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ABSTRACT
Clustering is a fundamental primitive in manifold applica-
tions. In order to achieve valuable results, parameters of
the clustering algorithm, e.g., the number of clusters, have
to be set appropriately, which is a tremendous pitfall. To
this end, analysts rely on their domain knowledge in order to
define parameter search spaces. While experienced analysts
may be able to define a small search space, especially novice
analysts often define rather large search spaces due to the
lack of in-depth domain knowledge. These search spaces
can be explored in different ways by estimation methods
for the number of clusters. In the worst case, estimation
methods perform an exhaustive search in the given search
space, which leads to infeasible runtimes for large datasets
and large search spaces. We propose LOG-Means, which
is able to overcome these issues of existing methods. We
show that LOG-Means provides estimates in sublinear time
regarding the defined search space, thus being a strong fit
for large datasets and large search spaces. In our compre-
hensive evaluation on an Apache Spark cluster, we compare
LOG-Means to 13 existing estimation methods. The evalua-
tion shows that LOG-Means significantly outperforms these
methods in terms of runtime and accuracy. To the best of
our knowledge, this is the most systematic comparison on
large datasets and search spaces as of today.
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1. INTRODUCTION
Clustering is a fundamental primitive for exploratory

tasks. Manifold application domains rely on clustering tech-
niques: In computer vision, image segmentation tasks can
be formulated as a clustering problem [20, 39]. Documents
may be clustered to support faster information access and
retrieval [9, 27]. For business purposes, clustering may be
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used for grouping customers, for workforce management or
for planning tasks [25, 35]. In biology, clustering is applied
to study genome data amongst others [8].

Jain identified three main general purposes of cluster-
ing throughout these and many more application domains,
which emphasize the exploratory power of clustering analy-
ses [28]: (1) Assessing the structure of the data. Here, the
goal is to exploit clustering to gain a better understanding
of data, to generate hypotheses or to detect anomalies. (2)
Grouping entities. Clustering aims to group similar entities
into the same cluster. Thus, previously unseen entities can
be assigned to a specific cluster. (3) Compressing data, i.e.,
to use the clusters and their information as summary of the
data for further steps.

Due to their appealing runtime behavior in practice, k-
center clustering algorithms [12], such as k-Means [31, 32],
k-Medians [10, 29], or k-Mode [26] are commonly used [44].
However, the expected number of clusters k has to be pro-
vided prior to the execution of these algorithms. Especially
for arbitrary, previously unknown datasets, estimating this
number is a tremendous pitfall and requires particular cau-
tion. Wrong values for k lead to bad results regarding the
above-mentioned purposes, i.e., wrong structurings, group-
ings or compressions are performed.

Several methods have been proposed to estimate the num-
ber of clusters in arbitrary datasets [11, 14, 15, 17, 24, 34,
36, 41, 43]. These estimation methods perform a clustering
algorithm with varying values for k within a given search
space R and subsequently evaluate the results. This search
space R is defined by analysts. Here, we have to distinguish
between experienced and novice analysts: Experienced an-
alysts may use their strong domain knowledge to reduce R
to a manageable size. In contrast, novice analysts typically
lack in-depth domain knowledge and thus often define larger
search spaces, because of the underlying uncertainty. Espe-
cially in today’s Big Data era, where data characteristics are
hard to grasp, this uncertainty becomes even more severe.

Existing estimation methods commonly use two strategies
to explore the search space: (1) An exhaustive search in R is
often conducted. A well-known estimation method following
this search strategy is the elbow method [42]. (2) R can
be explored in a non-exhaustive manner, i.e., stopping the
search as soon as the clustering results of adjacent values for
k ∈ R differ only marginally. Common methods following
this approach are G-Means [24] or X-Means [34].

Especially for large search spaces, as they are often de-
fined by novice analysts, these two search strategies lead to
long runtimes for two reasons: (a) The runtime complexity
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regarding the search space R lies in O(|R|), i.e., in the worst
case, a clustering algorithm needs to be executed for each
value of k ∈ R. (b) Each single execution is costly, since
for example k-Means as concrete instantiation of a k-center
clustering algorithm has a super-polynomial worst case run-
time in the input size [5]. Because of these long runtimes,
existing estimation methods are not suitable for analyzing
large datasets or large search spaces. Hence, there is cur-
rently no feasible support for novice analysts in order to
achieve appropriate clustering results in a reasonable time.

A common approach for similar estimation problems is
to “throw more machines at the problem” and thus reduc-
ing the calculation time. Yet, this approach comes with the
price of high costs for additional or more powerful hard-
ware. A better approach is to engineer thorough solutions,
which can work on existing hardware. Such an approach
for finding well-performing parameters without an exhaus-
tive search arose in the research area of hyperparameter op-
timization [18, 30, 40]. For supervised learning problems,
these concepts were successfully applied [19]. However, it is
not well-studied how to transfer this approach to unsuper-
vised clustering problems as ground-truth labels are missing
for unsupervised learning.

In this work, we propose LOG-Means, which is able to
overcome the pitfalls of existing estimation methods. Simi-
larly to existing methods, LOG-Means draws on individual
clustering results from R, yet aims for significantly fewer
executions of a clustering algorithm until an estimation can
be made. Thus, it is of particular interest for large datasets
or large search spaces, as they might be defined by novice
analysts.

Our contributions include:

• We analyze characteristics and procedures of exist-
ing estimation methods for the number of clusters in
datasets, e.g., the elbow method, and discuss their ad-
vantages and pitfalls.

• We propose our new estimation method LOG-Means
and discuss it in comparison to existing estimation
methods. In particular, we illustrate how LOG-Means
proceeds in a greedy manner to efficiently estimate the
number of clusters in datasets.

• We analyze LOG-Means and demonstrate that it pro-
vides better estimates and scales sublinearly with the
search space, thus being a strong fit for large datasets
and large search spaces.

• Our comprehensive experimental evaluation shows
that LOG-Means outperforms existing estimation
methods regarding runtime and accuracy. To the best
of our knowledge, this is the most systematic compari-
son, since we address more estimation methods, larger
datasets and larger search spaces than related work.

The remainder of this paper is structured as follows: In
Section 2, we present related work, i.e., existing estimation
methods. We detail on the elbow method in Section 3 and
unveil its most important characteristics. We reveal our
approach LOG-Means in Section 4 and analyze it in de-
tail. In Section 5, we discuss the results of our experimental
evaluation of LOG-Means in contrast to existing estimation
methods. Finally, we conclude this work in Section 6.

2. RELATED WORK
Estimation methods require a prior definition of the search

space R for the expected number of clusters. R is a discrete
range of values for k ∈ N where the actual number of clusters
is expected to be in. Since clustering groups similar entities
together, this search space is in the worst case R = [2;n−1],
where n is the number of entities in the dataset. An experi-
enced analyst may be able to significantly reduce the search
space based on prior domain knowledge. However, espe-
cially for inexperienced users, advanced estimation methods
are of paramount interest to efficiently estimate the number
of clusters. Such estimation methods follow a common pro-
cedure of three steps: (1) Identify which parameter in R to
execute next, (2) execute the clustering algorithm with the
determined parameter, and subsequently (3) evaluate the
result. Typically, k-Means is used in the second step due to
its appealing runtime behavior in practice.

