
A Demonstration of MAGiQ:
Matrix Algebra Approach for Solving RDF Graph Queries

Fuad Jamour, Ibrahim Abdelaziz, Panos Kalnis
King Abdullah University of Science and Technology (KAUST)
{fuad.jamour, ibrahim.abdelaziz, panos.kalnis}@kaust.edu.sa

ABSTRACT
Existing RDF engines follow one of two design paradigms:
relational or graph-based. Such engines are typically de-
signed for specific hardware architectures, mainly CPUs,
and are not easily portable to new architectures. Porting an
existing engine to a different architecture (e.g., many-core
architectures) entails almost redesign from scratch. We ex-
plore sparse matrix algebra as a third paradigm for designing
a portable, scalable, and efficient RDF engine. We demon-
strate MAGiQ; a matrix algebra approach for evaluating
complex SPARQL queries over large RDF datasets. MAGiQ
represents an RDF graph as a sparse matrix, and translates
SPARQL queries to matrix algebra programs. MAGiQ takes
advantage of the existing rich software infrastructure for pro-
cessing sparse matrices, optimized for many architectures
(e.g., CPUs, GPUs, distributed), effortlessly. This demo
motivates the adoption of matrix algebra in RDF graph
processing by showing MAGiQ’s performance with differ-
ent matrix algebra backend engines. MAGiQ, using a GPU,
is orders of magnitude faster in solving complex queries on
a billion edge graph than state-of-the-art RDF systems.

PVLDB Reference Format:
Fuad Jamour, Ibrahim Abdelaziz, and Panos Kalnis. A Demon-
stration of MAGiQ: Matrix Algebra Approach for Solving RDF
Graph Queries. PVLDB, 11 (12): 1978-1981, 2018.
DOI: https://doi.org/10.14778/3229863.3236239

1. INTRODUCTION
RDF [3] data is a collection of triples of the form 〈subject,

predicate, object〉 where the predicate describes the re-
lationship between the subject and the object. An RDF
dataset can be viewed as a directed edge-labelled graph
where each triple corresponds to an edge. The RDF data
model has been gaining popularity in various application do-
mains such as the semantic web, bioinformatics, and knowl-
edge graphs [7, 9]. SPARQL is the de-facto query language
for RDF data which offers graph pattern matching seman-
tics [16].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236239


A B C D E

A b a a
B b b
C c
D
E e e


Figure 1: Example RDF graph (left), and corresponding
RDF sparse matrix (right).

Many research efforts focus on scalable engines for
SPARQL queries over large RDF datasets [7, 16]. Two
design paradigms are dominant: the relational paradigm
and the graph-based paradigm. The relational paradigm
builds exhaustive indices and utilizes relational operators
(e.g., joins) to solve SPARQL queries [15, 12, 13]. The
graph-based paradigm represents the RDF data in its na-
tive graph form and uses graph traversal for query evalua-
tion [8, 18]. Solutions that follow the existing paradigms are
designed with a particular hardware architecture in mind,
and thus are not easily portable to new architectures. Most
existing RDF engines [13, 12, 15, 18] use CPUs. Adapt-
ing these engines to run effectively on GPUs, for example,
entails (almost) redesign from scratch even though the un-
derlying ideas for query planning and execution are similar.

The development of efficient data structures and algo-
rithms for sparse matrices encouraged many researchers to
adopt the matrix algebra formulation for graph problems
[14]. GraphBLAS [1] emerged as a convergence of efforts
towards building a standard set of sparse matrix algebra
primitives for solving graph problems. One of the premises
of GraphBLAS is to identify a limited set of operations (e.g.,
sparse matrix multiplication) that can be used to formu-
late a wide range of graph algorithms, and build very op-
timized implementations of these primitives across different
architectures. This direction reduces the replication of ef-
fort inherent in current scalable graph processing schemes,
including RDF graph processing. Many experimental imple-
mentations of the GraphBLAS standard are available [10],
and a high performance full implementation became avail-
able recently; SuiteSparse:GraphBLAS [4].

