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Abstract

Relational OLAP tools and other database ap-
plications generate sequences of SQL state-
ments that are sent to the database server as
result of a single information request provided
by a user. Unfortunately, these sequences
cannot be processed efficiently by current
database systems because they typically opti-
mize and process each statement in isolation.
We propose a practical approach for this opti-
mization problem, called “coarse-grained op-
timization,” complementing the conventional
query optimization phase. This new approach
exploits the fact that statements of a sequence
are correlated since they belong to the same
information request. A lightweight heuristic
optimizer modifies a given statement sequence
using a small set of rewrite rules. Since the
optimizer is part of a separate system layer, it
is independent of but can be tuned to a spe-
cific underlying database system. We discuss
implementation details and demonstrate that
our approach leads to significant performance
improvements.

1 Introduction

Query generators are embedded in many applications,
such as information retrieval systems, search engines,
and business intelligence tools. Some of these applica-
tions, in particular ROLAP tools, produce more than
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one query as a result of an information request that is
defined by a user interacting with a graphical user in-
terface, as illustrated in Figure 1. Typically, the query
generators produce a sequence of statements for the
sake of reduced query complexity although the state-
ments could often be merged into a single large query.
All but the last statement of the sequence produce in-
termediate results as temporary database objects, i.e.,
they either create or drop tables and views, or insert
data into the newly created tables. The last INSERT
statement of a sequence defines the final result, which
is delivered to the ROLAP server and, after some op-
tional reformatting, delivered to the client that visu-
alizes the result. Since statements that appear later
in the sequence refer to intermediate results produced
earlier, the sequence can be considered a connected
directed acyclic graph (DAG) with the final INSERT
statement as the root.

Statements produced by query generators are typi-
cally tuned to a certain target database system. How-
ever, the response time of such an information request
is often far from optimal. Improving the query genera-
tors is not a viable option because they depend on the
application, the structure of the associated database
as well as on the underlying database system. Alter-
natively, one can rewrite the statement sequence into
an alternative sequence of one or more statements such
that far less resources are consumed by the database
system than for the original, equivalent sequence. In
this paper, we refer to this approach of rewriting state-
ment sequences as coarse-grained optimization (CGO).
The distinct feature of this multi-statement optimiza-
tion problem is that the equivalence only refers to the
result of the last statement in the sequence, i.e., the
result table. The intermediate results (either views
or tables) may differ completely from one sequence to
another.

This work is motivated by experiments we con-
ducted with the MicroStrategy DSS tool suite. We
observed that the execution time of the SQL state-
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Figure 1: The typical ROLAP scenario

ment sequences generated by the tool were often far
from optimal, so we analyzed the statement sequences
more closely and achieved astonishing improvements
through few manual rewrites [13]. The main con-
clusion we drew is that merely rewriting the state-
ment sequence into a single query was not always
the best solution. The rewritten sequence, which has
prescribed materialization points (CREATE TABLE
statements), performed better than both a single query
(when the database system was free to decide on ma-
terialization points itself) and the original sequence.
This paper extends that work significantly by identi-
fying a more effective ruleset, automating the rewrite
phase by a tool, and conducting in-depth performance
experiments.

Outline

The rest of this paper is organized as follows: Re-
lated work is discussed in Section 2. In Section 3, we
present the concept of statement sequences in greater
detail before we introduce coarse-grained optimization
in Section 4. The heuristic rules used in our approach
as well as the internal representation of statement se-
quences are explained in Sections 5 and 6, respectively.
Section 7 discusses the implementation of our proto-
type that was employed for performance experiments,
presented in Section 8. Section 9 concludes this paper
and comments on directions for future work.

2 Related Work

The special problem of optimizing SQL statement se-
quences is related to both conventional (single) query
optimization and multi-query optimization, to be dis-
cussed briefly in the following.

Multi-query optimization (MQO) tries to recognize
the opportunities of shared computation by detect-
ing common inter- and intra-query subexpressions.
Furthermore, MQO requires to modify the optimizer
search strategy to explicitly account for shared compu-

tation and find a globally optimal plan. This includes
deciding which subexpressions should be materialized,
how they should be materialized (w.r.t. sort order),
and what indexes should be created on these inter-
mediate results. This is a very costly task and it is
considered infeasible to employ exhaustive algorithms
[12].

Multi-query optimization has a long history of re-
search [4], see for example [14] for an overview. The
cardinal problem of MQO, finding common subexpres-
sions within a batch of queries, has been investigated,
e.g., in [12]. The authors propose three cost-based
heuristic algorithms that operate on an AND-OR DAG
that has a pseudo root, which has edges to each query
of the batch. One of the optimizer rules proposed is
unification: Whenever the algorithm finds two subex-
pressions that are logically equivalent but syntactically
different (see Section 2.1 of that paper), then it uni-
fies the nodes, creating a single equivalence node in
the DAG. Another strategy is subsumption: Given a
number of selections on a common expression, cre-
ate a single new node representing a disjunction of
all the selection conditions. The performance experi-
ments presented in that paper employ TPC-D query
batches. For their experiments using Microsoft SQL
Server, they transformed the plans generated by their
multi-query optimizer back into SQL queries. They
created, populated and deleted temporary tables, and
created indexes on these tables according to the de-
cisions of their algorithm. Unfortunately, there are
no execution times given for running optimized query
batches on SQL Server. They provide such numbers
only for single queries as input that have been trans-
formed into batches by materializing common intra-
query subexpressions. This retranslation of queries
into SQL was supposedly done because they were not
able to use a DBMS interface for query plans. Our
approach also transforms statements back to SQL.