In general, estimation methods can be divided into dif-
ferent categories: They are either exhaustive, meaning they
perform an exhaustive search and execute the clustering al-
gorithm for each k ∈ R, or they are non-exhaustive in the
sense that they do not perform an exhaustive search. On
the other hand, these methods work in an automated or in
a semi-automatic manner, i.e., with user interaction. In the
following, we present related work for these categories.

Exhaustive Estimation Methods. These methods ex-
ecute a clustering algorithm for each k ∈ R and subse-
quently evaluate each result, e.g., according to a clustering
validity measure [11, 14, 15, 17, 36, 41]. Finally, the best re-
sult is selected as an estimation for k. Estimation methods
in this category mainly differ in the validity measures they
use to evaluate the quality of a single clustering result.

Existing clustering validity measures focus on the com-
pactness of the clusters, their separation or combinations
thereof [21]. A common measure for the compactness of a
cluster is the sum of squared errors (SSE). This measure
denotes the sum of the variances of the resulting clusters.
Hence, the smaller the SSE is, the more compact are the
clusters. The silhouette coefficient [36] is a prominent ex-
ample for a validity measure that focuses on the separation
of the clustering results. It aims to measure for each entity
the distance to the neighboring clusters and can thereby
state whether the entity is correctly assigned or should be
re-assigned. Combinations of the compactness and the sep-
aration are for example used by the Calinski-Harabasz In-
dex [11], the Coggins-Jain Index [14], the Davies-Bouldin
Index [15] and the Dunn Index [17]. They have in com-
mon to use quotients of the measured compactness and the
separation of a clustering result in different variations.

Another area of validity measures arose from information
theory. The Akaike Information Criterion (AIC) [1] and
the Bayesian Information Criterion (BIC) [37] are commonly
used information criteria. They consist of two terms: The
first term measures the fitness of the model, whereas the
second term is a penalty regarding the number of parame-
ters in a model. The goal of the latter is to avoid overfitting
(in terms of a too high value for k). This penalty term is
larger for BIC than for AIC. Sugar and James proposed the
so-called jump method [41]. This method proceeds by calcu-
lating the distortion of the resulting clusters. Subsequently,
a rate distortion function is applied, similarly as proposed
by Shannon [38]. Finally, this distortion allows to compare
clustering results, analog to clustering validity measures.
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Non-Exhaustive Estimation Methods. Non-
exhaustive methods perform an ascending search in R and
stop as soon as subsequent clustering results barely differ
according to a certain evaluation criterion.

The idea of the gap statistic [43] is to compare the graph
of log(SSE) of the dataset with the graphs of so-called refer-
ence distributions. To provide these reference distributions,
several datasets are created in a way that each entity lies be-
tween the minimum and maximum value across all features
of the original dataset. The estimated number of clusters
are in the area, where these two graphs have the largest
difference. In order to limit the search space R, the gap
statistic relies on the notion of a standard error. The search
stops as soon as the gap between two subsequent values for
k changes less than this standard error or until a predefined
upper bound is met (e.g., max(R)).

The X-Means [34] method starts by clustering the dataset
into parent clusters with k = min(R). Subsequently, each
parent cluster is clustered with k = 2. This result is com-
pared to the parent cluster according to a scoring criterion,
such as AIC or BIC (see above). The split is accepted if the
score of the child cluster is better. The resulting clusters are
again clustered with k = 2 and evaluated according to the
scoring criterion. These steps are repeated until a prede-
fined upper bound for k is met or until the scoring criterion
rates the child clusters worse than the parent clusters.

Similarly to that, G-Means [24] checks in each iteration
for a Gaussian distribution of each child cluster with the
Anderson-Darling test [3]. If the test is not successful, i.e.,
a child cluster does not follow a Gaussian distribution, k is
increased by one per test. In contrast to X-Means, after each
iteration, k-Means is executed over the whole dataset with
the new value for k to refine the overall result. The iterations
stop as soon as all clusters follow a Gaussian distribution or
if an upper bound, such as max(R), is met.

Semi-Automatic Methods. While all the estimation
methods presented above are purely automated, there is also
the group of semi-automated methods. Undoubtedly, the
elbow method [42] is the most commonly used method of this
group. Since it is an important basis for our new estimation
method, we explain it in more detail in the following section.

As this overview shows, existing estimation methods rely
on the excessive execution of a clustering algorithm. Ex-
haustive methods execute such an algorithm for each ele-
ment in R. Even non-exhaustive methods typically draw
on an excessive execution of a clustering algorithm until
they stop. Hence, these approaches are not feasible for large
search spaces, since they are costly to perform. Our novel
estimation method LOG-Means addresses this problem of
exploring large search spaces by drawing on a more elabo-
rated search strategy.

As of today, there are some examinations of existing es-
timation methods [4, 13, 16, 33]. However, they all focus
solely on a few thousand entities, a small number of dimen-
sions (around 10), and clusters (less than 10). Furthermore,
they mostly consider small search spaces. Similar observa-
tions can be made for related work on existing estimation
methods [24, 41, 43]. To the best of our knowledge, no
comprehensive evaluations of estimation methods consider-
ing more voluminous datasets across several characteristics
and larger search spaces are available. Hence, drawing con-
clusions about their performance on these data characteris-
tics remains an open challenge.
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Figure 1: Elbow graph. Red circles depict possible bends
that may be selected by analysts.

3. ELBOW METHOD
Before detailing on the elbow method, we briefly summa-

rize the basics of k-center clustering algorithms. Let X be a
dataset with n entities and d dimensions, i.e., X ⊂ Rd. The
goal of k-center clustering algorithms is to group X into k
disjoint clusters, such that each entity is assigned to the
closest centroid c ∈ C. As this problem is NP-hard [2, 23],
several heuristics exist which aim to approximate the solu-
tion. One of these heuristics is the k-Means algorithm [31,
32]. The goal of k-Means is to find the set C of k centroids
which minimizes the objective function in Equation 1.

φX (C) =
∑
x∈X

min
c∈C
‖x− c‖2 (1)

Here, the Euclidean distance from an entity x ∈ X to the
closest centroid c ∈ C is calculated. φX (C) denotes the sum
of these distances over all entities in X . This sum is also
called the sum of squared errors (SSE). Algorithms like k-
Means move these k centroids to a better position in each
iteration, until their position converges, i.e., until no more
changes occur. In order to measure the quality of a clus-
tering result, the SSE can be used. This validity measure
denotes the variance of the resulting clusters, i.e., the smaller
the SSE, the more compact the clusters.

3.1 Procedure
The elbow method was first discussed by Thorndike [42].

It comprises four steps: (1) Execute k-Means for each k ∈ R,
(2) calculate the SSE for each clustering result, (3) plot the
results in a graph, and (4) select the bend in the graph.
As the first two steps are straight-forward and do not differ
from existing exhaustive estimation methods (cf. Section 2),
we focus on the latter two steps. Figure 1 shows an example
of an elbow graph as it is created in the third step.

