Query-able Kafka: An agile data analytics pipeline for
mobile wireless networks

Eric Falk

University of Luxembourg
eric.falk@uni.lu

Vijay K. Gurbani
Bell Laboratories, Nokia
Networks

Radu State
University of Luxembourg

radu.state@uni.lu

vijay.gurbani@nokia-bell-
labs.com

ABSTRACT

Due to their promise of delivering real-time network insights,
today’s streaming analytics platforms are increasingly be-
ing used in the communications networks where the impact
of the insights go beyond sentiment and trend analysis to
include real-time detection of security attacks and predic-
tion of network state (i.e., is the network transitioning to-
wards an outage). Current streaming analytics platforms
operate under the assumption that arriving traffic is to the
order of kilobytes produced at very high frequencies. How-
ever, communications networks, especially the telecommu-
nication networks, challenge this assumption because some
of the arriving traffic in these networks is to the order of
gigabytes, but produced at medium to low velocities. Fur-
thermore, these large datasets may need to be ingested in
their entirety to render network insights in real-time. Our
interest is to subject today’s streaming analytics platforms
— constructed from state-of-the art software components
(Kafka, Spark, HDF'S, ElasticSearch) — to traffic densities
observed in such communications networks. We find that
filtering on such large datasets is best done in a common
upstream point instead of being pushed to, and repeated, in
downstream components. To demonstrate the advantages
of such an approach, we modify Apache Kafka to perform
limited native data transformation and filtering, relieving
the downstream Spark application from doing this. Our
approach outperforms four prevalent analytics pipeline ar-
chitectures with negligible overhead compared to standard
Kafka. (Our modifications to Apache Kafka are publicly
available at https://github.com/Esquive/queryable-kafka.git)

1. INTRODUCTION

Streaming analytics platforms, generally composed of tiered
architectures as epitomized by the Lambda Architecture [26],
promise to deliver (near) real-time decisions on large, contin-
uous data streams. Such streams arise naturally in commu-
nications networks, especially large networks like Twitter,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12

Copyright 2017 VLDB Endowment 2150-8097/17/08.

Facebook, and packet-based public telecommunication sys-
tem like the existing 4G networks. Architectures inspired
by the Lambda Architecture are organized in three layers:
batch, streaming and serving layer. Incoming data streams
are distributed simultaneously to the batch and streaming
layers, with the assumption that there is a sizeable time lag
between fitting the arriving data to models in the streaming
and batch layers. The streaming layer operates on a data
only once, in the order that it arrives, to deliver results in
near real time. The batch layer has the luxury of iterating
over the entire dataset to produce results, at the cost of time.
The batch and streaming layers forward computational out-
put to the serving layer, which aggregates and merges the
results for presentation and allows ad-hoc queries.

While the streaming analytics architectures used today
suffice for large networks like Twitter and Facebook, this
paper shows that they are not designed to handle the vol-
ume of packet-based telecommunications systems like 4G or
its successor, the 5G network [6]. Global mobile devices and
connections in 2015 grew to 7.9 billion; every server, mobile
device (phone, tablet, vehicles), and network element in 4G
generates a steady stream of data that needs to be sifted
through and processed with real-time requirements to pre-
dict anomalies in the network state or foreshadow attacks on
the network. To characterize the inability of existing stream-
ing analytics architectures to handle the volumes observed
in the telecommunication traffic, we briefly describe an im-
portant server in 4G and contextualize it’s traffic volume to
that of other large networks like Twitter and Facebook.

In the 4G network, a server called the Mobility Manage-
ment Entity (MME) is a key control node for the access (ra-
dio) network. It tracks the mobiles (or more generally called
a UE, User Equipment) as they move across cell boundaries,
pages the UEs when messages arrive for them, authenti-
cates the UE with the network, and is responsible for as-
signing and maintaining the set of network parameters that
define specific treatment accorded to packets from that UE.
In short, the MME is involved in all decisions that allow the
UE to interface with the network. The MME produces a
logfile record of every interaction between the UE and other
network elements; the logfile record contains over 230 fields,
and each logfile record is about 850-1000+ bytes long. The
logfile is maintained in a CSV format in UTF-8 encoding.

MMES are configured for redundancy and reliability and
deployed in a pool to serve a metropolitan area. In a large
metropolitan area of 10 million people, under the conser-
vative estimate that 20% of the UEs are interacting with
the network (establishing Internet sessions, moving around,
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making phone calls, etc.) the MME pool serving this area
will generate data at a rate of about 40 MB/s, or 3.5 TB/-
day. (In a large metro area, a mean of 50,000 records/s
will be generated by the MME with each record weighing
in at 850 bytes for a rate of 42.5 MB/s.) By contrast,
the WhatsApp instant messaging service, with a mean of
347,222 messages/s [1], at an average message size of 66
bytes (with metadata), generates about 22.9 MB/s'. The
Twitter network generates 11.4 MB/ s2, and finally, Zhao et
al. [41] state that Facebook generates log data at the rate of
289.35 MB/s. To ensure our comparison is uniform across
the MME logfile data and other networks, we restrict our
analysis to textual data from the Twitter, Facebook, and
WhatsApp networks. Our metric does not include media
attachments — video or pictures — of any kind.

Table 1: Ranking of message traffic in terms of MB/sec.
(Only considering textual data)

Rank | Use Case Traffic in MB/sec.
1. Facebook 289.35
2. Pool of 5 active MMEs 200.00
3. Single MME 40.00
4. WhatsApp 22.90
5. Twitter 11.40

It is clear from the above table that datasets in telecom-
munication networks are in the upper end of the data vol-
umes generated by other networks. The provided measures
quantify the data generated by a MME of a 4G network en-
tity, and it is expected that the 5G network with its support
for Internet of Things, programmable networks, autonomic
computing, and further thrusts into vehicular ad hoc net-
works will push the need for even larger datasets for predic-
tion and analytics.

1.1 Problem statement and contributions

A detailed description of our application in §3, here we
motivate the problem statement and contributions.

The MME collects the logfiles in increments of a minute,
i.e., each minute, all the data is written out to the log file.
While it is possible to obtain the data on finer timescales,
the 1-minute batching mode suffices for our particular ap-
plication on predicting a network outage because the logfile
contained enough observations to allow the data to fit our
statistical models. At the rate of 40 MB/s, the MME logfile
can grow to 2.4 GB/min. Ingesting such a large file in a
real-time data pipeline imposes latency penalties driven by
the fact that the entire 2.4 GB file must be processed be-
fore the next batch arrives. Our models create a distribution
from the arriving data, requiring access to the entire minute.
Sampling was eschewed because it may not catch aberrant
datapoints, which may be outliers of interest. The models
are discussed in Gurbani et al. [17] and Falk et al. [14].
Here, we don’t discuss the models themselves but present
the systemic challenges faced and mitigated while construct-
ing the agile data analytics pipeline. Without such an agile
streaming analytics pipeline we had an unstable system that
could not render timely predictive decisions.