Motivated by the potential of matrix algebra in graph pro-
cessing, we demonstrate MAGiQ; a matrix algebra based
solution for evaluating SPARQL queries over large RDF
graphs. MAGiQ stores an RDF graph as a sparse inte-
ger matrix (Figure 1), and translates conjunctive SPARQL
queries to concise matrix algebra programs that operate on
the matrix representation of the RDF graph. The matrix
algebra program produced by MAGiQ query translator con-
sists of a sequence of sparse matrix-matrix multiplications

1978

Figure 2: Architecture of MAGiQ

that ultimately compute a collection of sparse matrices that
capture the result set of an input SPARQL query. MAGiQ’s
utilization of matrix algebra makes it portable, scalable, and
efficient all together unlike existing RDF engines.

The conference audience will be able to interact with
MAGiQ through a graphical interface, where they can se-
lect a dataset and type a SPARQL query. The interface will
visualize the steps of translating the query to a matrix al-
gebra program. The interface will also display the concise
program in Matlab language. The audience will be able
to select a backend (CPU or GPU) and see a comparison
between the runtimes of MAGiQ and state-of-the-art spe-
cialized RDF engines.

2. OVERVIEW OF MAGiQ
Figure 2 shows the high-level architecture of MAGiQ. The

query compiler translates SPARQL queries to matrix alge-
bra programs. The optimizer takes advantage of matrix al-
gebra properties to re-order the operations in a way that
produces more efficient programs. Once a matrix algebra
program is available, an existing sparse matrix algebra en-
gine such as Matlab or SuiteSparse:GraphBLAS [4] can be
used to evaluate the query over different hardware archi-
tectures. Consider the example SPARQL query in Figure
3. This query is translated to the following matrix algebra
program (using Matlab notation), where query edges are
processed in the following order: 〈?x, a, ?y〉, 〈?y, c, ?z〉 and
〈?x, b, ?w〉:

Mxy = I ∗ a⊗A

Myz = diag(any(M′xy)) ∗ c⊗A

Mxy = Mxy × diag(any(Myz))

Mxw = diag(any(Mxy)) ∗ b⊗A

The⊗ symbol denotes matrix multiplication over a semiring,
which is explained in Section 2.2. We explain query trans-
lation in Section 2.3. The example program above works
as follows. The first line selects the valid bindings of vari-
ables x and y using predicate a from the RDF matrix A,
and stores the results in matrix Mxy. The second line uses
the bindings of y and predicate c to select the bindings of z.
The third line updates the bindings of x and y to eliminate
bindings invalidated by predicate c. Finally, the fourth line
uses the bindings of x in Mxy with predicate b to select the
valid bindings of w. The rest of this section briefly describes
the main ideas used in MAGiQ.

2.1 RDF Graph Representation
MAGiQ stores an RDF graph as a sparse square matrix

A : Zn×n, where n is the number of nodes in the RDF
graph (i.e., the number of unique subjects and objects). A
non-zero entry at (i, j) with value pij (i.e., A(i, j) = pij)
means that subject i is connected to object j with predicate
pij . A row A(i, :) stores predicates of the outgoing edges of
node i. Figure 1 shows an example RDF graph with 5 nodes

SELECT ?x ?y ?z ?w WHERE {
?x <a> ?y .
?y <c> ?z .
?x ?w .

}

Figure 3: Example SPARQL query (left), and its graph rep-
resentation (right).

A,B, . . . E and 5 unique predicates a, b, . . . e. The example
graph has 8 triples, which result in 8 non-zero entries in A.