In [3], the work of [12] is extended by a greedy
heuristic for finding good plans that involve pipelin-
ing. The key idea is that multiple usages of a result
can share a scan on the result of a subexpression. In
particular, if all usages of the result can share a scan
then the result does not need to be materialized.

Notice that CGO differs from MQO in that the op-
timization of statement sequences aims at optimizing
the collection of SQL statements as if it was a single
query, with the last statement in the sequence as the
outermost query. It does not require that the interme-
diate queries (used for populating temporary tables)
are actually computed as specified. It is sufficient that
the final query delivers the required result. Hence,
CGO allows additional ways of rewriting a given state-
ment sequence compared to MQO.

Except for techniques to derive a set of material-

ized views for a given workload [5, 17, 18], we do not
know of any viable multi-query optimization technique



available in state-of-the-art DBMS. The materialized
view design does not cover the full range of multi-query
optimization, it only deals with a true subproblem:
finding common subexpressions that are worthwhile to
materialize in order to support for a set of subsequent
queries.

Instead of using MQO, we could employ conven-
tional single-query optimization (SQO) for our prob-
lem. This is based on the fact that a statement se-
quence can be expressed by a single query, as we will
show in Section 3. SQO searches for a plan for a single
query that is cheaper than the total cost for the equiv-
alent statement sequence. Hence, one can argue that
statement sequence processing is actually an optimiza-
tion problem involving a single, potentially very large
query. In order to cope with complex queries involv-
ing many joins randomized and heuristic optimization
techniques have been studied [8, 15]. However, our
performance experiments, summarized in Section 8§,
show that commercial optimizers were not able to find
an execution strategy for single-queries that was nearly
as good as for several improved equivalent statement
sequences, including the original sequence.

To the best of our knowledge there is no previous
work combining rewrite rules in a way similar to our
CGO approach. However, our ruleset consists of rules
that are at least to some extent contained in opti-
mization algorithms used for certain prototype multi-
query optimizers or conventional single-query opti-
mizers [1, 7, 10, 12]. We discuss the relationship of
our ruleset with rules known from the literature in
Section 5.

3 The Query Dependency Graph

Statement sequences are the result of information re-
quests. We define an information request as an interac-
tion of a user with the system typically by means of a
graphical user interface. It consists of the specification
of the data and processing needed to derive the desired
information as well as its presentation style. Applica-
tions generate an entire statement sequence although
it would be possible to represent the information re-
quest by a single SQL statement. There are several
reasons for query generators to follow this approach:

e Since a collection of individual statements is typ-
ically less complex than a single large query it is
possible to run these statements even on database
systems that do not support the latest SQL stan-
dard. This reduces the number of special cases
that have to be treated in the query generation
process.

e It allows to keep the process of query generation
and query verification simple.

Figure 2(a) shows an example sequence S that consists
of eight statements. In this paper, we focus on the
following types of statements:

cl: CREATE TABLE ql (custkey INTEGER, turnover1990 FLOAT);

i1: INSERT INTO qi
SELECT o.custkey, SUM(o.totalprice)
FROM orders o
WHERE o.orderdate BETWEEN ’1990-01-01°
AND ’1990-12-31°
GROUP BY o.custkey;

c2: CREATE TABLE q2 (custkey INTEGER, turnover1991 FLOAT);

i2: INSERT INTO q2
SELECT o.custkey, SUM(o.totalprice)
FROM orders o
WHERE o.orderdate BETWEEN ’1991-01-01°
AND ’1991-12-31°
GROUP BY o.custkey;

c3: CREATE TABLE g3 (custkey INTEGER, name VARCHAR(25));

i3: INSERT INTO q3
SELECT c.custkey, c.name
FROM g1, g2, customer c
WHERE ql.custkey = c.custkey
AND gl.custkey = g2.custkey
AND g2.turnover1991 > qgl.turnover1990;

di: DROP TABLE qi;

d2: DROP TABLE g2;

(a) SQL statement sequence

|
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(b) Statement triples (c) Query dependency graph

Figure 2: Representations of statement sequence S

e CREATE TABLE statements c; that create ta-
bles to hold intermediate results or the final result
of an information request.

o INSERT statements i; that compute the interme-
diate results or the final result and insert them
into tables. There is exactly one INSERT state-
ment for each table created by a statement se-
quence. Its body is a query that may access base
tables as well as any intermediate result of the
sequence.

e DROP TABLE statements d; that remove inter-
mediate result tables. The final result table is not
dropped as part of the sequence because it has to
be retrieved by the application that generated the
sequence.

We can identify statement triples ¢; = (cj,i;,d;)
within the sequence that consist of a CREATE TA-
BLE, INSERT and DROP TABLE statement regard-
ing the same table, as shown in Figure 2(b). A se-
quence that consists of & statement triples includes
n = 3 -k — 1 statements. There are less than 3 - k



statements because there is no DROP TABLE state-
ment for the last statement triple which provides the
result of the entire information request. The sequen-
tial dependencies between the INSERT statements i;
define a partial order on the statement triples. If we
consider triples as nodes ¢; and draw an edge from
node ¢,, to node g, if and only if the query expression
of INSERT statement 14,, refers to the table created by
cm and filled by 4,,, we obtain a connected directed
acyclic graph called query dependency graph (QDG).
It expresses the data flow and the direct sequential
dependencies among the INSERT statements of a se-
quence. The corresponding QDG for statement se-
quence S is illustrated in Figure 2(c). A one-to-many
relationship holds between QDGs and statement se-
quences, i.e., there are multiple correct and logically
equivalent sequential orders of statements for a single
QDG. We define two statement sequences to be equiv-
alent if they answer the same information request, i.e.,
the content of the table that stores the result of the en-
tire information request is the same for both sequences.