Here, k ∈ R is depicted on the x-axis and the correspond-
ing SSE values are shown on the y-axis. The intuition of this
graph is to visually show after which k ∈ R the reduction of
the SSE becomes negligible with an increasing value for k.
This point can be seen as a “bend” in the graph, similarly
to the bend of the human’s elbow. That’s why practitioners
coined the name elbow method for this estimation method.
It is the task of the analyst to select this bend in the fourth
step (depicted in red in Figure 1). By doing so, the ana-
lyst prevents an overfitting of the clustering to the data in
terms of a too high value for k, where no crucial additional
benefits are achieved. In conclusion, the elbow method con-
sists of automated parts (steps 1-3) and parts that require
human interaction (step 4) in order to estimate the number
of clusters in a dataset.
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3.2 Discussion
One important characteristic of the elbow method is the

usage of SSE as the clustering validity measure, since it can
directly be derived from the goal of the objective function
φX (C) of the k-Means algorithm (cf. Equation 1). Other
existing clustering validity measures mainly focus on combi-
nations of compactness and separation of the clusters. Un-
doubtedly, these are important characteristics of clustering
results, yet they require additional computations. Remem-
ber, that k-Means aims to reduce the variance (= sum of
squared errors) of the resulting clusters. A similar objec-
tive function can be denoted for other k-center clustering
algorithms as well. Hence, we argue that the SSE is gener-
ally more applicable than other validity measures, because
it measures how well the objective function has performed.

Furthermore, the elbow method itself can easily be used
by analysts with different domain knowledge background.
Since solely the fourth step of selecting the bend in the elbow
graph is performed by the analyst, the complexity is clearly
manageable. The elbow method is also generally applicable,
since finding the bend in the graph requires no profound
technical knowledge.

Albeit these appealing advantages of the elbow method,
there are also striking downsides. In the first place, it is an
exhaustive method, i.e., it requires an exhaustive execution
and subsequent calculation of the SSE for each k ∈ R. As
a consequence, the overall time until an estimation can be
made is very large, in particular if |R| is large. Secondly,
the manual part of the elbow method must be treated with
caution. Several problems arise, if for example no clear bend
can be seen or if multiple bends exist. The selection of a
bend in a graph is the personal decision of an analyst, which
potentially makes several selections possible (cf. circles in
Figure 1). Hence, the estimated value for k depends on the
personal and subjective analyst’s selection. These pitfalls
are also confirmed by our user study (cf. Section 5.4).

4. LOG-Means
As discussed in the previous section, the elbow method

has severe pitfalls as well as promising advantages over ex-
isting estimation methods. We propose LOG-Means as a
new estimation method. It aims to overcome the pitfalls of
the elbow method, while exploiting its advantages.

4.1 Intuition
The elbow graph provides valuable properties, which can

be exploited by specialized search strategies. The intuition
of LOG-Means relies in particular on two specific properties
of this graph. Since these properties are valid independent of
datasets and the size of search spaces, LOG-Means preserves
generality by exploiting these properties.

Property 1: In general, the sum of squared errors (SSE)
follows a decreasing trend with an increasing value for k.
This can be shown based on the objective function in Equa-
tion 1, assuming that a global optimum can be found by the
clustering algorithm. We proof this property by induction,
where the base case is |C| = |X |, i.e., we cluster with as
many clusters as entities in X . The goal of k-center cluster-
ing algorithms is to assign entities x ∈ X to centroids c ∈ C,
which are closer to ci than to any other cj with ci 6= cj ∈ C.
Hence, for the base case of the induction, each entity x is
its own centroid c, thus having no errors regarding the ob-
jective function, i.e., φX (C) = 0. Proving the induction step
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(a) Elbow graph with SSE ratio ∀k ∈ R.
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(b) Procedure of LOG-Means for i = 1, 2 and the last iteration.

SSE SSE ratio Executing Already executed

Figure 2: Relation between SSE and SSE ratios is shown.
LOG-Means iteratively halves areas with the highest ratios.

is trivial based on Equation 1: We argue that if we remove
one centroid from an arbitrary C′ with 1 < |C′| ≤ |X |, the
SSE increases, since the distance between entities and their
closest centroids increases. Turning these observations the
other way around, we conclude that the SSE decreases with
an increasing value for k. A more detailed discussion, which
also addresses possible local optima of the clustering algo-
rithm, is deferred to Section 4.3.

Property 2: The bend describes a significant change
in the elbow graph. Thorndike describes the bend as the
sudden drop of the SSE between two adjacent values for
k [42], yet left a clear definition for the terms “sudden”
and “drop” open. Following his statement on the visual
representation of the bend, we formalize the decrease of the
SSE as SSEratiok = SSEk−1/SSEk. This ratio can be
exploited to investigate the SSE throughout R. The most
significant bend is denoted by max(SSEratiok). Figure 2a
shows the SSE ratio for all k ∈ R for an exemplary search
space R. Here, the highest SSE ratio is between k = 8 and
k = 9, i.e., the most significant bend is at k = 9.

Putting both properties together, we aim to avoid an ex-
haustive search by calculating the SSE ratio (cf. property
2) for areas of non-directly adjacent values of k ∈ R. Due
to the decreasing character of the elbow graph (cf. property
1), these areas provide a meaningful insight of the SSE ratio.
Hence, the SSE ratio can be used to iteratively shrink these
areas in a greedy manner and subsequently find the bend
efficiently without an exhaustive search in R.
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The general idea of LOG-Means is depicted in Figure 2b.
For each iteration i, crosses show for which values k ∈ R
a clustering algorithm is executed, whereas dots indicate
where the SSE is available from previous iterations. After
each execution of the clustering algorithm, the correspond-
ing SSE value is calculated. Since the SSE ratio is a relative
measure between two clustering results, it is updated when-
ever new adjacent SSE values for k ∈ R become available.

For i = 1, k<1>
low = min(R) − 1 and k<1>

high = max(R)
and the clustering algorithm is executed for these two val-
ues. Note, that min(R) must be reduced by one in order
to keep the possibility to predict min(R) as the value for
k due to the definition of the SSE ratio. Next, the mid-
dle element k<1>

mid halves the area between k<1>
low and k<1>

high.

Subsequently, k-Means with k = k<1>
mid is executed and the

SSE ratios of adjacent values of k<1>
mid are calculated, i.e.,

the ratios for (k<1>
low , k<1>

mid ) and (k<1>
mid , k

<1>
high). This allows

to identify the next area with the highest SSE ratio. In Fig-
ure 2b, the highest ratio is found in the area of (k<1>

low , k<1>
mid ).

Hence, for i = 2, the ratios (k<2>
low , k<2>

mid ), (k<2>
mid , k

<2>
high) and

(k<2>
high, k

<1>
high) are calculated, where the latter is equal to

(k<1>
mid , k

<1>
high) (note the different y-axes). Note, that pre-

viously calculated ratios are kept, if they are not adjacent
to k<i>

mid . Subsequently, the same procedure is iteratively
applied to the area with the highest ratio.

The search stops as soon as the low and high elements are
directly adjacent. In this area, the SSE ratio in the elbow
graph is expected to be the highest. We denote the value
for k with the highest SSE ratio of klow and khigh of the last
iteration as kbend, since we expect the bend here.

It can be seen that no exhaustive search in the search
space is conducted. However, the idea is to approach the
area of the bend from the left- and the right-hand side of
the elbow graph by following principles from logarithmic
search. To this end, the search space is efficiently narrowed
down around the highest SSE ratio and the algorithm is
executed with only few selected values from R.