!"Numbers are based on Vergara et. al [37]. The average
message size is 26 bytes plus 40 bytes of metadata for a
total of 66 bytes.

2 According to Twitter blogs [28], the network observes a
mean of 5,700 tweets/s at about 2 KB/tweet, including
metadata. This results in 11.4 MB/s.
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As mentioned above, the entire 2.4 GB file must be pro-
cessed before the next batch arrives. Furthermore, the na-
ture of the streaming analytics data platforms in use today
(i.e., the Lambda Architecture) is to perform data transfor-
mation in the speed or batch layers; consequently, if there
are multiple speed layers (as there are in our application),
the large dataset has to be transmitted to the order of the
number of speed layers. Each speed layer will only need a
subset of the columnstores in the dataset, however, due to
the paucity of transformation tools at the ingestion point,
the large dataset must be transmitted in its entirety to each
layer. While streaming analytics platforms are horizontally
scalable, their distributed data storages cannot deliver with-
out some latency, which keeps growing as the size of datasets
increases. Mining such big data within computable time
bounds is an active area of research [15].

This work contributes to data management research thr-
ough the following three contributions:

e We construct and evaluate a telecommunications-centric
real-time streaming data pipeline using state-of-the-
art open source software components (Apache Hadoop
[3], Spark [39] and Kafka [23]). During our evaluation,
we subject the analytics pipeline to workloads not typ-
ically seen in the canonical use of such platforms in
global networks like Facebook and Twitter. Our find-
ings are: (A) traditional analytics platforms are unable
to handle the volume of data in the workloads typical
of a telecommunication network (large datasets pro-
duced at medium to low velocities). The primary rea-
son for this is the inability of the speed layer to deal
with extreme message sizes (2.4 GB/min). Aggregat-
ing, summarizing or projecting relevant columns at the
source (MME) is not appropriate in our application
due to stringent constraints that monitor production-
grade MME resources to keep them under engineered
thresholds (discussed in more detail in §4.4). (B) It
became increasingly clear that the batch layer was
not needed in our application. The speed layers ex-
peditiously compare arriving target distributions to
known distributions that were created a-priori. Our
application is not driven by ad-hoc queries — What
is trending now? How many queries arriving from the
southern hemisphere? — as much as it is by instanta-
neous and temporal decisions — Is a network outage
in progress? Is the network slice overloaded?

To overcome limitations of prevalent streaming analyt-
ics platforms, we propose to move extract-transform-
load (ETL) tasks further upstream in the processing
pipeline. This alleviates our finding (A) above and
allows the analytics platform to process typical work-
loads in a telecommunication network. A novel, simple
on-demand query mechanism was implemented on top
of Apache Kafka, the ingestion point in our frame-
work. This mechanism is located close to persistent
storage to leverage capabilities of disk backed linear
search, alleviating each speed layer to deal with the
ETL overhead. We call our approach the query-able
Kafka solution.

We present an extensive evaluations of four streaming
analytics frameworks and compare these to our pro-
posed framework implementing our novel on-demand



query mechanism. We evaluate the results of these ar-
chitectures on a cluster of 8 hosts as well as on Amazon
AWS cluster. For each cluster, we measure three met-
rics: CPU consumption of the hosts in the streaming
analytics platform, memory consumption and time-to-
completion (TTC), defined as the time difference be-
tween the message emission from the MME to the in-
sertion of model output from the speed layer into the
serving layer.

The rest of the paper is organized as follows: §2 overviews
related work, §3 outlines our target application used in the
streaming analytics pipeline, and §4 outlines four prevalent
streaming analytics architectures and introduces our query-
able Kafka solution. §5 evaluates our solution against preva-
lent architectures and discusses the advantages of our ap-
proach; we conclude in §6.

2. RELATED WORK

By the late 90’s databases for telecommunications use
cases were an active area of research [19]. To maintain qual-
ity of service and enable fault recovery, massive amounts of
log data generated by networking was analyzed close to real-
time. Two notable works emerging from the telco domain,
addressing this challenges in the pre-Hadoop era are: Gigas-
cope [11] from AT&T research labs, and Datablitz from Bell
Laboratories [7]. Gigascope is a data store built to analyze
streaming network data to facilitate real-time reactiveness.
Datablitz is a storage manager empowering highly concur-
rent access to in-memory databases. Both solutions were
designed to serve time critical applications in the context of
massive streaming data.

Hadoop [3] and MapReduce [12] revolutionized large scale
data analytics, and for a long time appeared as the all-
purpose answers to any big data assignment. Hadoop cannot
be used in the cases where Gigascope and Datablitz are de-
ployed because the out-of-the-box Hadoop is not suited for
real-time needs; nonetheless, Facebook and Twitter have at-
tempted to use it as a real-time processing platform [10][27].
Further approaches have been made to port MapReduce op-
erations on data streams [24] and proper stream processing
frameworks have emerged [35][39][2].

When it comes to big data, the missing capacity if com-
pared to traditional RDBM systems, is the time to availabil-
ity once data is ingested. For a RDBMS, data is instanta-
neously available whereas with big data stores a batch task
usually has to run in order to extract the information and
make the data eligible for ad-hoc queries. Although being
horizontally scalable, distributed data storages cannot de-
liver without noticeable latency. Moreover this latency keeps
increasing in front of the sheer amount of data to process.
The issue is not solved yet [15], among the proposed solu-
tions two protrude: the commonly called Lambda architec-
ture [26] and the Kappa architecture [22]. The Lambda ar-
chitecture capitalizes on the facts that models issued by long
term batch processes are strongly consistent because the full
dataset can be examined, whereas models from stream pro-
cessors are fast to generate but only eventually consistent
since only small data portions are inspected [26]. The ar-
chitecture consists of three layers: the batch, speed and the
query layer. The batch layer is typically build on top of
Hadoop, and the speed layer employs distributed stream
processors as Apache Storm [35], Spark [39] or Flink [2].