At the moment we restrict our approach to a subset
of SQL-92 that is limited to queries without subqueries
and set operations. This and the above specification
of a query sequence do not impose a severe restriction
because our experience has shown that most generated
sequences adhere to these requirements. Hence, UP-
DATE, DELETE and additional INSERT statements
are not in our focus yet. But we plan to extend our
specifications and adapt our rewrite rules.

There are two alternative SQL representations pro-
viding the same information as the statement sequence
within a single query. The first one replaces the ref-
erences to temporary tables in 7 by subqueries con-
taining the definition of the respective temporary ta-
bles. Figure 3 shows the resulting query for statement
sequence S. One has to repeat this step recursively
until i; includes references to base tables only. This
may result in deeply nested FROM clauses. The sec-
ond option uses the WITH clause of SQL:1999 [9] to
define all temporary tables before referring to them
in the body of the query expression, which consists
of i,. This approach is illustrated in Figure 4. Note,
that both options have several drawbacks. The first
option adds much complexity to the process of query
generation and query optimization because the entire
information request has to be represented by a single,
probably deeply nested query. One important draw-
back of the second option is that the WITH clause
is not supported by all commercial database systems.
Our experimental results, discussed in Section 8, show
that the statement sequence was superior to the cor-
responding single query based on subqueries in most
cases. Single queries based on the WITH clause per-
formed even worse and did not finish in acceptable
time for several queries. We conclude that current op-
timizer technology is not able to provide efficient query

CREATE TABLE q3 (custkey INTEGER, name VARCHAR(25));

INSERT INTO g3
SELECT c.custkey, c.name
FROM
(SELECT o.custkey, SUM(o.totalprice)
FROM orders o
WHERE o.orderdate BETWEEN ’1990-01-01°
AND ’1990-12-31°
GROUP BY o.custkey) AS gl (custkey, turnover1990),
(SELECT o.custkey, SUM(o.totalprice)
FROM  orders o
WHERE o.orderdate BETWEEN ’1991-01-01’
AND °1991-12-31°
GROUP BY o.custkey) AS g2 (custkey, turnover1991),
customer ¢
WHERE ql.custkey = c.custkey
AND qgl.custkey = g2.custkey
AND g2.turnover1991 > ql.turnover1990;

Figure 3: Single query for statement sequence S using
subqueries.

CREATE TABLE g3 (custkey INTEGER, name VARCHAR(25));

INSERT INTO g3
WITH
ql (custkey, turnover1990) AS
(SELECT o.custkey, SUM(o.totalprice)
FROM  orders o
WHERE o.orderdate BETWEEN ’1990-01-01’
AND °1990-12-31°
GROUP BY o.custkey),
q2 (custkey, turnover1991) AS
(SELECT o.custkey, SUM(o.totalprice)
FROM  orders o
WHERE o.orderdate BETWEEN ’1991-01-01’
AND ’1991-12-31°
GROUP BY o.custkey)
SELECT c.custkey, c.name
FROM ql, g2, customer c
WHERE ql.custkey = c.custkey
AND ql.custkey = g2.custkey
AND qg2.turnover1991 > gl.turnover1990;

Figure 4: Single query for statement sequence S using
a WITH clause.

execution plans for complex queries that represent an
information request in a single SQL query.

4 Coarse-Grained Optimization

In today’s commercial database systems each SQL
statement of a statement sequence is optimized and
executed separately. Relationships with other state-
ments of the same sequence are not considered though
dependencies and similarities among these statements
offer great potential for optimization. It is possible,
e.g., to combine similar statements into a single one,
or to move predicates from one statement to a depen-
dent one. These optimizations are similar to rewrite
rules used in conventional single query optimizers as
well as in multi-query optimization. In our approach
of coarse-grained optimization (CGO), we adopt and
combine few but effective heuristic rewrite rules in a
ruleset providing an additional step of query rewrit-
ing, which complements the optimization steps of the
underlying database system. The key idea of CGO is
to produce several SQL statements that are less com-
plex for a single-query optimizer compared to a single




merged query. It produces a new equivalent sequence
of one or more statements that is most likely to be
executed by the database system in less time than the
original sequence.

Compared to conventional optimizers, CGO works
on a more abstract level and allows to apply rewrite
rules independent of the underlying database system.
This level of abstraction has an impact on the internal
representation of statement sequences as well as on
the cost estimations that are available to guide the
application of rewrite rules.

The rewrite rules that we will introduce in Section 5
refer to clauses of SQL statements. As we will show
in Section 6, the rules operate on a simple “coarse-
grained” data structure similar to the query graph
model (QGM) of Starburst [10] that represents the
statements (logical operations), not a “fine-grained”
algebra tree as in SQO or MQO (physical operations).
This representation of statement sequences allows to
specify what the result should be like and not how it
is computed.

Conventional optimizers need cost estimations in
order to decide on the best plan for a given query.
Detailed cost estimation is almost impossible for a
CGO optimizer, i.e., cost estimations derived from op-
erators, algorithms implementing these operators and
physical properties of the data are not known on this
level. This is a serious problem for the development of
a rule engine for CGO. One way to cope with this prob-
lem is to use heuristics that control the application of
rewrite rules. Heuristics of a CGO optimizer could be
based on characteristics of the ruleset, on character-
istics of the statement sequences as well as on char-
acteristics of the underlying database. Our prototype
is based on the first category of characteristics. The
ruleset and its properties are described in the following
section.

