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Abstract. EasyMiner (easyminer.eu) is a web-based association rule
mining software based on the LISp-Miner system. This paper presents
a proof-of-concept workflow for learning business rules with EasyMiner
from transactional data. The approved rules are exported to the Drools
business rules engine in the DRL format. The main focus is the trans-
formation of GUHA association rules to DRL.

1 Introduction

The EasyMiner association rule mining system discovers rules from a table of
objects. The system outputs all rules which hold in the given dataset in a certain
predefined statistical sense. An example of a rule is pAmount=〈100.000; 200.000)
∧ District=Prague →0.7,100 Status=Aq. Such a rule is learnt from a table (data
matrix), where each row corresponds to one client of a bank, and it contains at
least the following data: amount borrowed, district of the customer and loan
status. Rule confidence 0.7 denotes that in this table, it is true that for 70% of
clients from Prague who borrowed 100 to 200 thousand Czech crowns, the loan
was A-grade. The support of the rule is 100, which means that there were at
least 100 such clients.

The discovered rules are either exploited in a qualitative way by an expert,
or used to perform classification (scoring) of incoming objects (e.g. [7]). With
EasyMiner we attempt for a midway between these approaches: expert selects
only some of the discovered rules, which are then interpreted as business rules.
While the idea of interaction of a domain expert with discovered rules is not new
[2], to the best of our knowledge, EasyMiner is the only web-based system which
supports the complete cycle: data upload, preprocessing, mining, user interaction
with the discovered rules, and export of selected rules to a business rules engine.

This paper is organized as follows. Section 2 describes EasyMiner and its
workflow. The syntax of association rules output by EasyMiner is detailed in
Section 3. Section 4 describes the transformation of rules to the DRL format.
The description of the demo and the access details are listed in Section 5. The
paper is concluded with some remarks on the applicability of the described trans-
formation setup to other rule learners and with outlook for further work.



Fig. 1. EasyMiner screenshot

2 EasyMiner

EasyMiner is a sister project of the association rule learning system LISp-Miner
(lispminer.vse.cz, [10]), which is a desktop/server-based system developed
since the mid-1990s. The original paradigm of rule mining in LISp-Miner was that
the discovered rules are pieces of knowledge intended for “human consumption”.
EasyMiner, introduced at ECML’12 [12] as I:ZI Miner,1 is both an interactive
web application, which allows interactive pattern mining, and a web-service layer
on top of LISp-Miner.

EasyMiner allows the user to perform the complete association rule mining
task and review the discovered rules from an Internet browser.

1 The first predecesor of EasyMiner called Association Rule Query Designer was intro-
duced in [4]. This system was used for querying mining results stored in a knowledge
base, not for performing live mining.



2.1 Data import

The imported data are in tabular form (a CSV file or a MySQL table). For
columns with many distinct values it is strongly recommended to perform pre-
processing by grouping similar values into a smaller number of bins. This can
be done either automatically by a built-in heuristic algorithm on data import
(numeric fields only), or manually after the mining task is setup. An example
of a binning result is replacing all the say 60 distinct values of attribute “age”
with just five values such as 〈15; 23〉, (23; 37〉, (37; 49〉, (49; 53〉, (53; 75〉.

2.2 Defining the Mining task

Once the data are imported, the user is presented with the main EasyMiner
screen. The mining task is defined in the Pattern Pane (Fig. 1A) by selecting
interest measures and placing attributes from the Attribute Palette (Fig. 1B) on
the left and right side of the rule.

The set of interest measures includes the industry-standard confidence, sup-
port and lift measures and about 10 additional measures. All measures can be
freely combined. The setting of an interest measure also involves a selection of
a threshold value.

By dragging attributes on the left and right side of the rules respectively, the
user decides which attributes might appear in the rule. For each attribute, it is
also possible to define the set of its values considered during mining using the
following options:

– fixed value: attribute must use a specific bin as its value if it appears in a
rule

– simple wildcard: the system tries all single bins for the attribute value
– dynamic binning wildcard: during mining time, the system creates broader

bins by merging bins created in the preprocessing stage into one bin. An
example of a dynamically created bin is 〈15; 23〉 ∨ (23; 37).