As our evaluation in Section 5 unveils, an optional addi-
tional step may further increase the accuracy. The reason
for this is that kbend may be only a local optimum. Yet, the
global optimum, i.e., max(SSERatio), is typically within a
small ε environment. To this end, the ε environment around
kbend can be optionally evaluated in an exhaustive manner.

The general procedure of LOG-Means can also be applied
to other k-center clustering algorithms, since they also min-
imize their notion of variance. Yet, we use k-Means, since it
is the most commonly used algorithm of this family [44].

4.2 Algorithm
Algorithm 1 outlines the pseudo code for LOG-Means.

The algorithm is separated into 5 parts:
In the first part, key-value data structures are defined

(lines 2 and 3). These data structures keep track of already
evaluated values within LOG-Means. K stores tuples of ex-
ecuted values for k and the corresponding SSE value. M
stores tuples of k and the corresponding SSE ratio between
k and the left adjacent value.

In the second part, i.e., from lines 4 to 7, k-Means is
executed for klow and khigh. The clustering results are eval-
uated according to the SSE measure and stored in K.

The third part ranges from lines 8 to 20 and narrows down
the search space around the estimated bend in the elbow
graph. Here, the middle element is defined, k-Means is ex-

Algorithm 1: LOG-Means

Input: X - dataset, klow - minimum number of desired
clusters, khigh - maximum number of desired clusters,
ε - number of neighbors to evaluate

Output: kest - estimated number of clusters for X
1 klow ← klow − 1;
2 K ← ∅;
3 M← ∅;
4 SSElow ← SSE from k-Means with klow;
5 K ← K ∪ {(klow, SSElow)};
6 SSEhigh ← SSE from k-Means with khigh;
7 K ← K ∪ {(khigh, SSEhigh)};
8 while ( klow and khigh are not directly adjacent ) {
9 kmid ← b(khigh + klow)/2c;

10 SSEmid ← SSE from k-Means with kmid;
11 K ← K ∪ {(kmid, SSEmid)};
12 ratioleft ← SSElow/SSEmid;
13 ratioright ← SSEmid/SSEhigh;
14 M← store or update {(kmid, ratioleft)};
15 M← store or update {(khigh, ratioright)};
16 khigh ← k with highest ratio from M;
17 klow ← left adjacent value of khigh from K;
18 SSEhigh ← SSE for khigh from K;
19 SSElow ← SSE for klow from K;

20 }
21 if ε > 0 then
22 kbend ← k ∈ [klow, khigh] with highest ratio in M;
23 klow ← kbend − bε/2c;
24 khigh ← kbend + bε/2c;
25 for ( ∀k ∈ [klow; khigh] ) {
26 SSEkprev ← SSE of kprev from K;

27 if k ∈ K then
28 SSEk ← SSE for k from K;
29 else
30 SSEk ← SSE from k-Means with k;
31 K ← K ∪ {(k, SSEk)};
32 end
33 ratiok ← SSEkprev/SSEk;

34 M← store or update {(k, ratiok)};
35 }
36 kest ← k ∈ [klow, khigh] with highest ratio in M;
37 return kest;

ecuted, the SSE is calculated and stored in K (lines 9-11).
Subsequently, the SSE ratios are calculated in lines 12 and
13. These calculated SSE ratios are stored in M (lines 14
and 15). Since the area with the highest SSE ratio is halved
in each iteration, the corresponding values in M are either
stored or updated, if calculated previously. At the end of
each iteration, new values for klow and khigh are set in such
a way that the area between these values localize the highest
SSE ratio (lines 16 and 17). Subsequently, the SSE values
for klow and khigh are retrieved from K for the calculation of
the SSE ratios in the next iteration (lines 18 and 19). The
loop stops as soon as klow and khigh are directly adjacent.

The fourth part ranges from lines 21 to 35 and is optional,
if an ε > 0 environment is given. To this end, the highest
SSE ratio between klow and khigh is retrieved from M in
line 22. As the bend is expected to be here, this point is
called kbend. Subsequently, the ε environment around kbend

is defined (lines 23 and 24). Within this ε environment, the
SSE values are determined for each value of k. If available
in K, the corresponding SSE is retrieved, otherwise it will
be calculated and stored in K (lines 27-32). Subsequently,
the SSE ratio is calculated and stored in M (lines 33-34).

Finally, the algorithm provides an estimate in line 36 by
selecting the value for k with the highest SSE ratio in M.
Note, that with ε = 0, this would be the same result as when
ignoring the optional fourth step from lines 21 to 35.
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4.3 Analysis
Property 1 states that the elbow graph follows a decreas-

ing trend for increasing values of k ∈ R. However, as k-
Means is solely a heuristic to the NP-hard k-center cluster-
ing problem, the objective function in Equation 1 may com-
prise local optima, i.e., the centroids are not at the globally
best position. Hence, the SSE does not necessarily decrease
monotonously. Yet, it has been proven that enhanced initial-
ization algorithms, such as k-Means++ [6] or k-Means‖ [7],
provide an O(log k)-approximation to the optimal cluster-
ing result w.r.t. the error (SSE) from the objective function
in Equation 1 independent of dataset characteristics.

Despite these local optima, the SSE ratio (property 2) still
provides crucial insights into how the elbow graph changes
between two values for k ∈ R. The O(log k)-approximation
becomes more noticeable the closer the values for k ∈ R are
evaluated: For far-distant values for k, the approximation
error has only slight impact on the SSE ratio, thus predicting
large areas with high SSE ratios mostly correct. Hence,
LOG-Means can efficiently narrow down large search spaces
around areas with high SSE ratios.

For closer distant values for k, especially for direct neigh-
bors of k ∈ R, the SSE and therefore the SSE ratio can
be more strongly influenced by local optima of the cluster-
ing algorithm. This can be seen for example in Figure 2a
at k ≈ 5, where the SSE does not tend to decrease be-
tween two subsequent values for k, before it decreases rather
strong at k = 6. Since LOG-Means keeps all areas and com-
pares them in each iteration regarding their SSE ratio, we
argue that using these “false” elbows for an estimation is
rather unlikely. Yet, since the areas become smaller in each
iteration, LOG-Means becomes most sensitive towards the
O(log k)-approximation in the last iteration, resulting solely
in a minor deviation from the optimum number of clusters.
We argue and show in the evaluation in the next section
that with the O(log k)-approximation of state-of-the-art ap-
proaches of k-Means, LOG-Means is able to provide reason-
able accurate estimates, yet no perfect estimates in every
scenario. By analyzing an optional ε environment around
the expected bend, the effect of the local optima of the clus-
tering algorithm can be further reduced (cf. Section 5.5).

Complexity Analysis
Estimation methods typically proceed in three steps: (1)
Identifying which parameter to consider next, (2) executing
k-Means with the determined parameter, and subsequently
(3) evaluating the result. As discussed in Section 2, ex-
isting estimation methods typically perform an ascending
or even worse an exhaustive search in the search space R.
Hence, the complexity of existing estimation methods lies in
O(|R|). Furthermore, the evaluation step can be costly due
to a complex metric, which may lead to an even worse com-
plexity class. Hence, these strategies require a huge overall
runtime until an estimation can be made. On the contrary,
LOG-Means promises a better runtime behavior regarding
R. To analyze this complexity, we focus on LOG-Means
with ε = 0 and address the above mentioned three steps.