There is one possible extension to this purely heuris-
tic approach that deals with cost estimations. The
optimizer of the underlying database system could
provide cost estimations for every statement sequence
that the CGO optimizer produces during its rewrite
process. In cases where several rules are applicable to
a given statement sequence the decision on the next
rule to be applied could be based on these cost esti-
mations. This approach has several drawbacks: First,
there is no standardized interface to force the database
system to calculate the costs for a given query. Second,
in a conventional database system there is no interface
to simulate what-if scenarios as created by such state-
ment sequences, i.e. there is no way to get the cost
estimates for batches where tables are created and im-
mediately used inside the same batch. This would be
necessary to provide cost estimations for queries based
on temporary tables. Moreover, statistics would not be
available in advance for these temporary tables and de-
fault values would have to be used instead. Third, this

approach is inconsistent with our objective of an opti-
mizer that is independent of the underlying database
system.

5 A Ruleset for Coarse Grained Opti-
mization

This section is divided into two parts. First, we present
the ruleset used for the CGO prototype. Second, we
explain important properties of this ruleset.

5.1 Classes of Rewrite Rules

Each rule consists of two parts, condition and action.
If the rule condition is satisfied the action can be ap-
plied to the affected nodes of the QDG. We identified
three classes of rewrite rules:

1. Rules that are based on the similarity among a
subset of the nodes of a QDG. The rule condi-
tion specifies in which components the queries
of these nodes have to be equal and in which
they may or have to differ. This class comprises
the rules MergeSelect, Merge Where, MergeHaving,
and WhereToGroup.

2. Rules that are based on dependencies among
nodes of a QDG. The rule condition specifies the
requirements to be met by a subgraph of depen-
dent nodes. The class includes the rules Con-
catQueries, PredicatePushdown, and FEliminate-
UnusedAttributes.

3. Rules that are restricted to the context of a sin-
gle node in the QDG, including FEliminateRe-
dundantReferences and FEliminateRedundantAt-
tributes.

Some of these rules are based on rules that were
proposed for conventional and multi-query optimizers.
Our ruleset is adjusted to the specific needs of query
sequence rewriting, i.e., the focus is on rules that cope
with similar or dependent queries. In some cases we
combine rules known from the literature. For exam-
ple, several rules of class 1 merge clauses of two SQL
statements by combining unification and subsumption
introduced in [12]. WhereToGroup, another class 1
rule, is similar to the push-down rules for duplicate-
insensitive generalized projections, described in [7].
The ConcatQueries rule is similar to view expansion
and it is equivalent to the Selmerge rewrite rule used
in Starburst [10] to merge a query and a sub-query
in its FROM clause. However, Selmerge is limited to
SPJ (select-project-join) queries, whereas we consider
grouping and aggregation, too. Hence, ConcatQueries
is a generalization of the Selmerge rule.

Figure 5 shows an example of the WhereToGroup
rule. The left part of the figure shows a subgraph of a
QDG that consists of four nodes. Due to lack of space
only the INSERT statements are shown for each node.



INSERT INTO gi(a, sum_b) INSERT INTO g2(a, avg_b) INSERT INTO qi2(a, c, sum_b, avg_b)
SELECT t.a, SUM(s.b) SELECT t.a, AVG(s.b) SELECT t.a, t.c, SUM(s.b), AVG(s.b)
FROM s, t FROM s, t FROM s, t
WHERE t.c =1 WHERE t.c = 2 WHERE t.c IN (1, 2)
AND s.d = t.d AND s.d = t.d AND s.d =t.d
GROUP BY t.a GROUP BY t.a GROUP BY t.a, t.c
>
1 1 ‘WhereToGroup N\
INSERT INTO g3(a) INSERT INTO g4(a) INSERT INTO q3(a) INSERT INTO q4(a)
SELECT a SELECT a SELECT a SELECT a
FROM gl FROM  q2 FROM  qi2 FROM  qi2
WHERE sum_b > 100 WHERE avg_b > 100 WHERE sum_b > 100 WHERE avg_b > 100
AND c =1 AND c =2

Figure 5: WhereToGroup rule example

Dependencies are represented by arrows in the QDG,
i.e., node g3 depends on node ¢; and g4 depends on ¢s.
The new QDG after applying the WhereToGroup rule
is shown on the right side of Figure 5.

The rule condition of WhereToGroup specifies a set
of nodes whose queries differ in the WHERE clause
and optionally differ in the SELECT clause but match
in all other clauses. The queries have to include a
GROUP BY clause but none of the queries may cal-
culate the final result of the sequence. The rule con-
dition also specifies that all queries have to match in
the same predicates and differ in exactly one predicate
of the form attribute = constant. The constant in this
predicate may be different for each query but the at-
tribute in this predicate is identical for all queries and
it must not appear in any of the aggregate terms of
the SELECT and HAVING clause. In our example,
this condition holds for queries ¢; and g¢o.

In the rule action a new node is created that re-
places all nodes matching the rule condition. Accord-
ingly, all references to these nodes must be adapted
to the new node. The query of the new node, ¢i2
in our example, contains the clauses and the predi-
cates that are common to the queries of all nodes.
Additionally, it contains a predicate of the form
attribute IN setOfConstants, where the attribute is the
one mentioned in the description of the rule condition
and the set of constants is a collection of the appro-
priate constants. The attribute must also be added
to the GROUP BY clause, the SELECT clause and
the primary key. The SELECT clause of the query
of the new node is built by appending the SELECT
clauses of the queries of all affected nodes and elimi-
nating duplicate expressions in the resulting SELECT
clause. The predicates in which the selected queries
differ have to be added to the appropriate referencing
queries for each occurring reference. Hence, ¢ = 1 is
appended to ¢z and ¢ = 2 is added to gq.