The Lambda architecture assumes that eventually consis-
tent models, from the speed layer, are tolerable to bridge
the time required for two consecutive batch layer runs to
execute. The batch layer is the entity generating the con-
sistent models, replacing the stream layer model once com-
pleted. Examples of implemented Lambda architectures are
in [26][38]. Analytics in the telecommunication domain is
more concerned with the currently arriving dataset instead
of the archived ones; it is crucial to employ the incoming
stream data to contextualize the network state. Leverag-
ing a full fledged Hadoop cluster as a batch layer is of mi-
nor importance for real-time analytics of 4G MME data.
An alternative to the Lambda architecture is the Kappa
architecture [22]. The Kappa architecture employs the dis-
tributed log aggregator and message broker Kafka [23] as
persistent store, instead of a relational database or a dis-
tributed storage. Data is appended to an immutable logfile,
from where it is streamed rapidly to consumers for computa-
tional tasks. The totality of the data stored in the Kafka log
can be re-consumed at will, while replicated stream proces-
sors are synchronized to ensure an uninterrupted succession
of consistent models. Works such as [8] and [25] investigate
big data architectures for use with machine learning and net-
work security monitoring, respectively. In the same manner
a recent showcase of the Kappa architecture deployed for a
telecommunication use case is given by [33]. In the Kappa
architecture implemented in [33], the stream processor con-
sumes raw data from Kafka, transforms it and writes it back
to Kafka for later consumption by the model evaluation job.
We demonstrate in this paper that this pattern is not effi-
cient with large MME logfiles.

Literature on streaming data transformation is found in
the data-warehousing community. For instance Gobblin [31]
from LinkedIn unifies data ingestion into Hadoop’s HDFS
through an extensible interface and in-memory ETL capa-
bilitites. Karakasidis et al. [21] investigate dedicated ETL
queues as an alternative to bulk ETL on the persistent store.
Their experiments show that isolated ETL tasks only add
minimal overhead but enable superior performance and data
flow orchestration. They also establish a taxonomy of trans-
formations, categorizing operations in 3 classes:

e Filters: incoming tuples have to satisfy a condition
in order to be forwarded. In relational algebra this
corresponds to select [16]: oc(R) operator. C is the
condition, and R the relation, in other words: the data
unit the selection is applied to.

e Transformers: the data structure of the results is al-
ternated, in analogy to a projection: ma; 4,,.... 4, (R).
A1, Ag, ..., A, are the attributes to be contained in the
results, and R the relation. Other transformers in the
sense of [21] are per row aggregations, based on at-
tributes of the relation.

e Binary operators: multiple sources, streams in this
case, are combined to a single result. The equivalent
in relational algebra terminology is the join: Ry X Ra,
where R and Ry are two relations joined to a single
resultset.

Babu et al. [5] survey continuous queries over data streams
are surveyed in the context of STREAM, a database for
streaming data. A constantly updated view on the query
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results is kept, which implies deletion of entries that be-
come obsolete. Similar to the query layer of a Lambda ar-
chitecture, an up-to-date view on the data is maintained
in a summary table. With respect to our target applica-
tion, the continuous queries could be applied to each MME
logfile as it transits the data through the pipeline. One
consideration in that direction was Apache NiFi [4], which
supports transformations on CSV files through regular ex-
pressions [30]. Treating CSV files without proper semantics
is a risky undertaking because not every boundary case can
be foreseen. Furthermore, in it’s current state, Apache NiFi
is not appropriate for bulk processing [29], which is what we
need in our on-demand queryable Kafka solution. Finally,
In JetStream [32], a system designed for near real-time data
analysis across wide areas, employs continuous queries for
data aggregation at the locations of the data source. The
condensed data is transmitted to a central point for the
final analysis. However, JetStream exceeds the time con-
straints imposed by our underlying task even when dealing
with smaller datasets that we use in our work.

3. TARGET APPLICATION

Our analytics platform supports a predictive model of the
network state, i.e., using the logfile records produced by the
MME (c.f. §1), the application utilizes the analytics pipeline
to predict the state of the network in near real-time. This
near real-time information provided the network operator
an authoritative insight of the network, which would not
otherwise be possible. Network operators monitor these log
messages on a best-effort basis as real-time monitoring is not
always possible, leading operators to be in a reactive mode
when an outage occurs.

The MME produces a logfile record of every interaction
between the UE and other network elements, each such in-
teraction is called a procedure and the record contains a
unique ProcedurelD for each procedure; there are about
70 procedures defined. Besides the ProcedurelD, the log-
file record contains over 230 fields, and each logfile record
is about 850-1000+ bytes long. The log file is written every
minute and weighs in at 2.4 GBytes composed of about 2.8
million events (we consider a single record to be an event).
We extract features from the events and create a distribu-
tion to fit a model that predicts whether the network is ap-
proaching an outage, and subsequently, when the network
is transitioning back to a stable state after an outage. Our
predictive model needs an entire minute’s worth of events
to characterize their distribution and compare it against the
expected distribution. This imposes a hard constraint of 60s
(seconds), by which time the analytics platform must ingest
the data, perform ETL, fit it to a model and extract the
results.

In this paper, we describe our analytics platform at a sys-
tems level that addresses our contributions; other details like
the evaluation of our predictive models, while important, are
only briefly mentioned where appropriate.

4. ARCHITECTURAL APPROACHES

Our analytics spipeline is constructed from the widely
used Apache open-source ecosystem; we used the following
individual components in our pipeline:

e Apache Hadoop [3], version 2.7.0 with YARN [36] as a
resource manager;
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e Apache Spark [39], version 1.6.0. Spark was chosen
over Apache Storm [35] for three reasons: (1) Spark
Streaming outperformed Storm on the word count bench-
mark [40]; (2) default Spark libraries have native YARN
support; (3) with proper code re-factoring, parts of the
Spark code can be re-utilized for an eventual batch
processing if the need arises;

Apache Kafka [23], version 0.10.0.1 as the message bus,
including the recently released Kafka Stream API [20];

ElasticSearch [13] as a rich visualization engine to dis-
play results of prediction.

We experiment with the analytics pipeline on five dis-
tinct architectures (described below), each of which is im-
plemented on a local cluster and on an Amazon Web Services
(AWS) cloud to harness more resources than those available
on the local cluster. The configuration of the local cluster
was as follows: eight identical Mac Mini computers were
used as compute blades, each with a 3.1 GHz dual-core (vir-
tual quad-core) Intel i5 processor and 16 GB of RAM. All
the hosts were rack mounted and directly connected by a
commodity network switch. Each host ran Ubuntu 14.04
operating system. The virtual machines on the AWS cloud
were configured as follows: 6 m4.zlarge VM instances (4
CPUs each, with 16GB RAM/CPU) and 5 m4.2zlarge VM
instances (8 CPUs each, with 32GB RAM/CPU). Each VM
instance used Ubuntu 14.04 operating system. Because our
interest is in analyzing large datasets, we ran our experi-
ments on the local cluster over a 100Mbps network as well
as 1Gbps network to characterize the effect of network la-
tency. On the AWS cloud, we used only 1Gbps links.

Of the five distinct architectures, one (query-able Kafka,
c.f., §4.4) is our contribution that is compared against four
others. These four are grouped into two divisions: Divison
I architectures consider sending the logfile as a single large
message from the Kafka consumer to the Kafka brokers while
Division II architectures use variations of the well-known
pattern of time window events with Spark Streaming.