It should be noted that while dynamic binning wildcard is convenient, it can
significantly increase the computation time. To alleviate this problem, the user
can select from several dynamic binning wildcards and thus restrict the size of
the hypothesis space (e.g. only consecutive values are attempted to be merged).
When the originally created preprocessing does not produce satisfactory results
and dynamic binning does not help or is computationally infeasible, the recom-
mended action is to create new attributes by dragging the names of columns
from the input data from the Data Field Palette (Fig. 1C) to the Attribute
Palette (Fig. 1B). After dropping the column to the Attribute Palette, the user
defines custom preprocessing (binning). In this way, the mining task can contain
multiple attributes derived (different binning) from the source data field.

Manual binning has also one significant advantage in the business rules con-
text: bins can have user friendly names. Instead of bin (53; 75〉 (result of auto-
matic binning), the user can create more meaningful bins, e.g. by creating a bin
〈60; 75〉 and naming it“senior”.



2.3 Mining

Once the user completes the setting of a mining task and clicks on the mine
rules link, EasyMiner converts all the user settings to a variant of the PMML
format [6] and submits the task via a web service to LISp-Miner. Depending on
the configuration, defined via the Settings link (Fig. 1F), the task is executed in
a single or multi-threaded LISp-Miner instance, or on the grid [11].

The discovered rules are returned to the EasyMiner front-end incrementally,
as LISp-Miner progresses through the search space. Real-time results are shown
in the Result Pane (Fig. 1D).

2.4 User Interaction with Results

The user oversees the discovered rules and tries to select the ones, which he or
she thinks would bring value when deployed. The system offers two aids to the
user: the strength of the rule and filtering based on a knowledge base.

The strength of the rule is indicated by the value of interest measures which
the user selected in the Pattern Pane. The values for all discovered rules dis-
played there meet or exceed the preset thresholds. Generally, the higher the
interest measure value above the threshold, the better the rule. Despite this
simple “metarule of thumb”, the user should understand the semantics of the
interest measures. As a future extension of the system, we plan to provide a
representation of the rule in a human-friendly textual form, which should lower
the requirements on user training (see Sec 6).

Discovered rules can be checked against a knowledge base of stored rules by
issuing a confirmation or exception query [5]. Confirmation query returns rules
from knowledge base, which contain in the antecedent only attributes contained
in the discovered rule’s antecedent, and for each of these attributes, there is at
least one overlapping value. The same must apply for the consequent. Exception
query returns rules with the same antecedent and a consequent which share at
least one attribute, and at least in one of the shared attributes there is no overlap
in attribute values.

EasyMiner makes the check of the discovered rules against the knowledge
base transparent for the user by embracing a relevance feedback paradigm: if
the discovered rule is only a confirmation of a rule in the knowledge base, it
is visually suppressed by gray font. In contrast, if the rule is an exception, it
is highlighted in red. A green tick, moving the rule to the Rule clipboard, also
stores the rule into the knowledge base. The relevance feedback module is a Java
application running on top of the XML Berkeley database, which communicates
with EasyMiner via a web service.

2.5 Rule Clipboard

The rules confirmed by the user are moved to the Rule clipboard (Fig. 1E). The
rules in the clipboard are grouped according to the task, in which they were
discovered. By clicking on the “Show task details” button, the user is presented



an HTML page with a complete definition of the mining task and the description
of the data. Technically, this report is generated with an XSLT transformation
from the GUHA AR PMML [6] XML export of the LISp-Miner system, which
is available under the Task result link in the Result Pane (Fig. 1D).

The Export Business Rules link exports the rules in the clipboard for a spe-
cific task to the Drools server. For demo purposes, this link shows the DRL
serialization of the rules.

