1

To enable interoperability, mediator systems [1, 2] must
integrate heterogeneous information sources with different
data representations and search capabilities. A medi
presents a unified context for uniform information acce
and consequently must translatéginal user queries from
the unified context to darget source for native execution.
This translation problem has become more critical now t
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Abstract

In this paper we present a mechanism for
approximately translating Boolean query con-

straints across heterogeneous information sources.

Achieving the best translation is challenging be-
cause sources support different constraints for for-
mulating queries, and often these constraints can-
not be precisely translated. For instance, a query
[score > 8] might be “perfectly” translated as
[rating > 0.8 at some site, but can only be ap-
proximated aggrade = A] at another. Unlike
other work, our general framework adopts a cus-
tomizable “closeness” metric for the translation
that combines both precision and recall. Our re-
sults show that for query translation we need to
handle interdependencies among both query con-
juncts as well as disjuncts. As the basis, we iden-
tify the essential requirements of a rule system for
users to encode the mappings for atomic seman-
tic units. Our algorithm then translates complex
gueries by rewriting them in terms of the seman-
tic units. We show that, under practical assump-
tions, our algorithm generates the best approximate
translations with respect to the closeness metric of
choice. We also present a case study to show how
our technique may be applied in practice.

Introduction

Permission to copy without fee all or part of this material is granted pro
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the wide range of disparate sources are just “one click away”
across the Internet. Achieving the best translation is chal-
lenging because sources use different constraints for for-
mulating queries, and often these constraints cannot be pre-
cisely translated. This paper presents a framework that finds
perfect mappings if possible, or in general the “closest” ap-
proximations, taking into account differences in attribute
names, operators, and data formats.

Example 1: Consider a mediator that integrates online
shopping sites for books, audio, and videos. (This
example is based on our case study in Section 6.)
In particular, the mediator presents a unified view
Media(name, format, ---). Suppose a user wants to find
the “VHS” items by some actor “Harrison.” Let us
consider translating the corresponding constraints=
[format = vhs] andn = [name contains Harrison)].

The mediator will find perfect mappings whenever pos-
sible .q, it will translaten to [au contains Harrison] for
sourcefatbrain. com, andv as is foramazon . com). How-
ever, in many cases such perfect mappings simply do not
exist. For instance, for sourdeB at www.evenbetter.-
com, heitherv norn can be translated precisely.

Consequently, some schemes focus on “minimal-
superset” mappings [3], which will return all the potential
answers but with as few unwanted answers as possible. In
particular, the mediator will mapto [type = movies] (i.e,
searching the “movies” category) f&B, returning VHS as
well as DVD items. Unfortunately, fon the only super-
set mapping aEB is True (i.e., returning the entire source
database), which is often unacceptable.

However, in many cases, good approximations do exist,

anp they may be more favorable. For instarieB,can ap-
égroximaten as[star = "Harrison"]to matchHarrison as

a’last name. (Note th&EB requires at least a last name for
star.) It will miss those answers witharrison as the first

hrgﬁlme,e.g, Ford, Harrison. However, since most users

will actually mean last names (e.garrison, George)in

* This material is based upon work supported by the National Scienggch a name guery, this mapping may be better thare.
Foundation under Grant NSF IS 9811992.

In fact, everv may need a different approximation, say if
type = movies] returns a huge number of DVDs and very
gW VHS items. Alternatively, mappir{desc contains vhs]

its date appear, and notice is given that copying is by permission of the v&{ynply looks forvhs in the textual descriptions. This map-
Large Data Base Endowment. To copy otherwise, or to republish, requif@glg may return a lot less data thfigpe = movies], but

a fee and/or special permission from the Endowment.
Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