4.1 Division I Architectures: A,. and A,

The first setup is a classical stream analysis pipeline con-
sisting of Apache Kafka and Spark Streaming; we refer to
this architecture in the rest of the paper as Ags. Figure
1 shows the arrangement of the 8 hosts in the local clus-
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Kafka Broker 1

Kafka Broker 2
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Figure 1: The Ay architecture for local cluster

ter for classical stream analysis. In this arrangement, five
nodes: N[3.) serve as Hadoop master (1 Node) and slaves (4
Nodes). Nodes N7 and Ns host a Kafka cluster, each running
two message brokers. The Kafka brokers run with 7GB of



dedicated memory each. Each Hadoop slave node dedicates
12GB of RAM to YARN, along with 8 YARN vcores (two
YARN vcores are equivalent to one physical hardware core).
A Spark application receives a total of 32GB of RAM and 28
YARN vcores, and the disk swap functionality is activated.
A Spark executor, the actual message consumer, gets 7GB
of RAM and 6 vcores. The Spark application driver has
4GB of memory and 4 vcores, which is sufficient because
the application’s code does not include operations leading
to the accumulation of the total message on the driver task.
All operations are kept distributed on the Spark executors.

Ni hosts an MME, which produces the messages. These
messages are retrieved by a Kafka producer executing on the
same node and sent out to a dedicated Kafka topic hosted
on a Kafka cluster. The cluster has 4 partitions, distributed
among the brokers. A partition has a replication factor of
3. The Kafka producer alternates writes on the partitions
to unburden the single brokers. The Kafka broker sends
the messages of interest to Kafka consumers, which execute
on the slaves and are responsible for fitting the model (the
analytics task) and inserting the results in ElasticSearch.

The machines in the AWS cloud are similarly arranged as
in Figure 1 with the following exceptions: the Kafka cluster
in the middle of the figure contains two more hosts, but we
kept the number of brokers to be four as shown in the figure.
In addition, there is an extra slave, for a total of 5 slaves.
These extra resources, and more powerful machines on the
AWS cloud allow us to push the streaming capabilities of our
pipeline further than we are able to do on the local cluster.

A literature review of streaming analytics frameworks [35,
40, 9] did not consider messages comparable to the size of the
messages seen in our application (2.4 GBytes). Given the
size of the messages, we were interested in testing whether
storing them on the HDFS distributed file system could
speed up analysis compared to sending them through Kafka.
To do so, we evaluate our workload on the second pipeline
architecture, Apqrs. The architecture for Apqps is identi-
cal to Figure 1 with the exception that the Kafka layer is
completely absent, and the log messages from the MME are
immediately written to HDFS upon arrival. The stored files
are evaluated by a Spark task monitoring a predefined HDF'S
folder for new files. The hardware and software are identi-
cal to Aps (Figure 1) with the only difference being that the
Kafka layer (N7 and Ng) is missing. The machines in the
AWS cluster are similarly arranged with the exception of an
extra slave for processing.

In both architectures, Kafka producer resides at the MME
and each minute gets the 2.4 GB logfile, marshals it as a
Kafka message and sends it to the Kafka broker. Kafka com-
presses messages sent on the network; even though the com-
pression ratio for the logfile is 10x, nearly 205 MBytes/minute
of data is sent over the network from each Kafka producer.
Each minute is transmitted as a single compressed message
in the Kafka message set. Normally, Kafka batches small
messages and transmits them in single message set; we mod-
ify this behaviour as described in §4.4 since our message size
is already large.

4.2 Division II Architectures: 4., and A,..

We now turn our attention to the canonical pattern in
which Spark and Kafka frameworks are deployed: window-
ing small messages at high arrival frequencies within a spe-
cific time period [35, 40, 9]. We study two architectures that

are representative of this pattern. As in Division I architec-
tures, nodes Ny and Ng host a Kafka cluster, each running
two message brokers; node N; hosts the MME and Elastic-
Search. Nodes Nz, in Division II architectures, however,
run two Spark master applications. In the first architecture,
Ae,, one application is for the ETL workload and the second
one for model fitting. In the second architecture, Age,, the
Spark ETL is replaced by an equivalent application built
on the newly released Kafka KStreams API [20]. Figure 2
shows the workflow of the two architectures.

The Spark ETL application for A, (alternatively, the
KStreams ETL application for Ay, ) consumes the messages
arriving from MME (panels 1, 2, 3). Recall that our target
application requires a large number of messages to study
their distribution for model fitting (c.f., §3). Unlike the ar-
chitectures of Division I, A., and Age, receive a message-at-
a-time from the MME Kafka producer. As these messages
arrive to the Spark (or KStream) application (panel 3), they
are curated and presented back to the Kafka cluster under a
different topic (panel 4). Spark buffers the messages under
a windowing regiment and reassembles the data from micro-
batches until an entire minute’s results have been gathered.
At that time, the gathered data is presented to the Spark
model fitting master application (panel 5). The model re-
sults are inserted in ElasticSearch (panel 6).

We parameterize the number of messages needed to con-
stitute enough messages corresponding to a minute; this be-
comes a parameter to the Spark model evaluation task to
decide whether it should start computations or wait for an
additional batch of data. All parameters that were required
— Kafka message batch size, Spark batch size, Spark win-
dow size and window shift size — were determined through
rigorous experimentation. Kafka consumers are also con-
figured to ensure the highest possible parallelization, as in
Division I: one consumer thread (panel 5) is dedicated to a
single Kafka partition.

The Spark application (alternatively, the KStream appli-
cation) gets 7 GB RAM and 6 vcores, each application mas-
ter receives 4 GB RAM and 4 vcores. A total of 36 GB
RAM and 32 YARN vcores are allocated, 4 GB RAM and
4 more vcore compared to Division I architectures because
of the additional application master. The machines in the
AWS cloud for Division II architectures are configured in
the same manner as Division I.

4.3 Preliminary results and discussion on Di-
vision I and II architectures

Before presenting our novel on-demand query architec-
ture, it is instructive to look at the results obtained from
running our workload across the pipelines in Division I and
II architectures, for both the local cluster and in the AWS
cloud. The primary task performed by the Spark execu-
tors is one of prediction. The large log files arriving into
the system represent data collected on the MME in minute
intervals. The code executing on the Spark executors must
render a prediction decision based on analyzing the contents
of the log message. Specifically, for the ProcedurelDs of in-
terest, over 230 fields (features) are parsed, a few extracted
and a distribution of these features is fitted to a model. Con-
servatively, the Spark application is dedicated to monitoring
a single ProcedurelD.