2.2 Selection Matrix and Selection Operation
A selection matrix is a diagonal matrix with ones on diag-

onal entries with row/column indices to be selected. When
a selection matrix is multiplied with a matrix of the same
size, the product is a matrix with the specified rows/columns
present. We refer to the multiplication of a matrix M with a
selection matrix S as selection operation. The following ex-
ample demonstrates using the selection operation to select
a row from a matrix. Let a selection matrix S have a single
one at index (2, 2). As shown below, this row selection op-
eration results in a matrix C with row 2 present only. The
same operation can extract multiple rows by placing more
ones at the diagonal entries of S.0 0 0

0 1 0
0 0 0


︸ ︷︷ ︸

S

×

a b c
a b c
a b c


︸ ︷︷ ︸

M

=

0 0 0
a b c
0 0 0


︸ ︷︷ ︸

C

A semiring is a set with two binary operators; ‘addition’
and ‘multiplication’ [14]. A matrix algebra can be defined
over many semirings other than the standard arithmetic ad-
dition and multiplication. We use a semiring with the set of
integers and logical OR as the ‘addition’ operator and iseq
as the ‘multiplication’ operator. iseq is a binary operator
that returns 1 if both integer operands are equal and neither
of them is 0, and zero otherwise. We denote with ⊗ a ma-
trix multiplication using the logical OR and iseq semiring.
In the following section, we show how ⊗ finds bindings of
SPARQL query variables in an RDF graph.

Let RDF selection matrix be a diagonal matrix with
a predicate value on diagonal entries with the indices of
rows/columns to be selected. Multiplying an RDF matrix
with an RDF selection matrix using the logical OR and iseq
semiring enables selecting rows from the graph (i.e., nodes)
and columns within these rows. The example below demon-
strates selecting columns with value b from the second row
of matrix M:0 0 0

0 b 0
0 0 0


︸ ︷︷ ︸

S∗b

⊗

a b c
a b c
a b c


︸ ︷︷ ︸

M

=

0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

C

Matrix C has a single one at (2, 2), which means that the
second row of M has one cell with the value b in the second
column (i.e., M(2, 2) = b).

2.3 SPARQL Query Translation
A binding matrix denoted by Mv1v2 : Zn×n

2 is a sparse
binary matrix that stores the bindings of SPARQL query
edge variables v1 and v2. A value of one at index (i, j) in
Mv1v2 means that i is a binding for variable v1 and j is a
binding for variable v2. The result set of a SPARQL query
can be produced if the binding matrices of all the variables

1979

Figure 4: Query graph traversal.

in the query are available. Below we show how to compute
the binding matrices for a SPARQL query. We assume the
query does not have literals, and does not have cycles for
ease of explanation.

A simple single edge SPARQL query, such as:

SELECT ?x ?y WHERE {?x <p> ?y .}

can be translated to the following semiring matrix multipli-
cation (S is an RDF selection matrix that captures predicate
p):

Mxy = S⊗A

The RDF selection operation above selects rows that have a
p value. In other words, it selects the node pairs (i, j) such
that i has an outgoing edge to j with label p, which consti-
tute the valid bindings of variables x and y, respectively.

In a general SPARQL query, each edge is translated to
an RDF selection operation. The bindings of one variable
are used to find the bindings of the next connected vari-
able. Given a binding matrix of variables x and y, Mxy, the
bindings of variable y can be converted to an RDF selection
matrix by the following operation: Sy = diag(any(M′xy)),
which reduces the columns of Mxy and places the resulting
vector from the reduction on the diagonal of an empty ma-
trix. Suppose the query had an edge involving y and z with
predicate pyz. The binding matrix Myz is computed as:

Myz = Sy ∗ pyz ⊗A

The bindings of y and z in Myz capture all the edges pro-
cessed so far; the edge involving (x, y) and the edge involving
(y, z). However, some bindings of y in Mxy might have been
invalidated by the edge involving (y, z). To accommodate
this, the binding matrix Mxy must be updated to select the
bindings of y that appear in both binding matrices. This
can be done by a column selection operation on Mxy, which
translates to the following matrix multiplication:

Mxy = Mxy × diag(any(Myz))

MAGiQ translates a query as follows. The undirected ver-
sion of the query graph is traversed in a depth-first fashion
to produce a closed walk such that edges connecting non-
leaf nodes appear twice; once when traversing down tree,
and once when backtracking. The walk determines the or-
der of the selection operations to be performed on the RDF
graph matrix A to produce a binding matrix for each edge
in the query. Edges in the walk have two types: forward
edges and backward edges. Forward edges are translated
to RDF selection operations that produce the binding ma-
trix for the variables of the query edge. Backward edges
are translated to selection operations that filter out invalid
variable bindings. Figure 4 demonstrates the traversal done
by MAGiQ to produce the matrix algebra program of the
example query in Figure 3.

