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Abstract. In this paper, a general approach is proposed for the computation of a 

liveness enforcing supervisor for the Petri net model of a flexible manufacturing 

system (FMS) prone to deadlocks. The proposed method is applicable to a lot of 

PN classes. A global sink/source place (GP) is used temporarily in the design 

steps and is finally removed when the liveness of the system is achieved. The 

aim is to obtain an easy to design deadlock prevention policy for PN models of 

FMSs that ensures liveness with optimal or near optimal permissiveness while 

maintaining the necessary computations simple. 
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1 Introduction 

Flexible manufacturing systems (FMS) are widely used by manufacturers. In an 

FMS, in order to finish pre-established operations, different processes compete for the 

limited number of shared resources such as buffers, fixtures, robots, automated guided 

vehicles (AGV), and other material-handling devices. Thus, this competition may 

result in deadlocks, a highly undesirable situation in which some processes keep wait-

ing indefinitely for the other processes to release resources. Recently, a lot of work 

has been done to deal with the deadlock problem in FMSs [1-12]. 

Petri nets are widely used for the modeling of FMS due to their ability to easily de-

tect the good behavior of a system like boundedness and deadlock-freeness [1]. A live 

Petri net guarantees deadlock-free operations. There are mainly two Petri net analysis 

techniques used to deal with deadlock prevention in FMS: structural analysis and 

reachability graph (RG) analysis. The examples of using the former may be found in 

[3, 5, 6] for different classes of FMS. The deadlock prevention control policy is ob-

tained based on the characterization of the liveness in terms of Petri net items, i.e., 
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siphons. The control policy can be implemented by adding control places (monitors) 

with initial marking and related arcs, to the initial Petri net model (PNM) of an FMS. 

In general the controlled model obtained in this case is suboptimal. The examples of 

using the latter may be found in [4, 7, 8, 10]. In this case, the RG of a PNM is used to 

obtain the live system behavior. The problem with these methods is that for very big 

PNs the computation of the monitors becomes very difficult to carry out due to the 

“state explosion problem”. To tackle this problem, a first-met-bad-marking (FBM) 

based computationally efficient method is proposed in [10]. It was claimed in [9] that 

deadlock prevention based on the divide-and-conquer strategy is computationally 

superior compared with the well-established traditional global-conquer techniques 

such as [7, 8]. To develop a computationally efficient method of liveness-enforcing 

supervisors, the work in [11] presents a divide-and-conquer strategy for the computa-

tion of liveness enforcing supervisors (LES) from submodels for a large scale net 

system. Although the divide-and-conquer strategy proposed in [11] improves the tra-

ditional RG based methods proposed in [7, 8], it is necessary to deal with too many 

submodels when the number of shared resources is very big. Therefore the main pur-

pose of this paper is to propose a general approach for the computation of a liveness 

enforcing supervisor for the Petri net model of an FMS without the necessity to divide 

a given PN model into its submodels. The proposed method is computationally effi-

cient and provides optimal or near optimal permissive behavior for FMSs.  

The rest of this paper is organized as follows. Some basic Petri net definitions used 

in this paper are briefly reviewed in Section 2.  A general synthesis approach for 

liveness enforcement in Petri net models of FMS is proposed in section 3. An illustra-

tive example is given in section 4, to show the applicability of the proposed method. 

Finally, some conclusions and directions for further research are provided in section 

5. 

2 Basics of Petri Nets   

In this paper, Petri nets are used to model the flow of products in an FMS. Petri 

nets as a mathematical tool have a number of properties. When interpreted in the con-

text of modeled manufacturing system, these properties allow one to identify the pres-

ence or absence of the functional properties of the system. In this section, some defi-

nitions and concepts which are related to this paper are briefly reviewed.  

A Petri net is a five-tuple, PN = (P, T, F, W, M0) where: P = {p1, p2, …, pm} is a fi-

nite set of places, where m > 0; T = {t1, t2, …, tn} is a finite set of transitions, where n 

> 0, with P  T   and P  T  ; F  ( P  T )  ( T  P ) is the set of all directed 

arcs, where P  T  N is the input function that defines the set of directed arcs from 

P to T, and T  P  N is the output function that defines the set of directed arcs from 