All four architectures proved unsuccessful at real-time mon-
itoring of mobile network. The failure stemmed primarily
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Figure 2: The A., and A, architectures on the local cluster. Panels 1,2,3: MME sends messages to the ETL tasks running
on YARN (Aey: Spark ETL; Age,: KStreams ETL). Panels 4,5: Curated data is sent to the Spark analytics tasks via the
same Kafka broker cluster under a different topic. Panel 6: The results are inserted to ElasticSearch.

from dealing with large messages and being dominated by a
computational time > 60s to execute the prediction model.
Cumulatively, this had the effect of queuing up large mes-
sages and delaying the prediction decision. Furthermore, we
observed that pushing large messages from Kafka to the rest
of the pipeline components resulted in Spark dropping data
partitions such that the data was unavailable for computa-
tion when needed. Because of this, we were forced to scale
down the size of the messages simply to get a stable system.
We found out empirically that a message size of 50 MBytes
(uncompressed) was the common denominator between Ay
and Apqrs, while a message size of 200 MBytes (uncom-
pressed) was common to Ae, and Age,. (For the remainder
of the paper, when we mention file sizes we imply uncom-
pressed files. While Kafka compresses these messages while
transporting them, Spark executors perform computations
on uncompressed files.)

We stress that network bandwidth is not the issue here;
we ran all architectures locally on a 100 Mbps network and
again on a 1 Gbps network but did not see any measurable
difference in results. Computations related to our pipeline
are not I/O bound, rather they are is CPU-bound. We will
revisit this in greater detail in §5 where we compare results
from the four architectures against our novel on-demand
query mechanism. With this background, we present our
novel on-demand query mechanism.

4.4 Our contribution: Novel, on-demand
query-able Kafka for continuous queries

One of the strengths of query compilers in modern rela-
tional databases is their awareness of the data model and the
costs for the multiple ways to access the information. Rela-
tional database managers take into account a variety of met-
rics to decide whether satisfying the query through indexing
will be faster, or whether the result set can be gathered op-
timally through a linear scan [16]. Such complex decisions
are absent in streaming pipelines; the no-SQL nature of such
pipelines implies that the data is not even indexed. In fact,
in our application the discrepancy is obvious: applying data
filtering on a distributed in-memory framework implies a
shuffle operation, data partitioning, network transfers, task
scheduling, all as a prelude to subsequent work on fitting the
data against a model. However, it would be an advantage
if we could perform some filtering given that the data we
are dealing with is columnar to begin with. The question
is where should this filtering be done? Performing it in the
Spark executors (the consumers) does not solve the prob-
lem because the executors would need access to the entire
data in order to do the filtering. Performing this filtering

on the MME is one option, however, this is not an attrac-
tive solution for the following reasons. One, network oper-
ators typically are shy on running extraneous processes on
production-grade MMEs; the CPU and memory consump-
tion of the MMEs is budgeted precisely for its normal work-
load. Thus executing extraneous processes that may cause
transient spikes in CPU and memory at the MMEs is not
acceptable. Second, the data produced by the MME is valu-
able for purposes beyond network stability. It can be used to
perform other functions like endpoint identification (an Ap-
ple device versus a Samsung), monitoring subscriber quality
of experience, etc. Thus it seems reasonable to move this
data, as large as it is, from the MME to a data center where
it could be used for various purposes. Given this discussion,
the Kafka message broker provides the best location to allow
filtering of the kind we envision.

Architecturally, the query-able Kafka architecture, Ags,
is a replica of Ay, (Figure 1), with the Kafka nodes N7 s}
running instances modified as described below for transport
and query efficiency. Source code for modifications is avail-
able at (https://github.com/Esquive/queryable-kafka.git).

Modifications for Kafka transport efficiency: As
with the Ags architecture, one Spark application is dedicated
to the monitoring of a ProcedurelD. The Kafka producers
marshals the entire 2.4 GByte logfile as a single message
and transmit it (compressed) to the Kafka broker efficiently.
To transport the messages to Kafka in an efficient way, the
message format had to undergo minor modifications in re-
gards to compression. In Kafka, messages consists of a fixed
size header followed by a variable length byte array repre-
senting the key and a variable length byte array representing
the value (the first 4-bytes of the key and value array con-
tain their lengths, respectively). Figure 3-A shows a Kafka
message. Messages are further aggregated into a structure
called a message set. Figure 3-B shows individual mes-
sages, My, Ms,...M,,, concatenated in a message set, each
message M, consisting of the message layout shown in Fig-
ure 3-A. The concatenated messages are compressed using
a codec, which is specified in the attribute element of Fig-
ure 3-B. The resulting compressed blob becomes the “outer

Table 2: File sizes and number records/file

Raw file size [ Guzip size [ No. records
Log file 2.4 GBytes 214 MBytes 2,834,242
Pidy 448 KBytes 105 KBytes 58,133
Pid, 150 KBytes 6 KBytes 29,729
Pids 9 MBytes 1 MBytes 1,078,977
Pidy 7 MBytes 1 MBytes 861,080
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Figure 3: Kafka message format

message” in Figure 3-B. The receiving system extracts the
“outer message” and using the codec specified in the at-
tribute, decompresses the “outer message” to retrieve each
individual message M;. Kafka bundles individual messages
into a concatenated message set because individual (small)
messages may not have sufficient redundancy to yield good
compression ratios. Clearly, this is not true of our target
application. Our messages are large, and furthermore, they
compress well as shown in Table 2. Thus there appears to
be relatively little value in aggregating multiple messages for
our application since compressed, a 1-minute file takes about
205 MBytes. Furthermore, even if we were to aggregate mul-
tiple messages, not only would that add additional delay of
waiting extra minutes for the log files to be produced, it
would also lead to more complexity in the querying phase
as blocks are scanned in an optimized manner to preserve
message boundaries. Thus, for our query-able Kafka solu-
tion, the message format was altered, as shown in Figure
3-C, by only compressing the message value. We added a
new compression indicator to the attribute element of the
Kafka message, which if present, triggered our code.

In order to apply queries at the Katka broker, a message
must be decompressed first, but we wish to avoid keeping
such large decompressed messages in memory for querying
purposes. With our new format shown in Figure 3-C, we
easily know the beginning address of the compressed mes-
sage and are able to decode the message on the fly using
Java IO streams to read a block, decompress it and bring
only the decompressed block into memory. As each block is
read in, the query is applied to the block and the result set
updated. At the end of the file, the result set is transmitted
to the consumer.