may perhaps miss a few VHS items (that do not mention
vhs in desc). If the “false negatives” are acceptable, then
the alternative mapping may be more attractive. L]
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We can view a query as a Boolean expression of canype = movies] (Example 1). In this case, to translaie
straints of theselectionform [attrl op value] or the join the mediator can separately map the disjuncadd, i.e.,
form [attrl op attr2]. (While not discussed here, we stres§(Q)) = S(v) V S(d) = [type = movies], which indeed
that our approach can generally handle join constraints@gcisely translateg, i.e., Q = S(Q).
well; see [4].) These constraints constitute the query “vo- To contrast, assume that the mediator is concerned
cabulary,” and must be transformed to “native” constrainibout large result sizes, so as illustrated earlier, uses
understood by the target source. For example, constralté mappingsS(v) = [desc contains vhs] and S(d) =
[score > 8] may have to be mapped [grade = A]. In this [desc contains dvd]. (That is, given the mediator's close-
process, attributes have to be mapped(score to grade), ness metric, these are the best approximate transla-
values have to be converteel.§, score 8 to grade), and tions.) Now S(v) V S(d) = [desc contains vhs] V
operators have to be transformedd, “>" to “ ="). Refer- [desc contains dvd]. This mapping is not as good fgpe
ence [3] provides more details on how we generally modelmovies], which in our example exactly gets all VHS and
this constraint-mapping problem in the common mediatidbvD titles. Thus, for the closeness metric in use, translating
architecture [1, 2]. S(v) andS(d) separately leads to a suboptimal mapping,

After we first studied query translation in an earlieand hence disjunctio@ is not “separable.” m
work [3], and implemented that machinery, we soon real-
ized thatapproximate translatiois critical for “real-world” ~ Query translation must rely on human expertise to define
applications. Our earlier work focused on minimal-supershat constraints may be interrelated, and how to translate
mappings as the “correct” translations, becausexaetre- basic semantic units. For instance, in Example 2 we need
sults can be recovered by post-processing their supersatgile for translating the single-constraint pattgenmat =
As just illustrated, in many cases only approximations ek} such asy andd. But do we need a rule for composite
ist, and they might be even more practical than the strictigieriese.g, (v V d)? What kind of queries must constitute
correct ones. (Analogously, a concurrent system with strigch “semantic units”? In this paper we will answer these
serializability may result in undesirable low concurrencyguestions, identifying the essential requirements for a trans-
In fact, in our case study of a “real-world” scenario (Sedation rule system.
tion 6), we informally estimated th@0% of the translations  Based on rules, our challenge is to translate arbitrary
must rely on approximation. gueries as Boolean expressions of constraints (we currently

Furthermore, different mediation applications need dilo not handle negation). Our approach isdigide-and-
ferent “correctness” arlosenessriteria for mappings. Itis conquer We present AlgorithmVFB to “decompose” an
thus essential for a translation system to flexibly supporgginal query into its semantic units, which can then be
wide range of closeness metrics. This paper presents suétfgslated by the given rules. Note that there are many
framework, where the best approximate translations candgcompositions, but not all of them will lead to the clos-
found under virtuallyany reasonable metric. In particular€st mapping. In our running example, suppose that we are
the framework supports minimal-superset, maximal-subgi¢en translation rules for the semantic unitg,((v), (d),
(when extra-answers must not be returned), and other “lapd (v V d), and we wish to translate queny V nd. We
brid” criteria in between. Our customizable criteria allowgan decompose the query@s (v) V (n)(d), or with some
one to quantify “false positives” and “false negatives” thaewriting, as(n)(v Vv d). On which expression should we ap-
are expected to occur in a translation, in an analogous fagh:the rules to obtain the best mapping? Is the best solution
ion to how the conventional IR parameters of precision at@ique? How is the optimality of translation guaranteed?
recall quantify “errors” in executing a single query. Again, we will answer these questions in this paper.