T to P, where N = {0, 1, 2, …} is a set of non-negative integers, W: F  N is the 

weight function. M0: P  N is the initial marking. The set of input (resp., output) 

transitions of a place p is denoted by 

p (resp., p


). Similarly, the set of input (resp., 

output) places of a transition t is denoted by 

t (resp., t


). A Petri net structure (P, T, F, 

W) without any specific initial marking is denoted by G. A Petri net with the given 

initial marking is denoted by (G, M0). A transition t is said to be enabled or firable if 



each input place p  

t is marked with at least w(p,t) tokens, where w(p,t) is the 

weight of the arc from p to t. A transition may fire if it is enabled. The firing of an 

enabled transition t removes w(p,t) tokens from each input place p  

t, and adds 

w(t,p) tokens to each output place p  t

, where w(t,p) is the weight of the arc from t 

to p. This process is denoted by M [t > M’. The marking M of a Petri net indicates the 

number of tokens in each place, which represents the current state of the modelled 

system. When a marking M’ is reached from a marking M by firing a sequence of 

transitions  = t0t1t2…tk, this process is then denoted by M [ > M’. The set of all 

reachable markings for a Petri net with initial marking M0 is denoted by RM(G,M0).  

A pair of a place p and a transition t is called a self-loop if both p  t

 and p  


t 

hold. A Petri net is said to be pure if it has no self-loops. A Petri net is said to be or-

dinary if the weight of each arc is 1. A Petri net G is called k-bounded, or simply 

bounded if for every reachable marking M  RM(G,M0), the number of tokens in any 

place p, p  P, is not greater than a finite number k, i.e. M(p)   k. A place p is 

called k-bounded, if the number of tokens in it is not greater than k. A Petri net G is 

called safe, if it is 1-bounded. A 1-bounded place p is called a safe place. Places are 

frequently used to represent buffers, tools, pallets, and AGVs in manufacturing sys-

tems. Boundedness is used to identify the existence of overflows in the modelled 

system. When a place models an operation, its safeness guarantees that the controller 

will not attempt to initiate an on-going process. A transition t is said to be live if for 

any M  RM(G,M0), there exists a sequence of transitions firable from M which con-

tains t. A Petri net G is said to be live if all the transitions are live. A Petri net G con-

tains a deadlock if there is a marking M  RM(G,M0) at which no transition is en-

abled. Such a marking is called a dead marking. Deadlock situations are a result of 

inappropriate resource allocation policies or exhaustive use of some or all resources. 

Liveness of a Petri net means that for each marking M  RM(G,M0) reachable from 

M0, it is finally possible to fire any transition t, t  T, in the Petri net through some 

firing sequence. This means that a live Petri net guarantees deadlock-free operations, 

no matter what firing sequence is chosen, i.e. if a Petri net is live, then it has no dead-

lock. A Petri net (G, M0) is said to be reversible, if for each marking M  RM(G,M0), 

M0 is reachable from M. Thus, in a reversible net it is always possible to go back to 

initial marking (state) M0. Many systems are required to return from the failure states 

to the preceding correct states. Thus the reversibility property is important to manu-

facturing system error recovery. This property also guarantees cyclic behavior for all 

repetitive manufacturing systems. Moreover, if a net contains a deadlock, then it is 

not reversible. A marking M’ is said to be a home state, if for each marking M  

RM(G,M0), M’ is reachable from M. Reversibility is a special case of the home state 

property, i.e. if the home state M’ = M0, then the net is reversible.    

3 A General Approach for Liveness Enforcing in Petri Net 

Models of FMS 

In this section, a general method is proposed for the computation of a liveness en-
forcing supervisor for a given Petri net model (PNM) of an FMS prone to deadlocks. 
There are usually three groups of the places in a PNM of an FMS: resource places (PR), 



activity places (PA) and sink/source places (PS/S).  Resource places represent either 
shared or non-shared resources and initially there are tokens in these places represent-
ing the number of available resources. Activity places represent an action to process a 
part in a production sequence by a resource (machine, robot, etc.) and initially there are 
no tokens in these places. Initially, tokens deposited in sink/source places represent the 
maximal possible number of concurrent activities that can take place in a production 
sequence. In cyclic models a sink place is also a source place and vice versa.  