Modifications for Kafka query efficiency: In Kafka,
consumers register with the service by enumerating a tuple
consisting of <groupdld, topic>. For our query-able Kafka
approach, the group/topic relation is extended by an ad-
ditional attribute in the tuple, a query filter: <groupld,
topic, query-filter>. The consumer registers with Kafka
and specifies the tuple <groupld, topic, query-filter>, which
gets saved along with the other per-consumer relevant state
at the Kafka broker. Each broker in the cluster augments
its native publish-subscribe capability with a limited subset
of relational algebra operations, namely the select opera-
tion (o) and the project operation (7). These operations
are transmitted as parameters to the Kafka cluster when a
Kafka consumer indicates interest in a specific topic. When
a message corresponding to that topic arrives, the query-able
Kafka cluster performs these required operations and sends

1.

Kafka

topic, : partition, <group, topic, query-filter,>
Producer C 1
topic, : partition,

2.
Kafka Apply query-filter, to msg
topic, : partition,
Producer CEIEEE,
topic, : partition,

Consumer,:=
<group, topic, query-filter,>

Figure 4: Query-able Kafka procedure: 1. A consumer
registers with the Kafka services. 2. The consumer gets the
queried topic’s messages.

the result to the consumer. In this manner, when a large
2.4 GB message needs to be sent to one or more consumers,
instead of transmitting the entire message, the Kafka cluster
performs the relational operations and sends the result set,
which will be much smaller than the entire message.
Queries executed on an ingested message at the Kafka
cluster to subset the data for a consumer are given by:

T fieldy,fields,...,fieldy (O'ProcIszi(in)

The effect is that a message consumer is able to specify a
rather abbreviated SQL-like query:

SELECT field:, fields, ..., field,
WHERFE Procedurel D = Pid,

The FROM clause is omitted since it is inherently in-
ferred by the <groupld, topic, query-filter> relation. This
mechanism is depicted in Figure 4.

In our application the topic is set to a unique string that
identifies messages arriving from a particular MME; this
topic allows multiple consumer groups to access the mes-
sage on arrival. As an example, assume two query-filters:
query-filter1 is defined as 7ficid1 (0 Procedurerp = 1) and
query-filters is defined as 7 ficia2 (0 Procedurerp = 2). Fur-
ther, assume a consumer, C7 subscribes to the Kafka cluster
using the tuple <group:i,mmer,query-filter1>, that is Ci
in group: is interested in receiving notifications matching
query-filter; from topic mme;. Similarly, consumer C5 in a
different group from C; subscribes for the same topic but a
different query-filter using the tuple <groups,mmei,query-
filtero>. When a message arrives to the Kafka cluster match-
ing the topic mme;, C1 gets the column field; for all rows
where ProcedurelD = 1, while C2 receives column fields
for all rows where ProcedurelD = 2. Because the size of
this result set is much smaller than the size of the entire
message, the Spark executors are able to keep up.

S.  EVALUATION AND DISCUSSION

For reasons presented in §4.3, the architectures of Ags,
Ahndfs, Akev and Age, proved unsuccessful in their attempt
at real-time monitoring of the mobile network. For each ar-
chitecture the computational time to run a prediction model
took much longer than a minute, the threshold after which
another batch of logs would arrive. Cumulatively, this had
the effect of queuing up these large messages and delaying
the prediction decision.

Our evaluation proceeds in three phases. First, we con-
duct the experiments on a local cluster, which will serve as
an empirical baseline for log files generated by one MME
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and executing prediction models for one ProcedurelD. This
phase reveals the inadequacy of the first two architectures,
Apks and Angrs, to process files larger than 100 MBytes, and
files larger than 200 MBytes for A., and Age,. In the second
phase, we increase the size of the MME log files on the local
cluster to demonstrate the scalability of our Agx solution.
Finally, using the AWS cloud to provide more compute re-
sources, we study the scalability of our system as we scale
both the number of MMEs (more logfiles) and ProcedureIDs
(more computation).
We use the following metrics for evaluation:

e Time To Completion (TTC): The difference of time
(in seconds) between the message emitted by the vir-
tual MME, and the insertion of the results into elastic-
Search. TTC includes latency and measures the time
needed for end-to-end handling of a logfile.

e Time from Producer to Kafka cluster (TPK): For ar-
chitectures using Kafka, the time required (in seconds)
to send a logfile from the MME and ingest it into
Kaftka. TPK is an integral part of TTC but shown
separately to better estimate computational time of
the Spark application.

e Main Memory Consumption (MEM): The memory al-
located (in MBytes) by a process at a given time T.
Throughout the evaluation, a cumulative MEM is used,
which corresponds to MEM consumption on all con-
cerned nodes that execute any Spark- or Kafka-related
processes.

e CPU usage (CPU): Cumulative percentage of the CPU
used by a process at a time T'.

A custom Java Management Extension (JMX) [18] was
developed for system resource monitoring, which writes MEM
and CPU allocated to each JVM process to a logfile every
second. To avoid impacting performance with excessive disk
1/0, all machines on the local cluster are equipped with flash
drives. On AWS a unique data store is used for logging. All
Katka and Spark related processes are monitored on every
node in the cluster.

5.1 Phase I: Comparing Architectures

Comparing Ays, Angrs and Ag, on the local cluster:
The Ars and Apgrs architectures were unable to complete
computations within the time constraints for our target ap-
plication; Axs could process logfiles that were < 100 MBytes
in a timely manner, while Apqrs saw a bottleneck for files
> 150 MBytes. Our query-able Kafka solution (Agq) can
process files as large as 2.4 GBytes, but to uniformly study
the behaviour of the three architectures we were forced to
use the lowest common denominator size of 50 MBytes. The
local cluster has sufficient resources to run a single MME as
a producer and a single Spark application as a consumer
performing computations for monitoring one ProcedurelD.
We chose ProcedureID 3 since it had the most observations
(c.f. Table 2).

The observed results, discussed below, are similar on the
local cluster as well as on the AWS cloud, despite the in-
creased resources AWS provides to the Spark application.
Network bandwidth does not appear to play any role: out-
come of the experiments is identical on a 100 Mbps and 1
Gbps networks with a savings of 2-3s on the faster network,
a difference not enough to tip the balance in favour of the
faster network. This strongly implies that computations are

not network I/O bound but CPU bound, which is in line
with the findings in Shi et al. [34].

