@inproceedings{zingale-kalita-2024-language,
title = "Language Model Sentence Completion with a Parser-Driven Rhetorical Control Method",
author = "Zingale, Joshua and
Kalita, Jugal",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-short.18",
pages = "193--203",
abstract = "Controlled text generation (CTG) seeks to guide large language model (LLM) output, that statistical language generation would conform to desired criteria. The current study presents a novel CTG algorithm that enforces adherence toward specific rhetorical relations in an LLM sentence-completion context by a parser-driven decoding scheme that requires no model fine-tuning. The method is validated both with automatic and human evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zingale-kalita-2024-language">
<titleInfo>
<title>Language Model Sentence Completion with a Parser-Driven Rhetorical Control Method</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Zingale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jugal</namePart>
<namePart type="family">Kalita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Controlled text generation (CTG) seeks to guide large language model (LLM) output, that statistical language generation would conform to desired criteria. The current study presents a novel CTG algorithm that enforces adherence toward specific rhetorical relations in an LLM sentence-completion context by a parser-driven decoding scheme that requires no model fine-tuning. The method is validated both with automatic and human evaluation.</abstract>
<identifier type="citekey">zingale-kalita-2024-language</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-short.18</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>193</start>
<end>203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Model Sentence Completion with a Parser-Driven Rhetorical Control Method
%A Zingale, Joshua
%A Kalita, Jugal
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F zingale-kalita-2024-language
%X Controlled text generation (CTG) seeks to guide large language model (LLM) output, that statistical language generation would conform to desired criteria. The current study presents a novel CTG algorithm that enforces adherence toward specific rhetorical relations in an LLM sentence-completion context by a parser-driven decoding scheme that requires no model fine-tuning. The method is validated both with automatic and human evaluation.
%U https://aclanthology.org/2024.eacl-short.18
%P 193-203
Markdown (Informal)
[Language Model Sentence Completion with a Parser-Driven Rhetorical Control Method](https://aclanthology.org/2024.eacl-short.18) (Zingale & Kalita, EACL 2024)
ACL