Our results show that, under such flexible metrics, one In summary, we make the following main contributions
must cope withinterdependencieamong both query con-for approximate query translation:

juncts and disjuncts (Section 4). It is thus critical to notes We propose a generftamework and we define the no-
that query mapping is not simply a matter of translating tion of translation closeness. Our framework can adopt
each constraint separately. Some interrelated constraints candifferent closeness metrics for different applications.
form a “semantic unit” that must be handled together. This, \ye present amlgorithmfor systematically finding the
discovery is Surprising SInce our previous study [3] shoyveq best translation with respect to a given closeness metric.
that query disjunctions can be translated separately, signif- Algorithm NFB will find a uniquebest-mapping in the

icantly simplifying the translation process. Now, in an ap- ,actical cases when semantic units do not “interlock.”

roximate translation scenario, interrelation depends on the s
garticular closeness metric, as we next iIIustratg. s We develop fundamental theorems on the separability

of query components, and safeness of decompositions.
Example 2: Let us continue our movie search example. These results are critical for the development of any al-
Suppose that the user is looking for both VHS and DVD for-  gorithm that attempts approximate query translation.
mats with the query) = v V d, whered = [format = dvd]. ¢ We study how to estimate the precision and recall pa-
(Recall thaty = [format = vhs].) Let us denote the closest  rameters of a translation, and we show that reasonable
mapping (for some closeness metric) of qUErasS(Q). formulas do exist for such estimation.

Suppose that the mediator adopts the minimal-supersetWe briefly discuss related work in Section 2, and then
metric, under which it will generat&(v) andS(d) both as start in Section 3 by defining closeness criteria that combine
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false-negative false-positive

precision and recall. Section 4 studies a basic assumption
on compositional monotonicity and our results on composi- . .
tional separability. In Section 5 we present our framework Q| eom M
and Algorithm NFB. Finally, Section 6 concludes with a

case study to show how our approach may be applied | . . . .
practice. Note that, due to space limitations, we leave thlEe]Igure L Verm diagram of a quey and its mapping/
details of some important results (that support but are fBgte answering.

directly used by our algorithms) and their formal proof to We define our translation metrics based on the param-

an extended report [5]. eters of precision and recall. Both classic notions have
been commonly used for quantifying respectively false-
2 Related Work positives and false-negatives, most notably for information

Information integration has been an active research arearftrieval [35, 36]. In addition, some single-valued measures
2, 6, 7]; however, we believe that our focus on tun- for IR effectiveness have also been proposed, such as the
straint mappingproblem is unique. Many integration syswell-known E-measure [35] (see Section 3).
tems have dealt with source capabilitiesg, Information Finally, the approximate translation discussed in this pa-
Manifold [8, 9], TSIMMIS [10, 11], Infomaster [12, 13], per was motivated by our previous work [3]. As Section 1
Garlic [14, 15], DISCO [16], and others [17, 18, 19]. Thesaentioned, our earlier model of “exact” mappings signifi-
efforts have mainly focused on generating query plans tigantly simplifies the translation process, but unfortunately
observe thggrammarrestrictions of native queries (such asannot accommodate general closeness metrics. In contrast,
allowing conjunctions of two constraints, or disallowing disthis paper specifically explores the notion afproxima-
junctions). tion, and deals with mappings under virtualipy reason-

Our work complements these efforts by addressing thble closeness metric.

semantic mapping of constraints, or analogously the tramg- Query Approximation:

lation ofvocabulary(of native constraints). In particular, the Accounting for Precision and Recall
output of our semantic mapping (which uses the constraint

vocabulary understood by the target source) can be the @Hr goal for query mapping is to find the closest translation
put to the capability mapping that others have analyzed. $ggan original query, which may not be fully expressible at
reference [3] for additional details of what distinguish oUf'€ target. To quantify how closely a mappifg approx-
focus on the constraint mapping problem from other intéhates the original query), we use acloseness criterion
gration efforts and how our approach can be applied in thd}/, Q] that returns a normalized *rating” {0 : 1] as the
common mediation architecture [1, 2]. closenesbetween) and@. The higher the rating is, the