The proposed method is applicable to a lot of Petri net classes currently available in 
the related literature. All computed monitors have ordinary arcs due to the proposed 
method. The algorithm provided below is used to compute the control places (moni-
tors) based on the PNM. In the monitor computation steps of the proposed algorithm, a 
global sink/source place (GP) is used to make the necessary computation easily in an 
iterative way. The input transitions of the GP are input transitions of all sink/source 
places PS/S. Likewise output transitions of the GP are output transitions of all 
sink/source places PS/S. At each iteration, the reachability graph (RG) of the related net 
is computed. If the net is not live, then the RG is divided into a dead zone (DZ) and a 
live zone (LZ). The former may contain deadlock states (markings), and states which 
are inevitable lead to deadlocks or livelocks. The latter constitutes remaining good 
states of the RG representing the optimal system behavior. The control policy is based 
on the exclusion of the DZ from the RG, while making sure that every state within the 
LZ can still be reached. All states in the DZ are considered as bad markings (BM). 
From a BM, only the markings of activity places are considered. Then, the objective is 
to prevent the marking of the subset of the activity places of the BM from being 
reached. Therefore, the marking of the subset of the activity places is characterized as a 
place invariant (PI) of the PNM. In the PI relating to a BM, the sum of tokens within 
the subset of the activity places has to be at most one token less than their current value 
within the BM in order not to reach the BM. A PI can be implemented by a control 
place with its related arcs and initial marking. Here the simplified version [7] of the 
method proposed in [13] is used in order to obtain a control place (monitor) from a PI. 
The redundancy test of [12] is adopted to find out if there are any redundant monitors 
within computed control places in the computation procedures. Finally, a live con-
trolled Petri net is obtained by including all necessary control places in the PNM. Alt-
hough not explained in the algorithm, in order to simplify big PNMs so as to make 
necessary computation easily as in [2], the Petri net reduction approach may be used. 
The reachability graph analysis of PNMs can be carried out by currently available Petri 
net analysis tools. In this work, INA [14] is used. For a given PNM suffering from 
deadlocks (and/or livelocks) INA provides both LZ and DZ. The former is the first 
strongly connected component, and the latter is the strongly connected components 
other than the first one. In this work, the DZ is then considered as the collection of all 
bad markings (BMi, i= 1, 2, . . .). 

 

Algorithm: Synthesis of Liveness Enforcing Supervisor for Petri Net Models 

Input: A Petri net model (PNM) of an FMS prone to deadlocks 

Output: Liveness enforcing supervisor for the PNM 

 
 



Step 1. Define input and output transitions of all sink/source places PS/S. Add a global 

sink/source place (GP) to the PNM. Thus a new net system denoted as NB = PNM + 

GP is obtained, where B  N = {1, 2, …}. 
 

Step 2. for (B = 1; B ≤ K; B ++) 

/* B is the number of tokens in GP and K is the sum of initial tokens in all sink/source 

places PS/S */ 

{ 
 

2.B.1. Compute the reachability graph RGB of NB.  

If NB is live,  

Then consider net NB with B:=B+1, i.e., go to step 2.B.1).  

Else define the LZB and DZB of RGB. 
 

2.B.2. Define a PI for each bad marking (BM) within DZB, from the subset of 

marked activity places of BM. 
 

2.B.3. Compute a monitor C for each PI using the simplified invariant-based control 

method. 
 

2.B.4. If the number of monitors computed for NB is greater than 1, then carry out 

the redundancy test by using the method proposed in [5] to find out the set of necessary 

monitors CB,i ; i = 1, 2, 3, . . 
 

2.B.5. Augment all necessary monitors computed in the previous step into NB (NB: = 

NB + CB,i , i = 1, 2, 3, . . . ). 

} 
 

Step 3. Obtain a live controlled PNM by augmenting all necessary monitors comput-

ed in step 2 into the PNM. 
 

Step 4. Exit 

end of Algorithm. 

4 Illustrative Example  

In order to show the applicability of the proposed synthesis approach, in this sec-

tion an example is considered. Fig. 1 shows an L-S
3
PR net taken from [13]. In this 

PNM there are eight activity places PA = {p2p5, p7p10}, four shared resource plac-

es PR = {p11p14}, and two sink/source (idle) places PS/S = {p1, p6}. The RG of this 

PNM contains 119 states, 27 of which are bad states. Then, the optimal solution 

should provide a live system behavior with 92 good states. Let us now apply the pro-

posed method to this PNM. 
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Figure 1. An L-S
3
PR net taken from [16]. 

Step 1. Input transitions of sink/source places p1 and p6 are ˙ p1= {t1} and ˙ p6 = 

{t10}. Likewise output transitions of p1 and p6 are p1˙ = {t5} and p6˙ = {t6}. There-

fore input and output transitions of the GP are ˙ GP = {t1, t10} and GP˙  = {t5, t6}. 