As can be seen from Figure 5, this rule reduces the
set of nodes in a QDG by unifying previously unrelated
parts of a sequence. Joins that had to be executed for
q1 as well as for ¢o only have to be processed once for
the new query qis.

The ConcatQueries rule is an example of a class 2
rule. If a node ¢ is referred to by exactly one other

node ¢z in the QDG, ConcatQueries allows to merge
q1 and g2. In the following, s; denotes the SELECT
clause of the query of node ¢;, f; the FROM clause,
w; the WHERE clause, g; the GROUP BY clause,
and h; the HAVING clause. An example scenario is
illustrated in Figure 6.

In the rule condition we can distinguish between
four cases:

1. g1 =0 A DISTINCT ¢ s;.
2. ¢1 =0 AN DISTINCT € s1 A
g2 =0 A DISTINCTE s,
3.1 #D A g1 Ss2 A
g2 =0 A fo contains only a single reference
4 g #0D N g1 g sa A

go =0 A fy contains only a single reference A
g2 does not store the final result of the sequence

If one of these conditions is met, the rule can be fired.
In the rule action the reference to ¢; is removed from
f2 and the elements of f; are appended to fo. When
case 1 or 2 occurs, g1 has no GROUP BY clause and
therefore we just have to add the predicates of wi to
wo. In case 3 and 4, ¢» has the function of a filter that
simply selects rows of the result table of ¢;. Hence, g1
and hi have to be added to the query of node ¢o; they
become gs and hs. Then the elements of wo are added
to this new HAVING clause of ¢» and ws is replaced
by wi. In short, the old WHERE clause of the query
of node ¢» becomes part of the new HAVING clause
of the query of node ¢. In addition, the attributes
of g1 have to be added to sy in case 4. In any case,
when merging the WHERE and HAVING clauses and
adding attributes to the SELECT clause, duplicate el-
ements can be detected and eliminated.
EliminateRedundantReferences is one of the rules
of class 3. Its condition searches for queries that re-
fer to the same source multiple times in their FROM
clause and that directly or transitively equate the pri-
mary keys of these references. One of these references
to the same source is still required, but all the others
are removed by the rule action. The conditions of the
WHERE clause that are affected by this elimination
are also removed or adjusted. Hence, this rule elimi-
nates joins when both inputs are the same source and



INSERT INTO qi(a, sum_b)
SELECT a, SUM(b)

FROM t
WHERE ¢ = 1 INSERT INTO q12(a)
GROUP BY a — SELECT a a
ConcatQueries| FROM t
l WHERE c=1
GROUP BY a

INSERT INTO q2(a) HAVING SUM(b) > 100
SELECT a
FROM q1

WHERE sum_b > 100

Figure 6: ConcatQueries rule example

INSERT INTO qi(a, b) — INSERT INTO ql(a, b)
SELECT t1l.a, t3.b Eliminate SELECT tl.a, t3.b
FROM t tl, t t2, Redundant FROM t tl, t t3
t t3, t t4 References
WHERE tl.a = t2.a WHERE til.a = t3.b
AND t2.a = t3.b
AND t3.b = t4.a

Figure 7. EliminateRedundantReferences rule example
(attribute « is primary key of table t)

there exists a one-to-one relationship between the at-
tributes of the join condition, because these joins add
no new information but produce tuples with redun-
dant fields. Figure 7 gives an example where attribute
a is the primary key of table t. The first row of the
WHERE clause shows a direct equation, the remaining
rows show a transitive equation of the primary keys.

Rules of class 3 can also be found in the under-
lying database system. We added the FEliminateRe-
dundantReferences rule to our ruleset because it can
initiate other rules to be applied based on the result
of its transformation whereas these rules could not
be applied to the original, unmodified query. FElimi-
nateRedundantAttributes is part of the ruleset because
it eliminates redundant elements in the select clause
of a query and the appropriate columns of the result
table of the query. This reduces the storage used by
an intermediate result.

5.2 Properties of the Ruleset

Rewrite rules for CGO have to ensure that the origi-
nal and the rewritten sequence are equivalent. As we
will see, this condition holds for our ruleset. Class 1
rules unify n previously unrelated nodes of a QDG into
one node. None of these nodes may produce the final
result of the whole sequence, i.e., no affected node is
the root of the graph. Hence, the final statement of a
sequence is not changed by class 1 rules. Other nodes
that are dependent on the set of merged nodes produce
the same result before and after rewrite processing.
Therefore, in Figure 5 the WHERE clauses of queries
q3 and ¢4 are transformed by the WhereToGroup rule
as follows: Query g3 contains those predicates of ¢
where ¢ differs from ¢, and query ¢4 contains those
predicates of ¢» where ¢o differs from ¢;. The same
holds for all other class 1 rules. Thus, this class of rules
preserves the final result of a statement sequence. The

same fact is also guaranteed for rules in class 2. These
rules either do not change the structure of a QDG at all
(PredicatePushdown) or they merge a subgraph of de-
pendent nodes. In the second case, the ConcatQueries
rule guarantees that the node that is the result of a
merge step, g1z in Figure 6, produces the same result
as the last query of the subgraph that was processed
by ConcatQueries. Rules of class 3 also preserve the
result of a statement sequence because they only re-
move redundant references and attributes and do not
change the structure of the sequence.