There has also been much work on data translation #f@SerM approximateg). Our framework allows a wide va-
schema integration. The main focus of these related Efty Of closeness functions (we will discuss some intuitive
forts (e.g, [20, 21, 22, 23, 24, 25]) is to unify data represernd important ones). We say that a mappiigs theclos-
tations across mismatched domains by transforming dat£& mappindor @ with respect to the closeness criterign
a unified context, where queries can be performed. In cdhfor any other mapping!’ of @, F[M, Q] > F[M', Q)]
trast, our complementary goal is to map queries to the nat(\\/_é'th ties broken arbitrarily). We denote the closest map-
domain where data reside. We believe our approach is espi8g of @ by S(Q).. _
cially well suited for autonomous sources containing large AN @pproximation may erroneously introdudalse-
volumes of data, such as found on the Web (where it is rRSitivesor false-negativesas compared to the original
economical or feasible to transform all data). In additio§Uery- Figure 1 illustrates these errors using a Venn dia-
note that in our constraint mapping problem we must cofit@m for the result sets of a quegyand its mapping/. To
sider both data conversion and query capability mapping @4antify (and ultimately minimize) these errors, we define
Section 1 discusses). Furthermore, we consider translatip following metrics. Theprecisionmeasures the propor-
errors and closeness, which as far as we know are not cBf0 of the mapping results that are correct:
sidered in traditional schema and data translation work. |Q A M|

Surprisingly, while approximation is critical for query PIM,Q] = W 1)
mapping (Section 1), we have seen virtually no translati%

efforts that stress this notion. However, approximation h e denote the size of the result set of quanyby |X|').
been studied for query processing: First, some work ai is parameter captures the false-positive componentin the

to reduce processing cost through approximation. For iﬁpproximation error. As Figure 1 suggests, pr_e_cision will
stance, references [26, 27] study the approximate ﬁxpoimgrease as we reduce the number of falsg—posnwes.

of Datalog predicates, and [28] uses approximate predicateén contrastrecall_measures the progomon of the correct
as filters for expensive ones. Second, several researcﬁ%?é‘lts that are retrieved by the mapping,

have explored accelerated but approximated query answer- RIM,Q] = |Q A M| )

ing to reduce response time [29, 30, 31, 32]. Third, refer- ’ Q]

ence [33] develops a framework for representing approxs the dual of precision, recall captures the false-negatives,
imate complex-objects and supporting queries over theR. higher recall corresponds to fewer false-negatives. Note
Finally, CoBase [34] explored query relaxation for approxinat hoth theP andR parameters are normalizedjin: 1].
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Month [ Jan | Feb [ Mar] Apr [May] dun [ aul [Aug] Sep | Oct [Nov [Dec| illustration, assume that/;, M, and M5 represenall the
original: | relevant mappings fo€). Ms; is thus the best mapping,
Term i.e, S(Q) = Ms, because it has the highest closeness.
1 [ 2 [ 3 | 4 [ 5 [ 6 | RThresh(.7). (]

1 | 2 | 3

target:
Bimonth

(a) Correspondence eérm andbimonth.

‘ Jan ‘ Feb‘Mar‘Apr‘May Jun ‘- X

We similarly defineP Thresh(6) as follows:
PThresh(6) : F(P,R)[M,Q] = F(P[M,Q],R[M,Q]) =

