
Enabling Model Recommenders
for Command-Enabled Editors

Andrej Dyck, Andreas Ganser, and Horst Lichter

RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
{dyck, ganser, lichter}@swc.rwth-aachen.de,

home page: http://www.swc.rwth-aachen.de

Abstract. Content assist systems and code completion are nicely ac-
cessible in integrated development environments (IDEs). Using multiple
data sources and performing sophisticated completion in several editors
is quite common. However, no such supporting system exists for model-
ing environments, e.g., a completion mechanism in class diagrams is only
existent for textual items like names, if at all.

We designed a framework to bolster model recommendation research and
briefly present the architecture and the realization in this paper. Both are
easily extendable via hot spots by new data recommendation strategies
or by completely new environments like editors. As additional tool sup-
port for extending this framework, we provide a dashboard, which eases
initial development for new extensions. Accordingly, researchers get all
the conceptual groundwork and an implemented infrastructure explained
in a tutorial manner that eases the initial burden to get recommendations
going for modeling environments. These could produce recommendations
from various sets of data, e.g., example models, patterns, best practices,
or template enhanced models.

Keywords: Generic Recommendation Framework, Recommender Sys-
tems, Model Completion, Modeling Support Model Recommendation,
Software Framework, Model Reuse, MDE, MDD, EMF

1 Intro

Todays web shops try to simulate good salesmen by providing recommenda-
tions that could be of interest for a customer. They do so by learning shopping
behavior and using this data to produce recommendations to customers. For ex-
ample, NetFlix, Amazon, and other online web shops do so, build user profiles,
and recommend items that “other customers also bought” (Amazon). But these
recommendations have limitations and should sometimes be seen as examples
of what the customer actually wants, because some attributes of the products
might be to specific. For example, a shirt of a certain brand might be the right
recommendation, but the system might not be able to predict the proper size or
wanted color of the shirt.



Now, the ideas from recommender systems proved so beneficial for web shops
that other domains try to apply these approaches as well. For example, recom-
mender systems for software engineering (RSSE) try to integrate these ideas
in engineering processes of software [Maalej et al., 2013]. So far, most of the re-
search was conducted in the area of auto complete functionality for integrated de-
velopment environments. For example, the Code Recommender plugin for Eclipse
enhances the Java Development Tools code completion with more sophisticated
recommendations compared to types, methods, and identifiers.

We believe that another domain that could hugely benefit from recommender
system support is modeling environments. At first, recommendations in modeling
environments appear similar to the ones in programming, but there are differ-
ences. Considering UML class diagrams, these are due to the individual scope of
modeling. Hence, a recommendation comprising several classes is very unlikely
to be the perfect match of what a modeler needs and should be rather seen as an
eighty percent solution. Moreover, often a variety of valid solutions exists, since
modeling usually is a matter of subjectivity. Still, producing recommendations
from a repository of indexed examples could offer different possible solutions.

The limitations that might be put on producing recommendations for class
diagrams are in the early stages of research and it proved helpful to separate
between three areas. First, the content itself limits the kind of recommenda-
tions, because depending on the data source, a name or an entire model might
be recommended. Second, the current context influences how appropriate rec-
ommendations are, e.g., editing the name field of a class should limit recommen-
dations to textual recommendations only; recommending an interface or a type
would not help. Third, the user interface (UI) restricts how recommendations
are presented since pro-active and re-active systems work differently.

Therefore, we contribute a research environment explained in a tutorial man-
ner, hoping to bolster further research by presenting our requirements analysis
for such an environment (section 3.1), an architecture (section 3.2), some more
insights (section 3.3), and dashboard support (section 4).

2 Related Work

Recommender Systems could be traced back to Information Management Sys-
tems and Decision Supporting Systems (DSS) in the eighties [Sprague, 1980].
But we keep to the recent terminology and adhere to the conceptual shift, look-
ing into more recent frameworks without contrasting them to DSS.