Figure 5-A compares TTC for the three architectures pro-
cessing 50 MByte files. Ays and Anqrs performances are
almost equal but are by far outperformed by our solution,
Agr: Andss has a mean TTC of 34.97s, Ars 30.41s, and Agx
4.66s. Our solution is about 7x (7 times) faster. Figure 5-B
demonstrates the PDF for the CPU metric. Our solution,
Agk, is uni-modal with density concentrated around 0-10%
of CPU usage, with an average usage of 6.02%. The bi-
modality of Ags and Apngys, also observed by others [34], re-
flects the processing in the Spark application: one mode for
filtering and the other for model evaluation. In our solution,
filtering is performed by the Kafka cluster, thus the Spark
application only incurs model evaluation leading to the lone
peak for the Agr curve. The Anqrs architecture is the most
demanding; CPU mean usage is 39.8%. Its curve is flatter
compared to the other two because it is dominated by disk
1/0, which interrupts the CPU. The cumulative CPU usage
is greater than 100% because multiple cores were involved in
HDF'S servicing. The Ay, architecture is also bi-modal with
a mean CPU usage of 20.35%. Our solution outperforms the
other two between 3.5x to 6.5x. Figure 5-C shows the PDF
for the MEM metric. Ags is the most resource hungry, with
usage ranging from 5 GBytes — 15 GBytes with an average
of 10.3 GBytes. The range of memory required by the Apqss
architecture and our solution, Agk, is almost similar — 2.5
GBytes to 9 GBytes — although the peak of Anqys is higher.
Our solution consumes less RAM (4.5 GBytes) than Apqrs
(5.2 GBytes).

The impact of our solution on system resources is in Fig-
ures 5-D and 5-E. (We do not present results for the Apqrs
since it does not use Kafka.) Importantly, Figure 5-D shows
that adding our query-able Kafka extension has negligible
impact on CPU consumption when compared to Ags. The
X-axis measures time, with a log file of 50 MBytes arriv-
ing every minute, for the duration of the hour that we ran
the test. Our query-able Kafka solution does, however, im-
pact memory. Figure 5-E shows that our solution consumes
3.5 GBytes of RAM versus 669 MBytes of RAM used in
Ags. Memory usage for Ags is cyclic, constantly raising up
to 1 GByte before garbage collection is triggered. By con-
trast, in our solution memory slowly increases up to 8G B
before it starts to decrease; small fluctuations are frequent
and accentuated, indicating a more recurrent garbage collec-
tion. Overall, the gradual variation of memory allocation of
queryable Kafka is suggesting the system is not overloaded.

Figure 5-F shows the outcome for the Spark application
on the Ay architecture as we push it beyond its capability
to deal with log files of 100 MBytes. For Ay, it is appar-
ent that the TTC grows linearly over the hour that we ran
the system. The mean time to process a 100 MByte file in
Ags is 1,683.62s (28 minutes). Clearly, this does not suffice
for our application! Interestingly, the TPK stays constant,
which strongly suggests that the time to send a log file from
the MME to Kafka is not adding to the processing delay,
rather, latency is being added by the Spark application as
it deals with the large log files. The curve for query-able
Kafka, Agwr, tells a different story altogether. The mean
time it takes Agx to process the 100 MByte file is very low
— 6.30s, suggesting that performing the filtering upstream
allows the Spark application to concentrate on computation
across a much smaller result set. There isn’t any curve for
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Figure 5: Comparing Division I architectures during Phase I

Anars because there is no easy way to determine in HDFS
when a file has been completely written to the distributed
store.

Comparing Acy, Akey and Ay, on the local cluster:
The architectures in Division II proved to be more stable and
better behaved than their Division I counterparts; they are
able handle file sizes > 50 MBytes. Figure 6-F demonstrates
that with 200 MByte files, the TPK for Age, is below 60s but
becomes larger when file size increases. Pushing files > 200
MBytes when using the Kafka KStreams ETL application in
Apkew leads to unstable behaviour. The unstable behaviour is
characterized by a larger standard deviation; with an unpre-
dictable TPK, the sliding window is unable to gather enough
records to constitute a stable distribution that would allow
us to start the predictive task. We, therefore, use a file size
of 200 MBytes for Division II architectures when comparing
them against our query-able Kafka solution.

Figure 6-A shows our solution with a 2x and almost 4x
advantage over A., and Age,, respectively. On AWS, TTC
saw minimal improvement, although this was expected on a
cluster hosted on more powerful machines where each each
Kafka broker had its own hard drive. We recognize, how-
ever, that allocation of hardware resources on AWS cannot
be guaranteed. Figure 6-B shows the same uni-modal be-
haviour of the CPU metric for our solution when compared
to the bi-modal behaviour of other two (for the same rea-
sons). Agk, our solution, uses the least amount of CPU.
The difference in Spark MEM consumption (Figure 6-C) be-
tween Division I and II is more stark. While in Division I,
our solution proved better, here Ay, is better (2.9 GByte).
The reason is that KStreams, used by Apge,, contributes to
low memory consumption. Regarding Kafka’s resource con-
sumption,our solution, Ag, outperforms Ac, and Age, by

about 3x and 4x, respectively (Figure 6-D). This contrasts
well with Division I architecture (Figure 5-D) where Kafka
CPU metrics were about the same. In the Kafka MEM met-
ric, Akev performs better due to KStreams (Figure 6-E).

5.2 Phase II: A, — Scaling file size on local
cluster

Among all architectures, our query-able Kafka solution is
the only one that can scale to log file size of 2.4 GBytes.
Therefore, we focus on its behaviour as we increase the file
size with one MME and one Spark application monitoring
Pids.

Figure 7-A shows that when the ETL filtering occurrs up-
stream, as in our query-able Kafka solution, Spark can han-
dle computations fast enough to guarantee a stable system.
File size is increased in 100 MByte increments starting from
100 MBytes and going to 2.4 GBytes. The time it takes for
Spark computations is the difference in time between the
TTC and the TPK. For a 2.4 GByte file, TTC is 77.84s and
TPK is 44.33s, thus the time it takes for Spark to run the
model is 33.51s, which is well within the 60s threshold our
target application needs. Figure 7-B plots the CPU usage
of the Kafka cluster and Spark application. For 2.4 GByte
log files, Kafka shows an average CPU consumption of 17%
(c = 17%) and Spark utilizes 15% (0 = 12.7%). Figure
7-C shows the MEM metric. Spark memory remains con-
stant at an average of 5.2 GBytes (¢ = 1.1 GByte), even
as the log file size increases to 2.4 GBytes. Kafka memory
shows some variations. For a 2.4 GByte log file, Kafka uses,
on the average, 7.3 GBytes (¢ = 1.5 GBytes) memory. As
the file sizes increase, Katka memory converges to about 9
GBytes distributed across 4 brokers, or 2.3 GByte RAM per
broker. This is a reasonable outcome, especially considering
that the TPK is well bounded below 60s. In summary, our
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query-able Kafka solution is robust as the log file sizes in-
crease, the system is stable and can keep up with rendering
prediction decisions in a timely manner.