Q
M, [ ) RIM,Q] ifPIM,Q]>6 )
M,  E—] undefined otherwise

\Y/ P — ——

(b) Mappings forQ = [term = 1]. N The PThresh andRThresh classes represent many intu-
Figure 2: Mappingerm constraints tdimonth constraints. ftive and important closeness metrics. We stress o spe-
9 pping cial instances typically adopted for query mapping, namely
Example 3 (Precision & Recall): Consider translating be- RThresh(1) and PThresh(1). First, some applications may
tween two different calendar systems. As the time unikquire perfect recall and henBd hresh(1), whereM sub-
the original context uses therm attribute, while the tar- sumes), i.e, M D Q. The goal here is to find the most pre-
get usesbimonth. Figure 2(a) shows the correspondenceise mapping (with the highe®t) that subsumes the query
In the original context a year consists of three teries, ( (with R = 1), usually referred to as thminimal subsum-
trimesters); e.g, constraint[term = 1] representsFeb ing mapping[3] or the tight upper envelop§6, 27]. We
throughMay. In contrast, the target divides a year into sigesignateR Thresh(1) as MinSup, since M will retrieve a
bimonths;e.g, [bimonth = 1] matcheslanandFeb. We minimal supersesf what(Q does.
illustrate some mappings for quefy = [term =1] (see  As the dual, other applications may instead require that
Figure 2(b)). . a mapping return only precise answers, M C Q. We
First, consider);:[bimonth = 1:3| (bimonth 1 to 3). can implement this closeness criterionRiBhresh(1) with
Note that() covers Feb, Mar, Apr, May), while M, covers perfect precision. Unliké¢/inSup, the goal now is to find the
JanandJunin addition. Thusj/; incurs no false-negatives,maximal subsumed mappingthetight lower envelop§26,
but does have false-positives. By Eq. 2(hs M; = @, the  27]. We thus refer t#®Thresh(1) asMaxSub.
recall isperfect i.e, R[My, Q] = 1. Furthermore, accord-
ing to Eq. 1, we can estimafe[}M;, Q] = 4/6 = .67 since Example 5: Different closeness criteria will determine dif-
My A Q covers four out of the six months f; (assuming ferent mappings as the closest. Example 4 showed that
that each month has equal likelihood). in our calendar applicationS(Q) = M; wrt. F=
In contrast,M,:[bimonth = 2] is a subset of) (M> C  RThresh(.7). To contrast, consideF= MinSup: We ob-
))- As Figure 2(b) showsP[M», Q] = 2/2 = 1, as adual tain F[M;,Q] = F(.67,1) = .67, F[M,,Q] = F(1,.5)
of the superset mapping, a subset mapping implies a perfegindefined and FIM3,Q] = F(.75,.75) = undefined
precision e, no false-positi\{es). The high precision comeghys insteadS(Q) = M, underMinSup. Furthermore, if
at the cost of a lowered recaille., R[M2,Q] = 2/4=.5.  we adoptMaxSub, both F[M;, Q] and F[Ms, Q] will be

Finally, a mapping may have neither perfect precision nghdefinedand thusS(Q) = M. n
perfect recall. ForMs:[bimonth = 1:2], we can similarly

computeP[M3, Q] = 3/4 = .75 andR[M3, Q] = 3/4 = | . T .
. . . n addition to the above intuitive metrics, many other rea-
-75. Note that}; incurs both false-positivesignis extra) sonable criteria are possible. For instance, if we need a func-

as well as fa_lse-negatn{elsxley is missed). tion that is defined for everf? andR, we can adopt the aver-
To quantify translation closeness, a reasonable met

il . ;
. e a§es such as the arithmetic averdgé®, R) = (P + R)/2

must account for the twoompetinggoals of precision and . ’ .

recall. We thus define our closeness criterfi/, Q] as a (corresponding to the error measure of [27]) or the harmonic

function of the precision and recall betweghand(@). For meanF (P, R) = 2PR/(P+R). The latter actually corre-

: - ._sponds to th&-measurd35], a conventional single-valued
instance, some applications may want to focus on precisi . X ”
PP Y P asure for information retrieval.