Multiplications over semirings are not yet available in
most mature matrix algebra packages, such as Matlab.
However, they are part of the GraphBLAS standard [1], and
GraphBLAS conformant implementations such as SuiteS-
parse:GraphBLAS [4] support them. MAGiQ translates

Table 1: Datasets statistics in millions (M)
Dataset Triples (M) #S (M) #O (M) #P
LUBM-10240 1,366.71 222.21 165.29 18
YAGO2 284.30 10.12 52.34 98
WatDiv 109.23 5.21 17.93 85

Table 2: LUBM-10240 loading times (minutes).
MAGiQ

RDF-3X TripleBit Virtuoso SuiteSparse Matlab
429 101 237 19 16

query graphs to matrix multiplications using the standard
selection operation by creating a matrix per predicate for the
RDF graph. Then each RDF selection operation is replaced
with a standard selection operation using the corresponding
predicate matrix of the RDF graph.

3. EXPERIMENTAL EVALUATION
We show in this section a comparison between our pro-

totype implementation of MAGiQ with multiple matrix al-
gebra backends against state-of-the-art single machine RDF
engines. We use the LUBM-10240 dataset with 1.3 billion
triples (see Table 1) and its four complex queries [7] L1,
L2, L3, and L7. All experiments were executed on a Linux
machine with 512GB RAM and Intel Xeon E5-2620 CPU
equipped with an NVIDIA Tesla P100 GPU.

Competitors. We compare three implementations
of MAGiQ with different backend engines (SuiteS-
parse:GraphBLAS, Matlab-CPU, and Matlab-GPU)
against RDF-3X [15], TripleBit [17], and Virtuoso [11].
MAGiQ (SuiteSparse) uses SuiteSparse:GraphBLAS im-
plementation of the GraphBLAS standard and runs on
a single CPU thread. MAGiQ (Matlab-CPU) and
MAGiQ (Matlab-GPU) use Matlab and run on multiple
CPU threads and a single GPU, respectively. RDF-3X is a
popular relational RDF engine that uses exhaustive indices
to accelerate its join-based query processor. TripleBit uses
compact sorted indices and performs merge-joins for query
evaluation. Virtuoso is an enterprise grade solution built
on top of a hybrid row/column-oriented DBMS. For sys-
tems that store indices on disk (RDF-3X and TripleBit), we
mounted their indices on memory to make sure all compared
systems do not interact with disk while solving queries.

Loading time. Table 2 shows the loading times for the
compared systems. MAGiQ takes significantly less time
than all other systems; at least 5x faster compared to
TripleBit and at most 20x faster compared to RDF-3X. This
is because MAGiQ does not build indices, and the loading
time is dominated by the time to read the graph from disk.

Query execution time. Table 3 shows the runtimes for all
compared systems. MAGiQ with the Matlab-GPU back-
end outperforms state-of-the-art specialized engines with a
large margin; at least an order of magnitude faster. Even
with the Matlab-CPU backend, MAGiQ also outperforms
other systems for most queries. Note that TripleBit did not
finish solving L1 within 1 hour, and thus was terminated.
The runtimes in Table 3 demonstrate how MAGiQ effort-
lessly unlocks the power of modern hardware architectures
for solving SPAQRL queries through the highly optimized
matrix algebra backends.

4. DEMONSTRATION OVERVIEW
Our demonstration illustrates three aspects of MAGiQ:

query translation to matrix algebra programs, effortless
portability to different hardware architectures, and a direct
comparison with the state-of-the-art single machine RDF

1980

Figure 5: MAGiQ Graphical Interface.