When the GP is added within the PNM, a new net structure NB = PNM + GP is ob-

tained as shown in Fig. 2. 
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Figure 2. The net NB; NB = PNM + GP. 



Step2.  

Step 2.1.1. (B = 1). When one token is deposited in the GP, the net N1 shown in 

Fig. 3 is obtained.  
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Figure 3. The net N1 (B = 1). 

 

The net N1 is live with 7 good states. B:= B+1 = 2. 

 

Step 2.2.1. (B = 2). When two tokens are deposited in the GP, the net N2 shown in 

Fig. 4, is obtained. 

p1

p5

p4

p3

p6

p8

p9

p10

t5

t4

t3

t2 t7

t8

t9

t10

5 5

p14

p13

p12

p2 p7

t1 t6

p11

2

GP

 
Figure 4. The net N2 (B = 2). 



 

The net N2 is not live. There are 35 states within the RG2 of N2. DZ2 includes 1 bad 

state, i.e., BM1 and LZ2 contains 34 good states. 

 

Step 2.2.2.  The markings of the activity places of BM1 are shown in Table 1.  

Table 1. The markings of activity places of BM1. 

State number p2 p3 p4 p5 p7 p8 p9 p10 

s18 0 0 0 1 0 0 1 0 

 

In order not to reach BM1 the place invariant PI1 = 5 + 9  1 is established.  

 

Step 2.2.3. In order to enforce PI1, monitor C1 is computed as shown in Table 2. 

Table 2. Computed monitor C1 for PI1. 

Ci
 

Ci Ci

 0(Ci) 

C1 t4, t9 t5, t8  1 

 

Step 2.2.4.  There is no need for redundancy test as there is only one computed 

monitor. 

 

Step 2.2.5. When C1 is augmented in the uncontrolled model N2, the controlled N2 

is obtained as follows: N2:= N2 + C1 and is shown in Fig. 5. 
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Figure 5. The controlled N2 (N2:= N2 + C1). 

It is verified that the controlled model N2 shown in Fig. 5 is live with 34 good 

states. This is the optimal live behavior for the controlled N2.  



Step 2.3.1. (B:= B+1 = 3). The net N3, shown in Fig. 6, is obtained by increasing 

the number of tokens in the GP within the controlled N2. 
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Figure 6. The net N3. 

The net N3 is not live. There are 73 states within the RG3 of N3. DZ3 includes 3 bad 

states BM1, BM2 and BM3, and LZ3 contains 70 good states. 

 

Step 2.3.2.  The markings of the activity places of BM2, BM3 and BM4 are shown 

in Table 3. 

Table 3. The markings of activity places of BM2, BM3 and BM4. 

State number p2 p3 p4 p5 p7 p8 p9 p10 

s17 0 2 0 0 1 0 0 0 

s43 0 0 1 0 0 2 0 0 

s44 0 0 0 1 0 2 0 0 

 

In order not to reach BM2, BM3 and BM4 the following place invariants are estab-

lished respectively: PI2 = μ3 + μ7 ≤ 2, PI3 = μ4 + μ8 ≤ 2, PI4 = μ5 + μ8 ≤ 2. 

 

Step 2.3.3. Monitors C2, C3 and C4 are computed in order to enforce PI2, PI3 and 

PI4 as shown in Table 4. 

 

Table 4. Computed monitors C2, C3 and C4. 

Ci 
●
Ci Ci

●
 0(Ci) 

C2 t2, t7 t3, t6 2 

C3 t3, t8 t4, t7 2 

C4 t4, t8 t5, t7 2 

  



Step 2.3.4.  The redundancy test shows that computed monitors C2, C3 and C4 are 

all necessary. 

 

Step 2.3.5. When C2, C3 and C4 are augmented in the uncontrolled model N3, the 

controlled N3 is obtained as follows: N3:= N3 + C2 + C3 + C4 and is shown in Fig. 7. 
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Figure 7. The controlled N3 (N3:= N3 + C2 + C3 + C4). 

 

It is verified that the controlled model N3 shown in Fig. 7 is live with 70 good 

states. This is the optimal live behavior for the controlled N3.  

 

Step 2.4.1. (B:= B+1 = 4). The net N4, shown in Fig. 8, is obtained by increasing 

the number of tokens in the GP within the controlled N3. 
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Figure 8. The net N4. 