while requiring a recall threshold. We denote this important™_. .
q 9 b Finally, we stress that our general framework (Section 5)

class of closeness functions ¥ hresh. Given a threshold q ; tioul i H q X
9, we defineR Thresh(9) as follows: oes not assume particular metrics. However, we do require

that the closeness criterion beonotonic If P, < P, and
RThresh(9) : F(P,R)[M,Q] = F(P[M,Q],R[M,Q]) = R, < RythenF(Pi,R;) < F(P», Ry). Thatis, if mapping
P[M,Q] if RIM,Q]> 6 M, (with parameter$’, andRy) is better thanl/; (with P,
undefined otherwise 3) and R;) in both parameters, thei/s must be an overall
better mapping. Because precision and recall capture both
Example 4: Consider the mappings in Example 3 6= false-positive and false-negative errors, clearly eaason-
RThresh(.7). The closeness fa¥/; is F[M;,Q] = F(P = ablecloseness metric (such as the sample functions just dis-
67, R = 1) = .67. Similarly F[M3,Q] = F(.75,.75) = cussed) must satisfy monotonicity. (Monotonicity supports
.75. SinceM, has an unqualified recally < .7), its close- our framework through the “separability” theorems, which
ness isundefinedi.e,, M, is aninvalid mapping. For our we discuss in [5] due to space constraint.)
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4 Query Compositions [ Sty | St | Sttivts) | Stint) |
In this section we address two fundamental questiongbimonth = 1:3] | [bimonth = 3:5] | [bimonth = 1.5] False

whose answers will help us build our approximate query(”:®) = (67.1)|(P,R) = (67.1)| (P, R) = (8, 1| (P, R) = (1, 1)
translation machinery. The first question (Section 4.1) is (@) F(P,R) = MinSup.

about compositional monotonicity. For instance, if we wish| S(t1) | S(t2) | Stivt) [ Stint) |
to translate query) = AAB asS(A)AS(B), canwe COM-  [[bimonth = 2] | [bimonth = 4] | [bimonth = 2:4] | False

pute S(A), the best translation fod, independently from | (P, R) = (1,.5)| (P,R) = (1,.5)| (P,R) = (1,.75)| (P,R) = (1,1)

that C}‘orBt’.;1 Ofr wllltﬁotmfh(_)l\l/v bthe bestt trrillns_lattion fAtrdde- " (b) F(P,R) = MaxSub.

pend on the tact that It will be eventually Intersected With pgiq,re 3: Closest mappings for andt, (Example 6).
S(B)? Furthermore, the second question (Section 4.2) is g- _ PpIng ol 2_( ple 6)
whether in general it is possible to find the best translatié®f MinSup (i.e., RThresh(1), which requires a perfect re-

for a query likeQ = A A B by separately translating itsc@ll threshold). As a dual result, conjunctions afeays
components! andB. separabléor and only forMaxSub (i.e., PThresh(1), which

. - requires a perfect precision threshold). Due to space limita-
4.1 Compositional Monotonicity tions, please refer to reference [5] for our formal results.
Consider a query compositidp = @1 © - -- ® @, Wwhere Here we simply illustrate with an example.
operator® is eitherA or V. The following assumption re- - )
duces our search space when looking for a best translatiéré@mple 6 (Separability): Consider queryt;:[term = 1]
Assumption 1 (Compositional Monotonicity): For  a sodt?'lrerm =] (I?L the dgqlencitgr s;ys\';etms In dExa”.‘p'e 3).
QUETY COMPOSItion = Q1 © --- ® Qy, let S(Q:) be e will compare if their disjunctiorft; V t») and conjunc-

the closest mapping af; with respect to some closenes&©" (t1 A't2) are separable undédinSup and MaxSub.

criterion 7. For every mappingv{; of Q;: (a) MinSup: Figure 3(a) shows the closest mappiifis, ),
FMi O OMp, Q< F[S(Q1) ®-085(Qn),Q]. m S(t2), S(t1 V t2), andS (¢ A t2) underMinSup (e.g, Ex-