The focus of our CGO approach is on lightweight
optimization of statement sequences, i.e., no cost es-
timations are used to guide the rewrite process. A
rewrite rule is applied to a given sequence whenever
its condition is true. Hence, we have to guarantee the
termination of rewrite processing. The ruleset given
in the previous subsection mainly consists of rules
that merge nodes and therefore continuously reduce
the number of nodes in the QDG. Some of the rules,
mainly those in class 3, do not change the structure of
the sequence, i.e., they do not add nodes to the QDG.
Hence, rewrite processing stops no later than when the
QDG is reduced to a single node. Rules of class 3 do
not, produce loops because they only eliminate redun-
dant information and the ruleset does not contain any
rules that could add this redundancy again. Hence,
we can conclude from the characteristics of rules in
our ruleset that termination of rewrite processing is
guaranteed.

6 Internal Representation of State-
ment Sequences

As discussed in Section 4, one of our key objectives is
to develop an optimizer that is as independent of the
target database system as possible. Hence, we were
free to optimize the internal representation of query
sequences w.r.t. our CGO processing. In the follow-
ing, we present the major concepts of our CGO-XML
representation, which is based on a descriptive model
of SQL queries and reflects their clause structure simi-
lar to a parse tree. Instead of an extensive description
we illustrate the CGO-XML representation of a QDG
using an example: Figure 8 shows the CGO-XML rep-
resentation of the QDG that belongs to the statement
sequence in Figure 2. Due to lack of space we omit
the CGO-XML representation of all but the last state-
ment triple ¢3. It consists of a CREATE TABLE and
INSERT statement but no DROP TABLE statement,
since we need to keep the final result of the sequence.

Our XML representation is suitable for coarse-
grained optimization for several reasons:

First, the queries are represented on the same de-
scriptive level as the rewrite rules, i.e., we do not have
to deal with physical properties of operators and data
that are important whenever a fine-grained algebraic
representation was chosen.



<?xml version="1.0" encoding="iso-8859-1"7>
<!DOCTYPE sequence SYSTEM "sequence.dtd">

<sequence>

<query name="q3" distinct="no" type="table" result="yes">
<referenced-by/>
<select-clause>
<attribute-definition name="custkey" type="INTEGER">
<attribute name="custkey" source="c"/>
</attribute-definition>
<attribute-definition name="name" type="VARCHAR(25)">
<attribute name="name" source="c"/>
</attribute-definition>
</select-clause>
<from-clause>
<source name="qi" alias="q1"/>
<source name="q2" alias="qg2"/>
<source name="customer" alias="c"/>
</from-clause>
<where-clause>
<equal>
<attribute name="custkey" source="ql"/>
<attribute name="custkey" source="c"/>
</equal>
<equal>
<attribute name="custkey" source="qi"/>
<attribute name="custkey" source="q2"/>
</equal>
<greater>
<attribute name="turnover1991" source="qg2"/>
<attribute name="turnover1990" source="q1"/>
</greater>
</where-clause>
</query>
</sequence>

Figure 8: CGO-XML representation of statement se-
quence S

Second, since we focus on a database independent
optimization approach, the result of the transforma-
tion process has to be translated back into SQL, which
is straightforward with our XML representation.

Third, there are statement sequences where no or
only few statements are affected by the rewrite rules,
i.e., there are few rule actions manipulating those
statements. It is important that all unaffected parts
of the original sequence are reproduced without struc-
tural modifications because even little modifications in
the SQL statements might result in dramatically dif-
ferent execution plans on the target database system.
Our internal representation supports this SQL preserv-
ing retranslation. If we would employ a fine-grained
algebra representation, it would be more difficult to
achieve this goal. Furthermore, for the sake of read-
ability (for database administrators, for example), it is
helpful if the original sequence, which served as input
to CGO, and the output sequence look similar.

Several internal representations are proposed in the
literature or are used in commercial database systems,
but none of the representations we looked at fully met
our needs [2, 10]. Therefore we decided to develop our
own type of representation based on XML. It meets
our requirements, because it is very close to SQL.

A variety of tools are available for transforming
XML documents. This helped us to develop the CGO
prototype quickly. Choosing an XML representation
emphasizes our idea of a lightweight optimizer, be-
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Figure 9: Architecture of CGO

cause we do not have to pay attention to the physical
representation of the XML document in memory and
we do not have to implement a special interface to our
representation. We were thus able to focus on the im-
plementation of the rewrite rules and the rule engine.

7 Implementation

This section gives an overview on the CGO architec-
ture. We considered the results and experiences of op-
timizer technology as described for example in [6, 11]
and designed a modular CGO prototype. The rule en-
gine and its control strategies are also described in the
following sections.

7.1 CGO Architecture

Figure 9 illustrates the optimizer’s architecture con-
sisting of three components discussed below: SQL
parser, rule engine, and SQL retranslator.

Given an SQL statement sequence, in a first step
the SQL parser consumes the entire sequence and
translates it into CGO-XML. At the moment, the
parser, which is implemented using the parser genera-
tor JavaCC, accepts a subset of SQL-92 that is limited
to queries without subqueries and set operations. The
statement sequence has to comply with the definition
in Section 3.

The optimization step that follows parsing is real-
ized by a priority based rule engine. It employs the
rewrite rules introduced in Section 5, which operate
on the internal representation of statement sequences.
For navigation and manipulation of CGO-XML we de-
cided to use the document object model (DOM) and
Sun’s JAXP as the DOM interface implementation.

The final step in the optimization process is the re-
translation from CGO-XML into SQL, i.e., both the
input and the result of the rewrite process are a se-
quence of SQL statements. The retranslation compo-
nent SQL retranslator is implemented by the XSLT
processor that is part of JAXP.



INSERT INTO t1 INSERT INTO t2

SELECT * SELECT =*

FROM s s1, s s2 FROM s s1, s s2

WHERE sl.a = s2.a WHERE sil.a = s2.a
AND si.b >0 AND s2.b > 0

Figure 10: Matching of FROM clauses: Table corre-
lation names s; and sp for the insertion into table ¢;
match sy and s; for table 5, respectively.