3 BR-GUHA Association Rule

In theory, the LISp-Miner system used by EasyMiner mines generic GUHA as-
sociation rules [9]. The high expressivity of GUHA rules is not suitable for this
initial work on the transformation of association rules to business rules. While
EasyMiner contains some simplifications in comparison with the full LISp-Miner
implementation, the “EasyMiner” rules are still too expressive. In this section,
we describe BR-GUHA 0.1, a constrained version of GUHA rules, which is suit-
able for transformation to Business Rules.

In the formal definition of GUHA rules, antecedent and consequent of the
rule are defined in terms of boolean attributes, which are, in turn, defined as
conjunction or disjunction of boolean attributes or literals. EasyMiner simplifies
this generic recursive structure to a fixed three layer model, which eases the
manipulation with the discovered rules:

– Layer 1: Antecedent is a conjunction of derived boolean attributes, Conse-
quent is a non-empty conjunction of derived boolean attributes,

– Layer 2: A derived boolean attribute is a conjunction or disjunction of liter-
als,

– Layer 3: A literal is an attribute-value pair or its negation.

Further, it should be noted that:

– Attribute refers to the result of preprocessing, not to a field in the original
data table,

– Value is a bin created during preprocessing, or a dynamically created bin (a
disjunction of multiple bins).

By default, EasyMiner (and GUHA) allows the consequent of the rule to
have the same rich structure as the antecedent. The consequent of the rule can
thus contain for example a disjunction of multiple attributes, or a disjunction of
values of one attribute.

In contrast, with Business Rules, a rule needs to have a definite outcome.
To quote from the Drools documentation: It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature -
”when this, then do this”, not ”when this, maybe do this”2. In BR-GUHA the

2 http://docs.jboss.org/drools/release/6.0.0.Beta3/drools-expert-docs/

html_single/index.html#d0e7386



consequent of the rule is constrained to contain a positive literal (negation not al-
lowed). Furthermore, the attribute value must correspond to a single value in the
underlying data table (no binning or dynamic binning allowed). No restrictions
are made to the antecedent of the rule.

The second important component of an association rule are the interest mea-
sures, the 4ft-quantifier in GUHA terminology [3, 9]. A 4ft-quantifier is composed
from one or more 4ft-partial quantifiers, each associated with one or more quan-
tifier values. While EasyMiner embraces the more commonly used term “interest
measure”, in other respects it does not impose additional constraints.

In BR-GUHA, we constrain the EasyMiner setup to two interest measures.
Only the most commonly used interest measures are supported: confidence, sup-
port and lift, all with just one associated value. The first measure must be sup-
port, and the second measure is either lift or confidence.

Technically, the constraints described in this section are imposed by not
allowing certain features in the mining setup. Most BR-GUHA constraints are
readily supported by EasyMiner.3

4 Representing EasyMiner Association Rule in DRL

This section describes an initial specification of the conversion procedure of the
simplified GUHA rules (“BR GUHA 0.1”) to the Drools Rule Language (DRL).
In this preliminary work, this specification is done informally, through examples
of transformation result for the relevant syntactic features.

4.1 Running Examples

Throughout this section, two example GUHA rules will be used. The first takes
up the simple rule from the Introduction, while in the second all the syntactic
features are used.

Rule 1
pAmount=〈100.000; 200.000) ∧ District=Prague →0.7,100 Status=Aq,
where 0.7 is the confidence value and 100 the support.

Rule 2
p(Amount=〈100.000; 200.000) ∨ Duration=1year) ∧ ¬(District=Bruntal)

∧ (Age=[Senior ∨ Student] ∨ Payments=〈5.000; 10.000))
∧ Education=university →0.95,20 Status=Bq,

where 0.95 is the confidence value, and 20 the support.

4.2 Attributes

To comply with the Drools object-oriented principles, each attribute in a rule is
transformed to an instance of the Drools Attribute class. In the following, we
will refer to this instance as DrlObj.

3 With the exception of disabling binning in the preprocessing stage



The names of the attributes in the discovered rules may not necessarily match
the names of fields in the underlying data table. Since it is expected that the
requests to the business rules engine will use the names of the fields from the
underlying data table, rather than the custom names introduced during data
preprocessing, the name of the instance is set to the name of data field on which
the attribute is based. The same applies to attribute values.