White et al. present a framework for domain specific modeling languages
on a conceptual level [White and Schmidt, 2006]. They focus on establishing
domain specific knowledge bases and algorithm so they can work in what they
call “combinatorically challenging domains”. The foundation of their solution
is in Prolog and they demonstrated their system with an example modeled in
AUTOSAR. In contrast, our framework does not focus on editors or domains but
provides a conceptual and implemented infrastructure, so their implementation
could be plugged into our solution among others.



Prolog is also the bases of Sen et al.’s approach [Sen et al., 2008]. They
demonstrate their “partial model completion” with finite state machines and
offer a brief methodological overview as well. Our work differs in respect that
we do not focus on graphical aspects for domain specific graphical editors but
rather on a higher level of management. Hence, their solution could be plugged
into our framework as another extension, if their architecture was suitable.

Moreover, tripple graph grammars are the foundation of the approach by
Mazanek et al. [Mazanek et al., 2008]. They work on Nassi-Shneiderman dia-
grams and transform them into graph grammars, which they can leverage for
auto complete functionality. In this respect they produce suggestions which could
be called recommendations, but lack a management environment.

With respect to UML, there was only few research conducted. Next to the
above mentioned state machines, recommendations for UML modeling barely
exceeded textual completion support. One of these systems was presented by
Kuhn [Kuhn, 2010]. He focuses on recommending names for methods and other
textual elements in UML. Again, this could be included in our environment.

Other textual supporting systems are usually found in IDEs. There are simple
code completion systems and content assist systems, reducing spelling errors and
increasing programming pace. Moreover, these IDEs were enhanced by real rec-
ommender ideas as done in Eclipse by Code Recommenders [Bruch et al., 2008].
This is a more clever code completion based on a knowledge base that includes
rankings for code suggestions. Moreover, Code Conjurer is a reactive IDE rec-
ommender system providing potentially missing artifacts [Hummel et al., 2008].
It is a source code search engine based on Merobase [W.Janjic et al., 2013].

3 Model Recommender Framework

Since a framework should conform to requirements, we first briefly recite the
needs and constraints. Then we quickly summarize the conceptual architecture
that meets the requirements. After that, we implement this concept by an ex-
emplary and more detailed realization. Unfortunately, we cannot explain each
and every detail for the sake of brevity. An elaborated description is provided
by Dyck [Dyck, 2012].

3.1 Requirements

Discussing possible requirements for a model recommender framework, we found
the following functional and non-functional requirements. First of which are de-
picted in figure 1(a) as a use case diagram. Since we aim for framework support,
there are only few externally visible requirements. Therefore, configuring the rec-
ommender strategies, querying for recommendations and choosing recommender
strategies are all the functionality required.

Regarding non-functional requirements we found several necessities. First,
multiple data sources or knowledge bases should be available for producing rec-
ommendations without the framework actually knowing about the concrete rec-
ommendation objects. In other words, the framework should be extendable. For



example, ontologies, ReMoDD, or MOOGLE should possibly serve as back-ends.
Second, different algorithms should be pluggable into the framework, allowing
multiple recommender strategies. Third, the context of the current editing should
be captured, and thus, be taken into account for producing recommendations.
This requires the same extendability as above, since a different editor might be
regarded as another context. This leads to, fourth, the requirement to support
several user interfaces because different recommendations might be presented
differently in different editors. Fifth, the user interface should be non-blocking,
i.e., responsive. This is important, as it might take a while until recommen-
dations are produced. This leads to, sixth, decoupled and multi-threaded back
ends. Last, the framework should be easy to use and provide support for starting
extensions from scratch.

(a) Use Case Diagram (b) Architectural Concept

Fig. 1. Model Recommender Framework: Use Cases and Architecture [Dyck, 2012]

To sum up the requirements, a framework needs to allow for simple extension
(cf. figure 1(b)). To the best of our knowledge we could not find such a research
environment.