Each rule is implemented by a separate Java class,
which is derived from a common super class providing
two abstract methods that are invoked by the rule en-
gine: a method checking the rule’s condition and one
realizing the rule’s action, respectively. The condition
method returns a boolean value that indicates whether
parts of the queries in the query dependency graph
satisfy the rule condition. During the evaluation of
the rule condition information used in the rule action
is stored temporarily to avoid that data is computed
twice. The action method embodies the transforma-
tion of the query sequence.

The rule condition of class 1 rules can be divided
into several layers according to the structure of an SQL
query and its components. This layer model is shown
on the right of Figure 9. Every layer uses the func-
tionality of the layer below. The top layer realizes the
search for sets of queries that are similar according
to the rule condition. This problem is reduced to a
pairwise comparison of the queries of a sequence. The
comparison is done by the query layer, whose main
task is to match the FROM clause elements of a pair
of queries. This is nontrivial if the same table appears
multiple times in the same query, of course each one
having a unique correlation name. An example query
pair is depicted in Figure 10. For every possible match-
ing of the FROM clause elements, all the other clauses
have to be compared whether they satisfy the rule con-
dition. In the worst case all n correlation names in a
FROM clause refer to the same table and n! possi-
ble combinations have to be checked. The compari-
son of the clauses is implemented in the clause layer.
For every clause type there is a method that compares
two clauses of this type, taking into account the spe-
cial characteristics of that clause type. These methods
make use of the methods of the clause element layer.
In case of a WHERE or HAVING clause the clause
element layer can be further divided into the predicate
layer and the term layer.

We were able to share and reuse source code by
using class inheritance since some of the rules have
several methods in common. The layer model reduces
the complexity of the ruleset implementation and fa-
cilitates future extensions.

7.2 Control Strategies

Control strategies of the rule engine are based on rule
priority schemes and rule application schemes. The

rule priority scheme defines the order in which rule
conditions are evaluated. In our prototye we use a
static priority scheme. For this purpose, we have as-
signed a priority to each rule of the ruleset. The prior-
ity assignment is based on experience gained from ex-
periments and corresponds to the effectiveness of the
rules. If several rules could be applied to the same se-
quence, the rule of highest priority is picked. Rules of
class 1 have the highest priority whereas class 3 rules
have the lowest priority. We have chosen this order be-
cause class 1 rules mainly merge similar queries, which
eliminates redundant processing and results in remark-
able performance improvements according to our ex-
periments.

The priority-based approach described so far works
fine provided that each application of rewrite rules re-
sults in a reduced execution time for a given statement
sequence. This is not true for all rules in our ruleset.
In particular, the rules of class 1 may lead to a de-
terioration of execution times in some special cases.
For example, merging nodes ¢; and ¢» in Figure 5 is
not always advantageous. In some cases the processing
of the modified queries g3 and ¢4 may add more exe-
cution time than is saved by the reduced redundancy
that is achieved by ¢i2. The application of rules of
class 2 and 3 never results in worse execution times
except for ConcatQueries. The application of Concat-
Queries merges two dependent queries into a single,
but more complex query and therefore increases the
complexity of calculating the best execution plan in
the underlying database system. This can force the
database to use pruning and heuristics that lead to
suboptimal execution plans. Complex queries are also
more vulnerable to wrong row estimations of interme-
diate results within the execution plan. Nevertheless,
our experimental results in Section 8 show that con-
siderable performance improvements can be achieved
with our lightweight approach.

In the modular CGO architecture, the ruleset and
the control strategies can easily be modified and ex-
tended. There are several ways to extend the control
strategy used in our prototype. This includes a rule
application scheme that comprises a set of rule appli-
cation patterns. For each rule several patterns may be
defined. A pattern describes conditions that have to
be met, such that the application of a rewrite rule leads
to performance improvements. These conditions could
be based on statistics on base tables, on characteristics
of the underlying database system as well as on char-
acteristics of a statement sequence and the statements
it contains. Some examples of relevant characteristics
of statements are the number of joins or the number
and type of predicates. Each database system has dif-
ferent features and optimization strategies. Hence, the
performance gain of some rules is different depending
on the database system that executes the resulting se-
quence. For example, database systems differ in the
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maximum number of joins that they are able to op-
timize exhaustively and process efficiently as part of
a single statement. In CGO, this knowledge could be
used to stop merging statements as soon as any fur-
ther application of rewrite rules would lead to state-
ments that include more than this maximum number
of joins. Furthermore, one could define a dynamic rule
priority scheme based on the same characteristics that
are used by rule application patterns. Since extended
control strategies are not in the focus of this paper, we
do not further elaborate on this topic.

8 Experimental Results

In order to show the effectiveness of CGO and its
independence of the underlying database system we
measured the runtime of statement sequences in two
prominent environments. One consists of a SUN En-
terprise 4500 with 12 processors and DB2 V7.1 on So-
laris. The other system is a 4-processor Dell Pow-
erEdge 6400/900 with 4 CPUs and Microsoft SQL
Server 2000 Standard Edition on Microsoft Windows
2000 Server. These two systems are not directly com-
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Figure 14: Number of comparisons in class 1 rule layers
depending on the statement sequence size.

parable. Therefore, we will not show absolute numbers
in this paper. The experimental results presented in
Figures 11 and 12 include relative numbers for both
platforms. The results are similar in both environ-
ments.