Rule 1 features attribute-value pair District=Prague. Assuming that the
name of the underlying data field is “district”, and the underlying data value
“Praha” was renamed during preprocessing to “Prague”, the resulting DRL frag-
ment is as follows:

DrlObj (name == "district", value == "Praha")

4.3 Interest measures

The action of a user confirming the rule and exporting it to the business rule
system, strips away the “fuzziness” from the rule, replacing the interest measure
with a causal relationship. The original value of interest measures can, however,
be used to define the conflict resolution strategy.

Consider object 1 depicted in Table 1.

ID amount district age duration payments education

1 120.000 Praha 63 1year 11.000 university
2 110.000 NA 61 1year 9.000 university

Table 1. Example objects

Both Rule 1 and Rule 2 match this object, however, the consequents of these
rules are conflicting, since the status cannot be both A and B.

Drools offers multiple conflict resolution strategies. Interest measure values
can be utilized in the salience strategy, by setting the salience property of a rule
according to the value of lift or confidence interest measures, whatever is used
in the rule. Since salience in Drools is an integer, while confidence is a float in
the range of (0; 1〉 and lift is a float in the (0; inf〉 range, the original value of
the interest measure needs to be multiplied by a scaling factor, e.g. 100, before
it can be used as salience.

In association rule mining, it can be generally observed that with the increas-
ing specialization of the antecedent, the confidence of a rule rises at the expense
of decreasing rule support (as exemplified by Rule 1 and Rule 2). Specific rules
are therefore preferred as their consequents are more likely to hold than for a
consequent of a conflicting rule with a smaller number of conditions. To this end,
the Drools complexity conflict resolution strategy, which favours rules with more
conditions, should yield similar results as the salience strategy.



It should be noted that the statistical validity of a rule decreases with increas-
ing specificity as each condition filters out some objects that would contribute
to the support of the rule. However, we suggest not to take support into account
during conflict resolution, since the fact that all rules considered have sufficiently
high support is ensured by:

– support of the rule exceeding the minimum threshold set by the user during
the mining setup,

– the user has explicitly approved the rule by placing it into the rule clipboard.

The use of the complexity strategy rather than the salience strategy also
has the advantage that it naturally solves the situation when there are multiple
conflicting rules with different interest measures. In this case, a comparison of
salience would not make sense: the salience of 70, derived from confidence 0.7,
and salience 110, derived from lift value 1.1, are incomparable.

Our preliminary conclusion is that the first approach to handle interest mea-
sures in the DRL export is to ignore them, and to use the complexity resolution
strategy instead.

In our example, this strategy would favour Rule 2 over Rule 1.

4.4 Binning

The values of attributes are a result of binning. The names of bins can be au-
tomatically generated, user-defined, or the same as the values of the underlying
fields in the data table.

Since it is expected that the requests to the business rules engine will use
values from the underlying data table, rather than the bin names, it is necessary
to translate the bin names back to the values of the underlying datafield. In this
step, one bin will be replaced by one or multiple values.

The resulting DRL depends on the data type of the attribute (numerical,
nominal).

Numerical attributes The bins of the Amount attribute from Example 1
are created on a numeric range.

pAmount=〈100.000; 200.000)q

The result of transformation to DRL:

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

Nominal attributes The bins of the Education attribute were created by
enumerating nominal values in the preprocessing stage for data mining. For
example, bin “university” was created by merging values “undergraduate” and
“graduate” of the underlying “education” data field.

pEducation=universityq



The result of transformation to DRL:

DrlObj(name == "education", value == "undergraduate"

|| value == "graduate")

4.5 Dynamic Binning

A dynamic bin (multiple bins merged into one during mining) is present on
attribute Age in Rule 2.

pAge=[student ∨ senior]q

The result of transformation to DRL:

DrlObj(name == "age", (numVal >= 18 && numVal < 25) ||

(numVal >= 60 && numVal <= 75))

4.6 Conjunction

Conjunction can be featured on the top level within the antecedent or consequent
as in Rule 1 and Rule 2, or in a subexpression as in Rule 2.