(1) Identifying which parameter to execute next can be
done in O(1) when exploiting matching data structures. In
Algorithm 1, these observations apply to lines 16 and 17,
where the highest SSE ratio is identified. The middle ele-
ment in this area is calculated in line 9, which can also be
done in O(1), since it is only an arithmetical division.

(2) Executing k-Means. Due to the principle of logarith-
mic search, only O(log|R|) executions of the clustering algo-
rithm are required. However, as we do not eliminate areas
with lower SSE ratios, LOG-Means could proceed with loga-
rithmic search in eliminated and non-eliminated areas within
each iteration. That is, O(log|R|+ log|R|) = O(2 ∗ log|R|)
executions of k-Means are performed at highest, which can
be reduced to O(log|R|) again.

(3) Evaluating a single clustering result via the SSE metric
can be done in linear time for a single clustering result with
k = |C| clusters, because the SSE depends linearly on the
number of clusters in the dataset (cf. Equation 1), i.e., the
complexity lies in O(k). However, since solely O(log|R|)
clustering results are evaluated, the complexity of evaluating
the results also lies in O(log|R|).

Concluding, the overall complexity of LOG-Means is
O(1+ log|R|+ log|R|), which can be reduced to O(log|R|).

5. EVALUATION
The purpose of our comprehensive evaluation is to sys-

tematically compare LOG-Means with existing methods to
estimate the number of clusters in datasets regarding their
runtime and accuracy. As estimation methods are divided
into exhaustive and non-exhaustive methods (cf. Section 2),
we compare LOG-Means to commonly used approaches of
both categories. We also conducted a user study to evalu-
ate the semi-automatic elbow method, since we exploit its
properties for LOG-Means.

This section is structured as follows: Firstly, we discuss
the setup. Secondly, we investigate the runtime as well as
the accuracy of various estimation methods on synthetic
datasets. Thirdly, based on the results of our user study, we
compare LOG-Means to the elbow method in more detail.
Fourthly, we discuss the impact of different ε environments
for LOG-Means. Finally, we present results on several real-
world datasets from various domains.

5.1 Experimental Setup
In this section, we present the hardware and software

setup for our experiments. Furthermore, we detail the char-
acteristics of the synthetic datasets, before we discuss the
implementation and details of the experiments. Finally, we
explain the details of the user study that we conducted to
evaluate the performance of the elbow method.

Hardware and Software
We conducted all of our experiments on a distributed
Apache Spark cluster. This cluster consists of one master
node and six worker nodes. The master node has a 12-core
CPU with 2.10 GHz each and 192 GB RAM. Each worker
has a 12-core CPU with 2.10 GHz each and 160 GB RAM.
Each node in this cluster operates on Ubuntu 18.04. We
installed OpenJDK 8u191, Scala 2.11.12 and used Apache
Hadoop 3.2.0 as well as Apache Spark 2.4.0.

Synthetic Datasets
Existing works on methods to estimate the number of clus-
ters in datasets focus on rather small datasets [11, 14, 15,
17, 34, 36, 41, 43]. They rely on synthetic datasets with
different numbers of entities (up to 36,000), dimensions (up
to 10), and clusters in the dataset (up to 150, however for
small datasets). Furthermore, the distribution of the used
datasets varies: some use a Gaussian distribution for each
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Table 1: Characteristics of the used 27 synthetic datasets.

Dataset n d c

I - III 10,000 10 {10; 50; 100}
IV - VI 10,000 50 {10; 50; 100}
VII - IX 10,000 100 {10; 50; 100}
X - XII 100,000 10 {10; 50; 100}

XIII - XV 100,000 50 {10; 50; 100}
XVI - XVIII 100,000 100 {10; 50; 100}
XIX - XXI 1,000,000 10 {10; 50; 100}

XXII - XXIV 1,000,000 50 {10; 50; 100}
XXV - XXVII 1,000,000 100 {10; 50; 100}

cluster, others create a 2-dimensional dataset and create the
clusters manually by placing the entities close to each other.

For our evaluation, we conduct a comprehensive compari-
son across many existing estimation methods that considers
more voluminous datasets and is more systematic with re-
spect to varying dataset characteristics. For this purpose,
we implemented a synthetic dataset generator. This tool
generates datasets based on the following input parameters:
n as the number of entities, d as the number of dimensions,
and c as the number of clusters, where each cluster contains
n/c entities. Our tool generates datasets with values that lie
within the range [−10; 10] for each dimension. Each cluster
has a Gaussian distribution with the mean at the center and
a standard deviation of 0.5. The c centers are chosen ran-
domly and the clusters are non-overlapping. Table 1 depicts
the characteristics of the 27 datasets used for the evaluation.

Implementation
Besides LOG-Means, we implemented several estimation
methods on Apache Spark. This includes very commonly
used exhaustive and non-exhaustive estimation methods as
described in Section 2. Table 2 summarizes the 14 meth-
ods that we used throughout the evaluation as well as their
abbreviations that we use for referring to these methods.
Since some estimation methods draw on parameters, we
used recommendations provided by the authors of the re-
spective estimation method, where available. The names of
the parameters cling to the definition of the corresponding
authors and can be found in Table 2. For BIC and X-Means,
we used an existing implementation1. Since multiple scor-
ing criteria can be used for X-Means, we used the Akaike
Information Criterion (XAI) and the Bayesian Information
Criterion (XBI) separately. We used Spark’s variation of
the Silhouette coefficient2. Regarding LOG-Means, we set
ε = 0, i.e., only logarithmic search is performed.

For each run of k-Means, we used the default Apache
Spark implementation. That is, we used k-Means‖ [7] for
the initialization due to its proven O(log k)-approximation
and performed at most 20 iterations. Further improvements
of the clustering algorithm in an exploratory setting [21, 22]
are out of scope. If an estimation method failed to provide
an estimation within a predefined time budget of 30 min-
utes, we stopped the execution and mark the correspond-
ing estimation as failed. This time budget solely includes
the runtime for identifying which parameter to execute and
to evaluate the clustering result, and not the runtime for
the repetitive execution of k-Means. We performed all runs
three times and present median values in the results.

1 https://git.io/Je1sm 2 https://git.io/JfnPa

Table 2: Overview of estimation methods for the evaluation.

Abbr. Name Parameters Characteristic

ELM Elbow Method [42]
exhaustive,

semi-automatic

AIC Akaike Information Criterion [1]

exhaustive,
automatic

BIC Bayesian Information Criterion [37]
CHI Calinski-Harabasz Index [11]
CJI Coggins-Jain Index [14]
DBI Davies-Bouldin Index [15]
DUI Dunn Index [17]
JUM Jump Method [41] Y = r/2
SIL Silhouette coefficient [36]

GAP Gap Statistic [43] b = 5
non-exhaustive,

ascending,
automatic

GME G-Means [24] α = 0.0001
XAI X-Means (AIC) [34]
XBI X-Means (BIC) [34]

LOG LOG-Means ε = 0
non-exhaustive,

logarithmic,
automatic

Regarding the search space, we conducted two different
experiments. For each experiment, we will present the run-
time measurements as well as the accuracy results.