3.2 Framework Extensions by Example

The requirements described above lead to a conceptual architecture as depicted
in figure 1(b). It shows a core which is extendable in three respects. First, it al-
lows a RecommenderStrategy to be plugged into it. Therefore, data is gathered
and processed in such strategies. Eventually, recommendation objects are pro-
duced in recommender strategies. Second, a Context builds the bridge between
produced recommendations and an editor to have it applied to. This means a
Contexts links these two as well as it adapts, if necessary. Third, a UIStrategy

is a means to trigger queries and to depict results. The easiest example for a
UIStrategy is a query box as depicted in the middle of figure 3. It works re-
actively because it needs to be opened explicitly. Another UIStrategy might be



Fig. 2. WordWeb Online: Student

Fig. 3. Steps working with a Searchbox and a WordWeb RecommenderStrategy

a view that follows a cursor position and produces recommendations based on
the next neighbor information related to the mouse position, i.e., it would be
pro-active.

Subsequently, we explain how the framework needs to be extended by making
use of each hot spot with an example as depicted in figure 4. Our example
assumes a deployed framework operating on a class diagram canvas comprising
a class Student as shown in figure 3 on the left. Next, a searchbox is opened
by invoking Ctrl+Space waiting for a query. Then, after querying and applying
a recommendation, the canvas looks like the right hand side of figure 3. Please
mind that WordWeb Online is not a clever data source and that we do not pick
the most obvious item gaining an abstract super class called “Intellect” due to
a “type of” entry.

To begin with, the recommender strategy hot spots are Recommendation and
RecommenderSearchStrategy (cf. figure 4). The first has to realize a method
apply() that is invoked, if a Recommendation object is to be applied in an
editor. The latter class has to realize the actual search(). In particular, if in-



UI

Framework

Core

Context

Recommender

Strategy

Fig. 4. Framework with Extensions: Searchbox, EcoreDiagramEditor, and WordWeb

voked on our WordWebRecommenderSearchStrategy object, this method is kind
of the main() method to the strategy. In our example, WordWeb Online is
queried with “student” and the found web page (cf. figure 2) is parsed lead-
ing to, e.g., WordWebNounRecommendations (cf. figure 3 middle). Other kinds
of Recommendations are possible as well, each of which with their own behav-
ior, i.e., apply() method. This is why a recommender strategy can register
labels different for each of its Recommendations; we can produce several dif-
ferent kinds and WordWebNounRecommendations are among them. Mind that
the framework knows about the labels because they are registered to it by the
WordWebStrategyUIContributor.

The next hot spot is for user interfaces. In our example, the Searchbox

defines how it should look like, how a search() is started (e.g., time delay),
how a search is canceled (e.g., Esc), and how other operations turn out (e.g.,
Ctrl+Space). Since quite a lot of this is similar for several RecommenderUIs some
default implementation is provided by the core through RecommenderUI.

Last, the context allows identifying editors and linking our Searchboxs to
editors. Hence, our EcoreDiagramEditorRecommendationContext is responsi-
ble for this editor only. Moreover, this context knows how the apply() from our
WordWebNoundRecommendation object has to be executed. In our example, EMF
compound commands are created for the business objects and a drop action cre-
ates the visual representation on the canvas [Steinberg et al., 2009]. Please note
that in figure 3 a super class was created since a WordWebTypeOfRecommendation

was picked and the sub class, i.e., Student already existed on the canvas. This is
due to the context realization and how it handles collisions with existing entities.



Fig. 5. Sequence Diagram: search()

3.3 Framework Object Flow by Example

So far this mostly gray-box view on the framework allows to get started with
model recommendations. However, more details are necessary, if advanced fea-
tures are desired. Therefore, we elaborate on internal factories, threading, notifi-
cation mechanism, and proxies below. A very basic example in form of a sequence
diagram is depicted in figure 5 leveraging our above example, i.e., the WordWeb
strategy and the Searchbox, will complement the explanation.

First, as a UI triggers a search, the framework uses a search factory to in-
stantiate each registered RecommenderSearchStrategy; in our example, this is
the WordWebRecommenderSearchStrategy. Then the RecommenderSearch starts
the actual strategies and feeds them with the query information. Finally, they
return their Recommendations as they are done. This is possible, because each
RecommenderSearchStrategy is an Observable with observing RecommenderUIs.
In our example, the Seachbox is registered as an Observer and can react on
update() calls by our WordWebRecommenderSearchStrategy.