Top level

pAmount=〈100.000; 200.000) ∧ District=Pragueq

This rule fragment is represented in DRL as

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

and DrlObj(name == "district", value == "Praha")

Subexpression

pAge=senior ∧ Payments=〈5.000; 10.000)q

This rule fragment is represented in DRL as

DrlObj(name == "age", numVal >= 60, numVal <= 75)

and

DrlObj(name == "payments", numVal >= 5000, numVal < 10000)



4.7 Disjunction

Disjunction in a simplified GUHA rule can be present only as a subexpression
within antecedent or consequent. Disjunction is present in Rule 2:

p(Amount=〈100.000; 200.000) ∨ Duration=1year)q.

The result of transformation to DRL:

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

or DrlObj(name == "duration", value == "1year")

4.8 Negation

Negation in an EasyMiner rule can be present only on a specific attribute-value
pair. Negation is present in Rule 2:

p¬(district=Bruntal)q

The result of transformation to DRL:

DrlObj(name == "district", value != "Bruntal")

This assumes that the value of District is known. An alternative DRL rule, more
truthful to the above EasyMiner rule, which would be fired even if the value of
District is not available (as in object 2 in Table 1):

not DrlObj(name == "district", value == "Bruntal")

4.9 Consequent

The specification of the code in rule consequent is currently not yet finalized
and the authors would welcome any input from the RuleML community. The
provisionary option currently implemented in the system is as follows:

then

processResult(kcontext, "Status", "A");

end

The processResult is a static method which collects the results of fired rules.
Its first argument is a rule context (provided by Drools) followed by the attribute
name and its value from consequent of the association rule. As the next step, it is
necessary to resolve the situation when multiple rules with different consequents
have been activated. One of the options to accomplish this is to use the Drools
accumulate function.



4.10 Complete DRL

This section lists the complete DRL code for the two example rules.

import cz.vse.droolsserver.drools.DrlObj;

import function cz.vse.droolsserver.drools.DrlResult.processResult;

rule "ExampleRule1"

when (

DrlObj(name == "amount", numVal >= 10000, numVal < 200000)

and

DrlObj (name == "district", value == "Prague")

)

then

// a provisionary construct

processResult(kcontext, "Status", "A");

end

rule "ExampleRule2"

when (

(

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

or

DrlObj(name == "duration", value == "1year")

)

and (not DrlObj(name == "district", value == "Bruntal"))

and

(

DrlObj(name == "age", (numVal >= 18 && numVal < 25)

|| (numVal >= 60, numVal <= 75))

or

DrlObj(name == "payments", numVal >= 5000, numVal < 10000)

)

)

then

// a provisionary construct

processResult(kcontext, "Status", "B");

end

5 Demo Scenario

The demo, accessible at http://easyminer.eu/demo/ruleml2013, shows the
EasyMiner workflow supporting the business rules integration. All the data-
mining steps described in Section 2 are shown as a screencast and as a live demo
system. The demo finishes with the user clicking on the Export as Business Rules
link, which shows the result of converting the rules in the rule clipboard to DRL.



6 Conclusion and Future Work

This paper presents a proof-of-concept system for learning business rules with
EasyMiner from transactional data. The main focus of this paper is the trans-
formation of GUHA association rules to the DRL format, used by the open
source Drools business rules engine. In this preliminary work we have imposed
some restrictions on the form of the GUHA rules being transformed. Neverthe-
less, the specification proposed here should support all features of conventional
association-rule learning algorithms, i.e. those with output similar to the apriori
[1] algorithm, plus some advanced features such as disjunctions or negations.

As a future work, we would like to investigate the possibilities for using and
extending the human readable serializations of business rules, SBVR “Structured
English” [8] in particular, as an alternative way of presenting the discovered rules
to the user.
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5. Tomáš Kliegr, Andrej Hazucha, and Tomáš Marek. Instant feedback on discovered
association rules with PMML-based query-by-example. In Web Reasoning and
Rule Systems. Springer, 2011.
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