Table 3: Runtimes for LUBM-10240 queries (seconds).
L1 L2 L3 L7

RDF-3X 1074.6 116.8 1043.6 144.0
TripleBit N/A 14.2 26.3 65.1
Virtuoso 37.0 86.2 15.6 323.2
MAGiQ (SuiteSparse) 132.4 30.0 85.9 111.9
MAGiQ (Matlab-CPU) 29.5 19.1 6.5 47.2
MAGiQ (Matlab-GPU) 2.5 1.6 1.1 3.8

engines. The audience will interact with MAGiQ using our
graphical interface shown in Figure 5.

Query translation. The audience will select one of three
datasets, and type a SPARQL query. Once a dataset and
a query are selected, our graphical interface visualizes the
query graph and its traversal, and displays the the resulting
matrix algebra program.

Portability. The audience will select one of the currently
supported backend engines (i.e., matrix algebra package) to
execute the query. The supported backends are: Matlab
and SuiteSparse:GraphBLAS [4]. The Matlab backend can
be instructed to use CPU or GPU.

Comparison. The audience will be able to instruct MAGiQ
to run the input query and see a comparison between the
response time of MAGiQ and three existing single machine
engines; RDF-3X [15], TripleBit [17], and Virtuoso [11].

Datasets. We will use three large-scale real and synthetic
datasets: (1) synthetic LUBM-10240 [2] dataset with 1.3
billion triples, (2) real YAGO2 [6] dataset with 284 million
triples, and (3) synthetic WatDiv [5] dataset with 109 million
triples. Table 1 shows the statistics of each dataset.

5. CONCLUSION
This demo explores sparse matrix algebra as a design

paradigm for evaluating SPARQL queries over large RDF
datasets. We show that a first attempt in following this
paradigm results in an engine that is faster than state-of-
the-art engines. We believe that the sparse matrix algebra

design paradigm can result in RDF engines with unprece-
dented portability, scalability, and efficiency.

6. REFERENCES
[1] GraphBLAS standard. graphblas.org.

[2] LUBM. swat.cse.lehigh.edu/projects/lubm.

[3] RDF Primer. https://www.w3.org/TR/rdf11-primer/.

[4] SuiteSparse. faculty.cse.tamu.edu/davis/suitesparse.html.

[5] WatDiv. db.uwaterloo.ca/watdiv.

[6] YAGO2. yago-knowledge.org.

[7] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. A survey
and experimental comparison of distributed sparql engines for
very large rdf data. PVLDB, 10(13):2049–2060, 2017.

[8] I. Abdelaziz, R. Harbi, S. Salihoglu, and P. Kalnis. Combining
vertex-centric graph processing with sparql for large-scale rdf
data analytics. IEEE TPDS, 28(12):3374–3388, 2017.

[9] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga, and
P. Kalnis. Lusail: a system for querying linked data at scale.
PVLDB, 11(4):485–498, 2017.

[10] A. Buluç and J. R. Gilbert. The combinatorial blas: Design,
implementation, and applications. IJHPCA, 25(4):496–509,
2011.

[11] O. Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE
Data Eng. Bull., 35(1):3–8, 2012.

[12] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad:
a distributed shared-nothing rdf engine based on asynchronous
message passing. In ACM SIGMOD, pages 289–300, 2014.

[13] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim,
and M. Sahli. Accelerating SPARQL queries by exploiting
hash-based locality and adaptive partitioning. VLDBJ,
25(3):355–380, 2016.

[14] J. Kepner and J. Gilbert. Graph algorithms in the language of
linear algebra. SIAM, 2011.

[15] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for
RDF. PVLDB, 1(1):647–659, 2008.

[16] M. T. Özsu. A survey of RDF data management systems.
Frontiers of Computer Science, 10(3):418–432, 2016.

[17] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
Triplebit: A fast and compact system for large scale rdf data.
PVLDB, 6(7):517–528, 2013.

[18] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore:
Answering sparql queries via subgraph matching. PVLDB,
4(8):482–493, 2011.

1981