Experiment 1: The goal of this experiment is to simu-
late rather strong domain knowledge of the analyst. Based
on this domain knowledge, the analyst is able to drastically
reduce the search space. We simulate this by setting the
search space R to [2; 2c] for all estimation methods, where c
denotes the actual number of clusters in a dataset. In total,
we performed more than 1,100 runs (= 27 datasets × 14
estimation methods × 3 repetitions).

Experiment 2: Here, we simulate less prior knowledge
of the analyst, as it is typical for novice analysts. The goal is
to demonstrate the benefits of LOG-Means for rather inex-
perienced analysts, who have only little domain knowledge
and can therefore limit the search space only very vaguely.
Therefore, we set the search space R to [2; 10c] and per-
form solely LOG-Means with ε = 0. In total, 81 runs (= 27
datasets × 1 estimation method × 3 repetitions) are per-
formed. The results for experiment 2 are marked with an
asterisk (*) in the presentation of the results.

User Study on the Elbow Method
As described in Section 3, the elbow method consists of two
parts: an automatic part and a manual part. We conducted
the automatic part of the elbow method and presented the
elbow graph to participants of a user study. Since we per-
formed each estimation method three times, we also per-
formed the automatic steps 3 times. Subsequently, we pre-
sented 81 graphs (27 datasets × 3 repetitions) to the partic-
ipants. Their task was to select the most significant bend in
the elbow graph. We captured the selected bend and mea-
sured the time until the selection was completed. If the par-
ticipants did not see a significant bend, they could skip and
proceed with the next elbow graph. The graphs appeared
in a random order for each participant. For this user study,
we had 15 participants, which mostly had a background in
computer science. As their task was simply to select a bend
in the elbow graph, we considered also non-technical partic-
ipants as suitable for this user study.
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(a) Overall runtime until an estimation can be made (including both estimation method and k-Means runtimes).

(b) Runtime of the estimation method only (without k-Means runtimes).
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Figure 3: Runtime of successful estimations across all synthetic datasets. Median runtimes are depicted in box plots. Note the
different logarithmic y-axes. Percentages in (a) depict the relative amount of failed estimates within the given time budget.
The dashed line depicts the separation of exhaustive estimation methods (left) and non-exhaustive estimation methods (right).

5.2 Runtime
Figure 3 shows the runtime for each estimation method

over all datasets. Figure 3a shows the overall runtime until
an estimation was made. This includes the necessary ex-
ecutions of k-Means. The runtime of the core steps of the
estimation method is presented in Figure 3b. This comprises
solely the runtime for evaluating the clustering result for a
specific parameter as well as the runtime for determining the
next parameter to be used for executing k-Means. Details
of both steps depend on the respective estimation method.

For the elbow method ELM, we included the median run-
times over all participants of the user study. Regarding the
estimation runtime of ELM in Figure 3b, we aggregate the
runtime of the calculation of the SSE as well as the selec-
tion of the bend via the participants and present the median
values. We make the following five observations:

1) Exhaustive estimation methods require in general
more runtime until an estimation can be made than non-
exhaustive estimation methods (cf. Figure 3a). The me-
dian runtime of exhaustive methods range from 254 seconds
(BIC, without failed estimations) to 544 seconds (DUI). On
the other hand, non-exhaustive estimation methods range
from 26 seconds (LOG) to 307 seconds (GME). These run-
time savings were expected, since non-exhaustive estimation
methods do not perform k-Means for each k ∈ R.

2) Regarding the runtime of the core steps of an estima-
tion method, we make a similar observation. The general
trend is that exhaustive estimation methods require a longer
runtime than non-exhaustive methods. However, the differ-
ences are not as drastic as for the first observation. That
is, for exhaustive methods, the runtime of the estimation
method itself ranges from 20 seconds (ELM) to 245 seconds
(DBI). Non-exhaustive methods are faster, i.e., they range

from 2 seconds (LOG) to 57 seconds (GME). The reason is
that non-exhaustive methods do not need to evaluate the
result for each clustering result in the search space. Yet,
they can draw on more complex evaluation metrics or em-
ploy complex strategies on how to select the next value for
k ∈ R, which can be time consuming.

3) The relative amount of failed estimations due to the
given time budget is depicted at the top of Figure 3a. These
numbers clearly show that only exhaustive estimation meth-
ods were regularly not able provide an estimation within this
budget. The reason for this is that exhaustive methods - in
contrast to non-exhaustive methods - evaluate each result
in R, which requires long runtimes. Figure 4 details this
observation. This figure shows the overall runtime until an
estimation was made for several datasets. It can be seen
that for more entities n and larger search spaces (due to the
higher number of clusters c in the dataset), an increasing
number of exhaustive estimation methods fail to provide an
estimate in the given time frame. Especially for the largest
dataset XXVII in Figure 4h, only 7 out of 14 methods are
able to provide an estimate within the given time frame.

4) Our new estimation method LOG-Means is the fastest
method in regard to the median values for the overall run-
time (cf. Figure 3a) as well as for the runtime of the core
steps of the estimation method (cf. Figure 3b). Regard-
ing the latter, LOG-Means benefits from the SSE validity
measure that can be calculated very fast. Furthermore, we
argue that the computational overhead of the method itself
with 2 seconds in median is negligible compared to the over-
head of other estimation methods (cf. Figure 3b). Figure 4
shows that for a few specific datasets LOG-Means is not the
fastest method with respect to the overall runtime. This
is for example true for datasets III, IX, XXI, and XXVII.
For these datasets, the X-Means variants XAI and XBI or
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Figure 4: Overall runtime until an estimation was made on selected synthetic datasets with varying values for n, d and c.

GAP achieved faster estimates. However, as the later eval-
uation of the accuracy of the methods will reveal, the faster
estimates of XAI, XBI and GAP are very inaccurate.

5) Comparing the results of LOG-Means from experi-
ment 1 and experiment 2, we observe that the runtime
roughly triples (see results for LOG and LOG* in Figure 3a),
whereas the search space is increased by a factor of 5. This
emphasizes the benefits of the logarithmic complexity of
LOG-Means. Hence, we conclude that LOG-Means can also
be employed in large search spaces, such as they might be
defined by novice analysts.

5.3 Accuracy
Since we created synthetic datasets, the actual number

of clusters c for each dataset is known. For our evalua-
tion, we exploit this and define the accuracy as relative error
δk = (kest − c)/c ∗ 100, where kest denotes the estimation
provided by the respective estimation method. This notion
of the relative error allows us to identify to what extent cer-
tain estimation methods tend to under- or overestimate the
number of clusters. Note, that δk solely addresses successful
estimations, i.e., estimations within the given time budget.

Figure 5 summarizes the results across all investigated es-
timation methods and datasets. It is evident that some esti-
mation methods regularly fail to provide an estimate within
the given time frame. These methods are AIC, BIC, CJI,
DBI and JUM. While some of them were able to provide
actually reasonable estimates in the given time frame for
a small search space, these methods fail for larger search
spaces. Therefore, we argue that these methods are not fea-
sible for large search spaces.