5.3 Phase III: A,, — Scaling ProcedurelDs and
MMEs on AWS

So far, all experiments involved one MME and one Pro-
cedurelD; we now turn our attention to how our query-
able Kafka solution handles multiple ProcedurelDs and more
than one MME sending 2.4 GByte files per minute. This ex-
periment was conducted on the AWS cloud, where we had
more resources (c.f. §4.1). In AWS, the YARN/Spark slaves
are located on the first five m4.2zlarge instances. Since one
Spark application handles one ProcedurelD, to fit 4 Spark
applications on AWS for handling four ProcedurelDs, each
Spark executor had one less YARN vcore at their disposal.

Figure 8-A shows TTC per ProcedurelD for four Proce-
durelDs (c.f. Table 2) and one MME. The horizontal line
at the bottom is the TPK. The first observation is that the
TTC and TPK on AWS are generally higher than what was
observed on the local cluster (see Figure 7-A). This is due
to a number of reasons outside our control. First, unlike

(b) CPU, 100 to 2400MB files
size during Phase II (monitoring one ProcedurelD, Pids)

(c) MEM, 100 to 2400MB files

our local cluster, we cannot influence the placement of VMs
on AWS, thus we are cannot guarantee strict bounds on the
latency between the VMs hosting the MME producer, the
Kafka cluster and the Spark application. Second, our local
cluster always logged to a fast flash drive, but on AWS we
are forced to log to a local data store, which may not be as
fast. And finally, while we always ran our experiments at the
same time (late night with respect to the AWS data center
location), we cannot influence other activity occurring on
the physical host on which executes our AWS VMs.

That said, the system on AWS is stable; to see why, we
compare the time taken by the Spark application to execute
the model for Pids in the local cluster (§5.2, Figure 7-A)
with Figure 8-A. Recall that the time it takes for the Spark
computations for a model is the difference between the TTC
and TPK; the mean TTC time on AWS for Pids is 111.62s
and the mean TPK is 75.59s giving a difference of 36.03s,
very close to the value of 33.51s for the local cluster and
definitely within the 60s threshold our target application
requires.

The second observation is that Spark models for Pids,
Pids take a longer time than Pidi, Pidz; this is simply
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Phase IIT on 2.4 GByte logfiles

due to the fact that the former pair of ProcedurelDs have
more observations compared to the latter pair (c.f. Table 2),
consequently it takes longer to run the models. However,
all models complete within the 60s time required by our
target application. Finally, note that AWS offers us enough
resources that we are running four Spark applications, one
for each ProcedureID and are able to handle the load for 1
MME without any problems. We could not do this on our
local cluster due to resource limitations.

Figure 8-B shows that even as we add another MME that
generates an additional 2.4 GBytes log files per minute, the
system is able to sustain the load in stable state. With two
MME:s, the Kafka brokers are serving four consumer groups
now subscribing to two topics, one for each MME. Adding
a second MME has virtually no effect on the TTCs and the
TPK even though twice as many log files are being pro-
cessed. The boxplots of the ProcedurelDs between Figures
8-A and -B are similar with minor variations in the median
values of Pids. Bolstering our argument that adding a sec-
ond MME does not impact processing is Table 3; for CPU
and MEM metrics on Spark and Kafka, there is very little
appreciable difference between the system processing load
from one MME versus two MMEs. The impact on CPU and
MEM is not the number of MMESs, but rather the number
of ProcedureIDs monitored as the analysis next shows.

Table 4 summarizes the results of Spark and Kafka ana-
lyzing 2.4 GByte files for 1 and 4 ProcedurelDs. For Spark
MEM, there is a linear relation for moving from one Proce-

Table 3: MEM and CPU with 4 monitored Proce-
durelDs and two MMEs

1 MME T 2 MME
Spark mean | 13.68 15.11
o 9.77 9.27
CPUCR) | mean | 60.53 | 67.35
o 69.607 67.881
Spark mean | 20 19.7
MEM (GB) o R R
Kafka | mean
o 7.6 7.7
! o is larger than mean because the data is dis-
persed.
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Table 4: Scalability for ProcedurelDs

1 ProcedurelD | 4 ProcedurelDs
Spark MEM | 5.2 GBytes 20 GBytes
park | cpU | 15% 13.68%
MEM | 9 GBytes 20 GBytes
Kafka | cpy | 17% 69.53%

durelD to four; for n ProcedurelDs, Spark will use n * 5.2
GBytes RAM. Spark CPU, on the other hand, remains ap-
proximately constant as number of ProcedurelDs increases
to four. However, we expect it to increase if tens of Proce-
durelDs are monitored. Looking at Kafka resources, Kafka
MEM exhibits a linear relation as well, although by a smaller
multiplier (0.5n%9 GBytes RAM for n ProcedurelDs). Kafka
CPU uses n * 17% for monitoring n ProcedurelDs. Clearly,
the number of ProcedurelDs dictates resources usage; it is
our expectation that while there are over 70 ProcedurelDs,
practical and domain considerations limit analysis to a few.

Our investigations reveal that two MMEs is the limit that
our cluster on AWS can handle. This limitation is imposed
by Spark, not by our query-able Kafka solution, which is able
to scale to more MMEs under the assumption that a hand-
ful of ProcedurelDs are monitored. As per the discussion on
Figure 8-A, the Spark application renders a prediction deci-
sion in 36.03s. With two MMEs producing log files, it will
take the Spark application about a minute to execute the
models. Anything beyond two MMEs will lead to queued
messages, making real-time prediction impossible. To scale
out to > 2 MMEs, the Spark application can be replicated
on a cluster subscribing to the Kafka topics reserved for
the new MMEs. We have shown that assuming a reasonable
number of monitored ProcedurelDs, our system scales out by
allocating additional YARN/Spark clusters. This is not an
unrealistic assumption; service providers are more interested
in scaling the number of MMEs to cover large geographic ar-
eas than they are in monitoring more ProcedureIDs/MME.

6. CONCLUSION AND FUTURE WORK

To address the real-time nature of the prediction decisions
required while handling GByte sized messages, we propose
moving ETL upstream, specifically, in an analytics pipeline,
to move the ETL to messaging layer (Kafka) thus allowing
multiple speed layers (Spark application) to perform pure
computational tasks. We have further demonstrated the vi-
ability of this approach through our query-able Kafka solu-
tion, which scales with the workload.

In future work, we will examine the impact on the Kafka
with evolving query changes, with special emphasis on result
set size and the nature of query operations vs. predicate con-
ditions. Current supported operations are projection, selec-
tion and simple comparison predicates; we will explore the
possibility of expanding the operations and predicates with
the understanding that we do not want to turn Kafka into
a full SQL engine, but provide it enough relational power
while keeping it agile. Our query-able Kafka solution inte-
grates querying in the internal load balancing scheme in a
rudimentary fashion. In future work we will take in account
optimal querying for partition placement and partition I/O.

The code for query-able Kafka modifications described in
84.4 is available in a GIT repository at
https://github.com/Esquive/queryable-kafka.git.
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