It was necessary to implement an observer pattern as explained above because
RecommenderSearchStrategies are multi-threaded. We did so, because multi-
ple searches should run simultaneously to enable quicker responses by strategies,
e.g., one strategy might work locally already producing recommendations, while
another one might work on a slow remote server still waiting for data. More-
over, every time a RecommenderSearchStrategy produced a Recommendation

it should be possible to update the UIStrategies. That means, if our Word-
Web server is very slow and each line from figure 2 is returned with a noticeable
delay, a Recommendation object can be created for each line and sent to the
Searchbox via an update(). In other words, the Searchbox would continuously



update showing more and more items. As a consequence, this required us to
wrap RecommenderSearchStrategy objects in proxies.

In terms of a sequence diagram, the framework acts as depicted in figure 5.
It shows how our realized UI, called searchbox, is opened and filled with some
text. Then the actual search() is invoked, starting two proxies which encapsu-
late two realized RecommenderSearchStrategies. First, the wordwebStrategy

is invoked. Second, a moCCaStrategy is invoked. This strategy queries an en-
hanced model library called MoCCa [Ganser and Lichter, 2013]. After that, both
of the strategies work independently and add() their Recommendation objects
as they produced them. Right after that they might call update() methods to
delegate notifications to the searchbox which displays the found items.

If a Recommendation is picked, apply() is invoked. It finds out the current
RecommendationContext, adapts the content of the Recommendation, and ex-
ecutes it. In our example from figure 3, a WordWebNoundRecommendation was
picked, converted to an EMF compound command, and executed on the EcoreDi-
agram editor canvas, i.e., EditingDomain [Steinberg et al., 2009] [Eclipse, 2012].

An Eclipse P2 Updatesite and video of the running framework can be found
on the web and on YouTube [Ganser, 2013b], [Ganser, 2013c].

4 Dashboard Support

Extending the framework explained above is easy, but requires manual tasks
which can be easily done by tools. For example, extending classes or implement-
ing interfaces by new classes is always the same. Moreover, registering a search
strategy or a recommendation follows always the same patterns. This is why we
ship a dashboard along the framework which offers user guidance and helps to
jump start the framework in a few minutes. Figure 6 shows a screen shot of the
dashboard [Schiller, 2013].

Fig. 6. Model Recommender Framework Dashboard



The left part of the dashboard is about general information, and the ex-
tensions part is on the right. The latter mirrors the extendable parts from the
framework as shown in figure 1(b), enabling adding several UIs, as well as several
contexts, and several recommender strategies. Moreover, certain configuration
parameters are adjustable. For example, a strategy might use a directory, an
FTP server, or an SQL data base as a data source. Hence, we included these
default connectors in the configuration step.

Other than that, each entry on the right of the dashboard, will result in its
own Eclipse plugin later on to adhere separation of concerns. Each will comprise
ready to use classes and helpful skeleton source code including todo comments.
Moreover, it will contain all the configuration necessary to register this plugin
and its hot spot extensions to the framework through Eclipse extension points.

5 Conclusion and Future Work

The field of model recommenders is rather new and will need a lot of research
until high-quality recommendations can be produced as in other domains. Un-
fortunately, adjusting the known algorithm and applying them to models does
not work. Thus, we created a research environment that is meant to enable ex-
perimenting with model recommender UIs and model recommender strategies,
i.e. algorithm. This environment comprises a software framework as explained in
section 3 and other tool support as explained in section 4. It was realized in the
context of the hermes project [Ganser, 2013a], it is available as an Eclipse P2
Updatesite [Ganser, 2013b], and a video shows its functionality, [Ganser, 2013c].

In more detail, we, first, explained a bit on the conceptual architecture of
the actual software and how it can be extended. The point was that several
UIs, contexts, and recommender strategies are required due to several possible
deployment scenarios. Second, we elaborated on the details with an exemplary
realization and illustrated the calls in a sequence diagram. Last, we described
our framework dashboard, which is meant as initial user guidance.