Other methods lead to imprecise results, such as GAP,
GME or both X-Means variants. The gap statistic tends to
underestimate the number of clusters in datasets. Since its
authors did not provide details about the choice of the pa-
rameter b, other values for bmay lead to better results. How-
ever, this solely transfers the problem of finding solid param-

eters of k-center clustering algorithms to finding parameters
for the estimation method instead. G-Means (GME) on the
other hand tends to overestimate the number of clusters.
The reason is that it repeatedly searches for Gaussian distri-
butions and stops, if all clusters follow a Gaussian distribu-
tion or a specified upper-bound is met. For the investigated
datasets, GME regularly hits the upper-bound for high-
dimensional datasets, i.e., where d = 50 and d = 100. Both
X-Means variants XAI and XBI regularly provide a solid
estimate. However, for some datasets, the estimation was
very imprecise. For these datasets X-Means performed an
ascending search and stopped at the first element kest = 2,
i.e., splitting into more clusters did not improve the AIC or
BIC scoring criterion respectively. Hence, X-Means was the
fastest estimation method for these datasets (cf. Figure 4),
but at the same time suffers from an imprecise estimation.

The remaining methods provide acceptable estimates.
Figure 5n shows that the estimates of LOG-Means are very
accurate and only exhibit minor deviations. The highest de-
viation is δk = −8 %, which is still significantly lower than
the deviation for other estimation methods (up to 100 %
for GME, XAI, XBI). Very similar observations are made
for the results of experiment 2 in Figure 5o. It should be
highlighted that, similarly to ELM, LOG-Means provides
accurate estimates independent of data characteristics. The
reason for this can be found in the similarity of these meth-
ods, since both rely on the SSE. The SSE provides appealing
characteristics, such that it remains reliable regardless of the
voluminosity and the search space.

Figure 5 also depicts the average relative error δ̄k across
all datasets for the investigated estimation methods. Solely
CHI, SIL and LOG achieve an average relative error be-
low 2 %, hence provide very accurate estimates in general.
However, as shown in Figure 3, the runtimes of CHI and SIL
are significantly higher than for LOG. Interestingly, δ̄k for
LOG* is also below 2 %, i.e., LOG-Means is able to provide
very accurate estimates even for large search spaces.
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Figure 5: Comparison of the accuracy of estimation methods. δ̄k shows the average relative error across all synthetic datasets.
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Figure 6: Comparison between the elbow method (ELM) and LOG-Means (LOG) regarding k-Means executions.

5.4 Comparison with the Elbow Method
Since LOG-Means exploits the advantages of the elbow

method, we compare both methods in this section. Figure 6
depicts their typical behavior. We focus on a single dataset,
however the results for the other datasets are very similar.
The values for the SSE validity measure are shown in black
and the corresponding runtimes for k-Means are depicted in
green. Figure 6a shows the results for ELM, where k-Means
is executed for all values of k and the SSE is calculated for
each of the clustering results. As the measurements show,
the runtime of k-Means increases with growing values for
k. This is the typical behavior as the larger k is, the more
distance calculations are necessary. The consequence for
ELM is that large parts of the overall runtime are caused by
executions of k-Means after the bend at k ≈ 100, where the
SSE barely changes, i.e., no crucial additional information is
gained. However, these executions are very costly in terms of
the overall runtime. Even before the bend, some executions
can be saved, since the SSE is decreasing very strongly and
does not tend to flatten.

As Figure 6b clearly demonstrates, LOG-Means proceeds
much more efficiently and tremendously narrows down the
search space around the bend. This way, many executions
of the clustering algorithm can be saved, which is in partic-
ular true for the most expensive executions of k-Means, i.e.,
those with large values for k. Despite these runtime savings,

the accuracy of the estimation is not affected in a negative
way by this search strategy, as the experimental results in
Figure 5n clearly demonstrate.

Results of the User Study
As the analyst has to select the bend in the elbow graph (cf.
Section 3), the time until such an selection is made is also
of paramount interest for this estimation method. Figure 7a
depicts the time the participants of the user study needed
until a decision was made for all investigated datasets. These
results show that the median time to select the bend is
around 2 seconds. Here, it is of particular interest, that data
characteristics apparently have no impact on this time. We
assume that the reason for this can be found in the simplic-
ity of the elbow graph: As the SSE denotes the variance of
the resulting clusters, it appears that the elbow graph is a
reasonable representation and allows to easily select the es-
timated number of clusters independent of the dataset char-
acteristics. However, in contrast to the overwhelming run-
time of the repeated execution of the clustering algorithm
(cf. ELM in Figure 3a), the time to select the bend with
2 seconds is rather negligible.

Figure 7b shows the variance of δk for each dataset for the
elbow method. The deviations are rather small, as they are
below 15 %. Strong deviations appear for a few datasets,
e.g., II, III, XI, XIX and XXI. The sole similarity between
these datasets is the low dimensionality of d = 10 and the
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Figure 7: Results of the user study of the elbow method.

rather high number of actual clusters in the dataset. Our ob-
servation of the elbow graphs reveals that they flatten slowly
without a clear significant bend. Hence, we assume that the
participants were insecure about their decision, which makes
their selection not as accurate as for the other elbow graphs
with clearly significant bends.

Figure 7c outlines the failed estimations within the user
study. We marked an estimation as failed, if the participant
couldn’t find a bend in the elbow graph. Most of the time a
selection could be made, but with an increasing number of
clusters in the dataset (and therefore an increasing search
space in our experiments), the participants more frequently
couldn’t provide an estimate. This observation can be seen
for example when regarding datasets I-III. Here, the data
characteristics remain unchanged, except for the number of
clusters. This implies that for a larger number of clusters or
a larger search space, participants struggle to provide a clear
estimate. We assume that the problem mainly arose due
to the larger search space. Here, the participants required
more time, because more possible choices for the bend were
available. Furthermore, only for few datasets (cf. datasets
II, III, XI, XII, XXI), the participants couldn’t find a bend
in the graph more regularly than for the others. Interest-
ingly, these observations correlate with a longer time until
a decision was made (cf. Figure 7a) as well as with a lower
accuracy of successful estimates (cf. Figure 7b).

Concluding the observations of the user study of the elbow
method, we unveiled three main problems: 1) As an exhaus-
tive estimation method, the elbow method requires a huge
overall runtime until an estimation can be made. The main
reason can be found in the repetitive executions of k-Means,
especially for large values of k. The time until a decision
was made by an analyst requires approximately 2 seconds,
which is negligible in contrast to the huge overall runtime.
2) For datasets, where the corresponding elbow graph did
not provide a significant bend or the search space was large,
the participants struggled with an estimation. If, however,
an estimation was made for these datasets, the estimations
across all participants differ. Especially for dataset XXI in
Figure 7b δk lies between -14 % and 8 %, which is a remark-
able difference in the estimations. 3) For some datasets, the
participants were not able to provide an estimate in up to
40 % of all cases (cf. Figure 7c). This correlates with the
observation of the datasets from problem 2.

Benefits of LOG-Means
LOG-Means is able to overcome the aforementioned prob-
lems. As shown in Figure 6b, LOG-Means executes the clus-

tering algorithm only for few values k ∈ R. Hence, tremen-
dous runtime savings can be achieved in contrast to existing
estimation methods due to fewer executions of k-Means.

Furthermore, as LOG-Means is an automatic method, it
requires no human interaction. To this end, two promis-
ing advantages can be achieved: The first advantage is that
LOG-Means provides an objective estimate in contrast to
the elbow method. Due to the formal definition of LOG-
Means (cf. Section 4.2), it proceeds in a clear sequence of
steps. On the other hand, the elbow method suffers from
the perception and the subjectivity of the analyst, which
can lead to inaccurate estimates, when for example the el-
bow graph provides multiple bends or no clear bend at all.

