existing system requires no changes of existing implementations. Yet the
quality of the results is not as good as it could be. The transfer of existing retrieval solutions
onto new data repositories still requires some adaptive efforts. On the other hand the results can
be compared to middle-rate results of manually optimized approaches. This is encouraging since
optimization is always time consuming with respect to verification times of good classifiers such
as the IDM. It is not necessary to start from scratch if a retrieval concept is transferred to another
database. In contrast if the system is well defined the actual optimization is efficiently prepared.

However this conclusion has to be verified on various image repositories. Furthermore there is
still the gap between fast computable query designs and good retrieval results. Powerful classifiers
as required by medical applications still require long computation times. This remains a field of
ongoing research where the IRMA system provides a supporting framework for efficient verification
and also application.

Figure 1: Results for Medical Query images 24 (top row), 14 (bottom row), left column: query
image, remaining columns: reference images, ascending distance. For query image 24, a precision
of 100% was achieved for 100 returned images, whereas Query images 14 yielded only 1% precision
among 100 returned images.



Query AR JST IDM Comb 1 Comb 2 Comb 1′ Comb 2′

1 0.04 0.27 0.41 0.41 0.41 0.41 0.41
2 0.00 0.22 0.21 0.26 0.25 0.23 0.22
3 0.11 0.32 0.35 0.40 0.49 0.38 0.38
4 0.21 0.05 0.05 0.07 0.09 0.05 0.05
5 0.04 0.04 0.43 0.46 0.48 0.50 0.51
6 0.08 0.32 0.37 0.39 0.38 0.38 0.38
7 0.00 0.50 0.50 0.65 0.75 0.69 0.73
8 0.08 0.05 0.09 0.17 0.20 0.09 0.09
9 0.02 0.37 0.35 0.67 0.58 0.60 0.60

10 0.05 0.22 0.52 0.48 0.53 0.53 0.47
11 0.00 0.11 0.00 0.33 0.33 0.00 0.00
12 0.13 0.26 0.39 0.40 0.37 0.40 0.40
13 0.02 0.11 0.38 0.40 0.44 0.37 0.39
14 0.09 0.27 0.09 0.36 0.09 0.09 0.18
15 0.06 0.38 0.35 0.39 0.38 0.35 0.35
16 0.01 0.40 0.24 0.36 0.41 0.24 0.24
17 0.00 0.13 0.23 0.35 0.32 0.35 0.35
18 0.26 0.13 0.55 0.49 0.46 0.50 0.49
19 0.01 0.71 0.44 0.68 0.64 0.60 0.59
20 0.22 0.22 0.37 0.33 0.37 0.30 0.33
21 0.02 0.12 0.58 0.43 0.44 0.37 0.39
22 0.06 0.21 0.40 0.37 0.35 0.35 0.35
23 0.04 0.08 0.14 0.11 0.20 0.12 0.20
24 0.04 0.20 0.24 0.24 0.24 0.24 0.24
25 0.59 0.64 0.56 0.64 0.72 0.62 0.66
26 0.25 0.40 0.04 0.38 0.57 0.40 0.60

avg 0.07 0.26 0.39 0.37 0.38 0.34 0.35

Table 4: Recall results for the experiments as indicated in table 2.
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