Objectives of publication and future work are: First, tool support that com-
prises a simulation environment that eases developing recommender strategies.
Second, an enhanced context management that provides contextual information
to recommender strategies. Third, a template engine that allows for building
place holder into models and offering user guidance while model templates are
applied. And, last, the actual algorithm how to produce good recommendations
based on enhanced model libraries like MoCCa [Ganser and Lichter, 2013].

Last, but most importantly, we hope to provide a useful and easy to use
framework for model recommender research. And, we are very excited and curi-
ous about community feedback since each and every discussion we had on model
reuse let to the consensus that there is huge need and potential.

Acknowledgments

We would like to thank all our reviewers for their comments! We would also like
to thank Daniel Schiller and Viet Ngoc Tran for their contributions.



References

[Bruch et al., 2008] Bruch, M., Schäfer, T., and Mezini, M. (2008). On evaluating rec-
ommender systems for api usages. In Proceedings of the 2008 international workshop
on Recommendation systems for software engineering, RSSE ’08, pages 16–20, New
York, NY, USA. ACM.

[Dyck, 2012] Dyck, A. (2012). Recommender System Architecture for Ecore Libraries
(Master Thesis, RWTH Aachen University).

[Eclipse, 2012] Eclipse (2012). Ecore Tools. http://wiki.eclipse.org/index.php/Ecore Tools.
[Ganser, 2013a] Ganser, A. (2013a). Reusing Domain Engineered Artifacts for Code

Generation – The hermes Project (Harvesting, Evolving, and Reusing Models Easily
and Seamlessly). http://goo.gl/4LRdN.

[Ganser, 2013b] Ganser, A. (2013b). The hermes Project - Eclipse P2 Updatesite:
hermes.reuse. http://goo.gl/ZGxIf.

[Ganser, 2013c] Ganser, A. (2013c). YouTube: Model Autocompletion Demo.
http://goo.gl/fqwxl.

[Ganser and Lichter, 2013] Ganser, A. and Lichter, H. (2013). Engineering Model
Recommender Foundations. In MODELSWARD 2013, International Conference on
Model-Driven Engineering and Software Development.

[Hummel et al., 2008] Hummel, O., Janjic, W., and Atkinson, C. (2008). Code con-
jurer: Pulling reusable software out of thin air. Software, IEEE, 25(5):45–52.

[Kuhn, 2010] Kuhn, A. (2010). On recommending meaningful names in source and
uml. In Proceedings of the 2nd International Workshop on Recommendation Systems
for Software Engineering, RSSE ’10, pages 50–51, New York, NY, USA. ACM.

[Maalej et al., 2013] Maalej, W., Robillard, M., Walker, R., and Zimmermann,
T. (2013). Recommendation Systems for Software Engineering (RSSEs).
http://goo.gl/zVqTK.

[Mazanek et al., 2008] Mazanek, S., Maier, S., and Minas, M. (2008). Auto-completion
for diagram editors based on graph grammars. In Visual Languages and Human-
Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on, pages 242–245.

[Schiller, 2013] Schiller, D. (2013). Cockpit Support for Ecore Library Recommender
(Bachelor Thesis, RWTH Aachen University).

[Sen et al., 2008] Sen, S., Baudry, B., and Vangheluwe, H. (2008). Domain-specific
model editors with model completion. In Giese, H., editor, Models in Software Engi-
neering, volume 5002 of Lecture Notes in Computer Science, pages 259–270. Springer
Berlin Heidelberg.

[Sprague, 1980] Sprague, R. H. (1980). A framework for the development of decisoin
support systems. MIS Q., 4(4):1–26.

[Steinberg et al., 2009] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E.
(2009). EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd
edition.

[White and Schmidt, 2006] White, J. and Schmidt, D. C. (2006). Intelligence frame-
works for assisting modelers in combinatorically challenging domains. In In Proceed-
ings of the Workshop on Generative Programming and Component Engineering for
QoS Provisioning in Distributed Systems at the Fifth International Conference on
Generative Programming and Component Engineering (GPCE), page 90.

[W.Janjic et al., 2013] W.Janjic, Hummel, O., Schumacher, M., and Atkinson, C.
(2013). An unabridged source code dataset for research in software reuse.