The estimates of LOG-Means reflect a high SSE ratio.
Hence, it provides accurate estimates even for datasets with
an ambiguous elbow graph. That is, LOG-Means achieved
accurate results in terms of δk for datasets II (-4 %), III
(0 %), and XXI (-2 %), whereas the participants of the user
study struggled to provide accurate estimates.

5.5 Analysis of ε Environments
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Figure 8: Results for different ε environments. Left: Rel-
ative error δ̄k. Right: Overall runtime until an estimation
was made. Median values over all datasets are depicted.

As LOG-Means with ε = 0, i.e., without an ε environ-
ment, already provides very accurate results with a relative
error below 2 % (cf. Figure 5n), there is only little space
for improvement. Yet, we repeated experiment 1 on syn-
thetic data, where R = [2; 2c], with two additional ε en-
vironments. We selected these ε environments as relative
proportions of the size of the search space R. That is, if
R = [2; 100], then |R| = 99. Hence, if we set ε = 5 %, then
b0.05× 99c = b4.95c = 4 additional elements next to the ex-
pected bend are executed. In our experiments, we set ε to
5 % and 10 % respectively. As the results in Figure 8 show,
the average relative error δ̄k can be indeed further reduced,
yet with the trade-off of a higher runtime. To this end,
LOG-Means is able to provide estimates with an average
relative error of δ̄k = −0.26 % for ε = 10 % and is therefore
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the most accurate estimation method in our experiments (cf.
Figure 5). The reason for this is, that with ε = 0, the area
where the bend is expected to be can be efficiently narrowed
down. Yet, there might be higher SSE ratios in a ε nearby
area, which can only be found when focusing on this area.
When analyzing this ε environment, we observe a rise of the
overall runtime. That is, with an increasing ε environment,
k-Means is executed multiple times with varying values for
k until the ε environment is analyzed. Hence, the median
overall runtime until an estimation can be made by LOG-
Means with ε = 10 % rises to 52 seconds. However, this is
still faster than existing estimation methods (cf. Figure 3a).

Note, that the question remains how to choose a promising
value for ε. A thorough analysis of our results unveiled that
even more accurate estimates can be achieved by analyzing
the ε environment for elbow graphs with several bends, i.e.,
high values for the SSE ratio, in a nearby location. This can
be traced back to the O(log k)-approximation of the clus-
tering algorithm falling into a local optima, thus resulting
in several bends for closer distant values for k ∈ R (cf. Sec-
tion 4.3). Hence, increasing ε can reduce the effect of these
local optima on the SSE ratios, thus providing more accu-
rate estimates. Yet, prior to execution, it is typically unclear
whether the clustering algorithm provides a local optimum.
Furthermore, the choice of ε also depends on the underlying
goals: If the analyst is interested in rather fast and suf-
ficiently accurate estimates, which are still more accurate
than most estimates from existing estimation methods (cf.
Section 5.3), setting ε = 0 is a good choice. On the other
hand, if one wants even more accurate estimates, increasing
ε a little may increase the accuracy by reducing the effect
of local optima of the clustering algorithm around the bend,
yet with the cost of a higher runtime. Hence, we argue that
there is no “best” ε for all scenarios, since we regard ε as
a parameter on a continuum trading off runtime with even
more accuracy, which depends on the analysts’ goals.

5.6 Evaluation on Real-World Data
While all previous experiments were performed on syn-

thetic datasets, we also investigated the effects of LOG-
Means on real-world datasets. We used 5 real-world clas-
sification datasets mostly from the UCI machine learning
library3, which are regularly used to benchmark new algo-
rithms. In order to use these datasets for clustering, we
removed any non-numeric and symbolic values, IDs, times-
tamps, class labels and empty values. Table 3 summarizes
the datasets’ characteristics. Note, that these datasets ex-
hibit similar or even larger characteristics as the synthetic
datasets from prior experiments regarding n and d.

For this evaluation, we set R = [0.5c; 2c], since we assume
prior knowledge, i.e., that the datasets comprise multi-class

Table 3: Real-world datasets and their characteristics, with
n as #entities, d as #dimensions, and c as #classes.

Abbr. Dataset n d c

A Avila 10,430 10 12
B Dataset for Sensorless Drive Diagnosis 58,509 48 11
C MNIST 60,000 784 10
D KDD Cup 1999 Data 4,898,431 34 23
E KITSUNE 21,017,597 115 10

3 https://archive.ics.uci.edu/ml/datasets.php

Table 4: Median values of relative error δk (left) and overall
runtime (right) over 3 runs. Bold values indicate best results
per dataset, “-” indicates an exceedance of the time budget.

Est. Method
δk (%) Runtime (s)

A B C D E A B C D E
AIC 58 100 -50 52 - 70 115 981 1,667 -
BIC -8 100 -50 52 - 68 114 977 1,660 -
CHI -50 18 -50 52 100 32 51 401 310 1,626
CJI 100 -45 90 -52 -50 38 63 559 660 2,214
DBI 58 27 - - - 167 306 - - -
DUI 50 -45 90 -9 -50 31 49 386 292 1,557
JUM -50 -55 -50 -52 -50 38 64 562 674 2,303
SIL -42 -45 -20 -52 -50 32 52 412 380 1,766

GAP -33 -45 - -39 - 28 60 - 571 -
GME 100 100 100 100 100 26 54 101 221 616
XAI 100 100 -50 100 100 43 51 49 226 1,460
XBI 100 100 -50 100 100 95 46 50 282 1,462
LOG 0 -9 -40 0 -25 7 13 115 75 538

problems instead of binary classification problems. Further-
more, we set ε = 0, i.e., only apply the logarithmic search
alike part of LOG-Means.

The results in Table 4 unveil that LOG-Means is in most of
the cases the fastest and the most accurate method. Solely
for dataset C, LOG-Means was the second most accurate
method. Furthermore, the more accurate method for this
dataset required a multiple of runtime compared to LOG-
Means. Also, LOG-Means was in almost all cases the fastest
estimation method. For dataset C, GME and both X-Means
variants XAI and XBI were faster, yet heavily over- and
underestimated the number of clusters.

Concluding, our experiments unveil that LOG-Means is
also able to achieve accurate and fast estimates on real-world
datasets as well, thus regularly outperforming existing esti-
mation methods for the number of clusters in datasets.

6. CONCLUSION
In this paper, we propose LOG-Means, which is based

on formal properties of elbow graphs and scales in sublin-
ear time regarding the parameter search space. Thus, it
is a strong fit for large datasets and large search spaces.
Our comprehensive evaluation compares LOG-Means with
13 commonly used estimation methods on large datasets and
large search spaces. To the best of our knowledge, this is
the most systematic comparison as of today. The results
unveil that LOG-Means significantly outperforms existing
estimation methods in terms of runtime and accuracy. Fur-
thermore, LOG-Means provides accurate estimates even in
large search spaces and is therefore of paramount interest
for novice analysts.

Since multiple executions of a k-center clustering algo-
rithm are at the core of each estimation method, future re-
search will address how to exploit previous results in subse-
quent executions to achieve additional speed-ups.
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