The net N4 is not live. There are 91 states within the RG4 of N4. DZ4 includes 3 bad 

states BM5, BM6 and BM7 and LZ4 contains 88 good states. 

 

Step 2.4.2.  The markings of the activity places of BM5, BM6 and BM7 are shown 

in Table 5. 

Table 5. The markings of activity places of BM5, BM6 and BM7. 

State number p2 p3 p4 p5 p7 p8 p9 p10 

s41 0 1 0 1 1 1 0 0 

s42 0 1 1 0 1 1 0 0 

s83 0 0 1 1 1 1 0 0 

 

In order not to reach BM5, BM6 and BM7 the following place invariants are estab-

lished respectively: PI5 = 3 + 5 + 7 + 8 ≤ 3, PI6 = 3 + 4 + 7 + 8 ≤ 3, PI7 = 4 + 

5 + 7 + 8 ≤ 3. 

 

Step 2.4.3. Monitors C5, C6 and C7 are computed in order to enforce PI5, PI6 and 

PI7 as shown in Table 6. 

 

Table 6. Computed monitors C5, C6 and C7. 

Ci 
●
Ci Ci

●
 0(Ci) 

C5 t2, t4, t8 t3, t5, t6 3 

C6 t2, t8 t4, t6 3 

C7 t3, t8 t5, t6 3 



  

Step 2.4.4. The redundancy test shows that computed monitors C5, C6 and C7 are 

all necessary. 

 

Step 2.4.5. When C5, C6 and C7 are augmented in the uncontrolled model N4, the 

controlled N4 is obtained as follows: N4 := N4 + C5 + C6 + C7 and is shown in Fig. 9. 
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Figure 9. The controlled N4 (N4:= N4 + C5 + C6 + C7). 

 

It is verified that the controlled model N4 shown in Fig. 9 is live with 88 good 

states.  

 

Step 2.5.1. (B:= B+1 = 5). The net N5, shown in Fig. 10, is obtained by increasing 

the number of tokens in the GP within the controlled N4.  
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Figure 10. The net N5 (B = 5). 

 

The net N5 is live with 92 good states. This is the optimal solution for both the N5 

and the original uncontrolled PNM.  

 

Step 3. The live controlled PNM shown in Fig. 11 is obtained by augmenting seven 

monitors, computed in step 2 and provided in Table 7, into the uncontrolled model 

PNM shown in Fig. 1. It is live with 92 good states. The liveness enforcing procedure 

applied for the PNM is provided in Table 8. In this table the last column shows the 

number of unreachable states. As the elements of this column are all zero this indi-

cates that there are no good states lost due to included monitors. 

  

Table 7. Monitors computed for the L-S
3
PR net. 

Ci 
●
Ci Ci

●
 0(Ci) 

C1 t4, t9 t5, t8 1 

C2 t2, t7 t3, t6 2 

C3 t3, t8 t4, t7 2 

C4 t4, t8 t5, t7 2 

C5 t2, t4, t8 t3, t5, t6 3 

C6 t2, t8 t4, t6 3 

C7 t3, t8 t5, t6 3 
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Figure 11. Optimally controlled live PNM. 

Table 8. Liveness enforcing procedure applied to the L-S
3
PR net. 

B 
included 

C 

Is the 

net 

live? 

# states in 

 

Computed 

monitor  

C 

# states in 

the con-

trolled PNM   

RG=LZ  UR 
RG DZ LZ 

1 - Yes 9 - 9  -   

2 - No 35 1 34  C1  34 0 

3 C1 No 73 3 70  C2, C3, C4 70 0 

4 C1, …, C4 No 91 3 88  C5, C6, C7 88 0 

5 C1, …, C7 Yes 92 0 92  -   

5 Conclusions 

In this paper, a general method is proposed to obtain an optimal or a near optimal 

solution for the synthesis of liveness enforcing supervisors in flexible manufacturing 

systems modeled with Petri nets. The applicability of the proposed approach is shown 

by means of an example from the literature. The method is easy to use and provides 

very high behavioral permissiveness. The proposed method is applicable as is to a lot 

of Petri net classes currently available in the literature without modifications. There-

fore further publications will be provided to show the applicability of the proposed 

method to different classes of Petri nets. Further research will also be conducted to 

improve the behavioral permissiveness of the proposed approach for generalized Petri 

net models such as S
4
R or S

4
PR. 
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