We have chosen TPC-H [16] with scaling factor 10
(10 GB) as our benchmark database and the Micro-
Strategy DSS tool suite as a generator of statement
sequences. This required to make some small additions
to the TPC-H schema including some new tables rep-
resenting different time dimensions and several views
on the original tables of the TPC-H schema. Our ex-
periments are based on a large set of statement se-
quences generated for typical information requests in
customer relationship mangement, merchandise man-
agement and supply chain management. They range
from 11 statements per sequence (i.e., 4 triples) to
a maximum of 56 statements in a sequence (i.e., 19
triples) as shown in Figure 13. The DBMS produced
very complex query execution plans, especially for the
corresponding single queries. They consist of up to
200 database operators (measured via EXPLAIN for
DB2 and Query Analyzer for SQL Server) including
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approximately 30 joins and 40 sorts. For presentation
and discussion we have selected a small set of charac-
teristic statement sequences.

The comparison of statement sequence and corre-
sponding single query is covered by Figure 11. It shows
the execution time for several single queries. The run-
time of the corresponding initial statement sequence
is assumed as 100%. The single queries are derived
from the statement sequences by nesting the defini-
tions of the respective temporary tables as described
in Section 3. As one can see, single queries show a
performance gain only in rare cases. For some state-
ment sequences, e.g., sequence 3, the execution time
for the corresponding single query grows tremendously.
Hence, single query optimization is not a viable alter-
native to our CGO approach. Our experiments did
not reveal a clear correlation between the complexity
of a sequence and its single query performance.

We ran our sample sequences against the CGO
prototype and picked the intermediate results of the
rewrite process for measurements. We measured the
total execution time, i.e., the total time taken by the
system to evaluate the entire statement sequence as
rewritten up to that point. Figure 12 shows the results
for four statement sequences. The total execution time
of each modified sequence is given as a percentage of
the total execution time of the corresponding origi-
nal sequence. Due to the differences in the four given
statement sequences the appropriate rewrite processes
include a varying number of steps. For statement se-
quences 1 and 2 the CGO optimizer was able to ap-
ply rewrite rules in seven successive steps. Statement
sequences 3 and 4 allowed only three steps of query
rewriting. Each step constitutes the application of a
single rewrite rule. Remark, that different sequences
have different rewrite rules applied in each step. For
example, in step rewrite 1 the rule applied to sequence

2 is not the same as the rule applied to sequence 3. Fig-
ure 12 shows that for each of the statement sequences
the execution time was reduced by at least 30% af-
ter rewriting. However, reducing the runtime by even
an order of magnitude is possible, as can be seen for
statement sequence 2.

The performance results depicted in Figures 13 to
15 focus on the efficiency and quality of our CGO pro-
totype. We installed the prototype on a MS Windows
2000 system with two AMD Athlon 1800+ processors
and JDK 1.3.1. Figure 13 shows the time consumed by
the three components of the CGO prototype to opti-
mize eight different sequences. This time is negligible
compared to the execution time of a sequence, which
is 20 minutes and more for some of the sequences. One
can see that the time for optimization as well as the
total execution time grows proportional to the num-
ber of statements in the sequence. This demonstrates
the scalability of the CGO approach. Most of the time
is spent for retranslation since we use XSLT for this
purpose, which is not very efficient.

The number of comparisons for rewriting each se-
quence is depicted in Figure 14. The values are classi-
fied by the specific comparison operations in each layer
of the rule condition model illustrated in Figure 9.
Figure 15 shows the distribution of the comparison op-
erations during the optimization process of a sample
sequence initially consisting of 56 statements. Circled
numbers show the decreasing number of statements as
a result of rewriting the sequence. Due to the length
of statement sequences a high number of comparisons
typically appear at the beginning of the optimization.
For the example in Figure 15 the number of compar-
isons even grows for the second rule application com-
pared to the first rewrite step. This results from the
fact that rule conditions of all class 1 rules have to
be checked before the WhereToGroup rule is applied.
In further steps, the number of comparisons decreases
since the remaining set of comparable statements is
considerably reduced.

We conclude that CGO is a scalable and effective
approach for the optimization of statement sequences.
It represents a feasible solution that offers significant
performance improvements. The optimization process
is very efficient with a manageable complexity com-
pared to state-of-the-art optimization approaches. As
the measurements of sequence 4 in Figure 12 show,
a deterioration of execution times is possible. Im-
proved control strategies as described in Section 7.2
shall avoid this.

9 Conclusions

The purpose of this paper is to consider a lightweight,
heuristic, pre-optimization rewrite phase as a benefi-
cial approach for processing large sequences of corre-
lated SQL statements. Such a rewrite phase is meant
to complement the conventional query optimization



phase for the individual statements of a sequence. SQL
statement sequences are produced by query generators
of applications like ROLAP tools and are likely to oc-
cur more frequently in the future, when more and more
complex analysis and report tasks are automated. We
argue that an exhaustive optimization of such prob-
lems with the help of commercial optimization tech-
niques is intolerable, as our measurements revealed.
The key idea of our approach, called coarse-grained
optimization, is to rewrite the given SQL statement se-
quence into an equivalent statement sequence that can
be processed more efficiently by the target database
system than the original sequence. We are aware of
the fact that heuristic rewriting does not necessarily
lead to a solution that is optimal or at least better
than the original problem. However, we believe that
there is a considerable benefit in a rewrite phase that
is independent of the target database systems.

Our performance experiments on two different com-
mercial database systems revealed that our heuristic
approach is able to contribute to significant response
time reductions, in some cases by an order of magni-
tude.

In future work we will investigate the effectiveness
of extended control strategies as mentioned before.
Additional work will focus on fine-tuning CGO tech-
niques to the specific characteristics of the underlying
database systems.
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