. . . . ample 5 shows how we determineétt;)). It turns out
th JQ;?;Z‘;T?Z%Z;?AISO@Z ;hghelrywv?/ewcl:zrr: g‘(c))csuesatr)%hug;ﬂ for MinSup disjunctions are separable, but not cpnjunc-
the “local optimals” as the building blockise., the mapping 1o We can verify tha(f, v t2) = S(t1) V S(t) (e,

. ; bimonth = 1:5] = [bimonth = 1:3] V [bimonth = 3:5]). In
S(Q1) © -+ © 5(Qn), with the best mappings for eadh. E: ntrastsS (¢, /?]tz)[;é S(t1) /\S(t:j]), b[ecauseS(tl /\5t]2)) =
In other words, the search for the best translation for ea Vise, while S(t) A S(t2) = [bimonth = 3]
Q; will not be affected becaus®; appears with other terms ' ! 2 '
in Q. Note, however, that this assumption doed tell us
if decomposition is the right strategye., it does not tell us
if S(Q1) ® - 8(Q,) is as good ass(Q). (We study
this “separability” issue in Section 4.2.) It only says th
S(Q1) ®---®8(Q,) is the best of the mappings fQr that
use decomposition.

Under certain closeness metrics, suchMi&Sup and | general, for any metric other thainSup or MaxSub,
MaxSub, we can formally verify Assumption 1 (see [S])nejther conjunctions nor disjunctions are always separable.
We do not have a proof for the general case, but we believgferefore, a general framework for more flexible approxi-
holds in all cases where we need to use the assumption. Thation metrics must cope with the potential inseparability

is, when@);'s are “semantically independent,” their individsy hoth types of compositions, as we will discuss next.
ual best-mappings should lead to an overall better mapping,

and Assumption 1 should be valid. Otherwise, wiggrs 2 Framework and Algorithm

are indeed interrelated, the closest mappfi{@)) proba- This section presents our framework and the associated al-
bly cannot be constructed by separating the componengsrithm for approximate translation. Section 5.1 first de-
For such “inseparable” compositions (Section 4.2), our dines a translation rule system for codifying the mappings
gorithm will not use Assumption 1 and thus it is harmlessf basic semantic units. Based on the given rules, our algo-
Finally, we stress that, even for the rare exceptional casgthm will rewrite an original query using the semantic units
S(Q1) ® -+ © S(Qy) clearly remains at leastgoodmap- to construct the closest mapping. As we just discussed, the
ping for Q. rewriting must respect compositional separability to ensure
4.2 Compositional Separability mapping optimality; Section 5.2 presents such an algorithm.

When translating a query compositigh= Q1 © - - ® @, 5.1 Semantic Translation Rules

can we handle the subqueries separately? We saytist Query translation must be based on human expertise to re-
separabldf S(Q) = S(Q1) ® --- ® S(Qy), in which case solve semantic heterogeneity. This section identifies the es-
we can obtain the overall mapping simply by translating ttsential requirements of a rule system that codifies human
components individually. It turns out that separability dexpertise. We will illustrate with a “reference rule system,”
pends on the particular closeness metric chosen. Our reswisch is based on our mechanism designed earlier specif-
indicate that disjunctions aadwaysseparabldéor and only ically for minimal-superset mapping [3]. We adapt this

(b) MaxSub: We obtain the opposite results: First, the con-
junction is separable, sing®(t1 A ta) = S(t1) A S(t2)
False (see Figure 3(b)). Second, the disjunction is not sepa-
ar%ble:S(tl) V S(t2) = [bimonth = 2] V [bimonth = 4], but
S(t1 V t2) = [bimonth = 2:4]. [
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R1) [format = F] — emit: [desc contains F] // (P,R) = (1.0,0.8)
R,) [format = F1]V [format = F2|; FormatPair(F1,F2) — T = Type0fPair(F1,F2); emit: [type = T] // (P,R) = (1.0,1.0)
R3) [term = T] ~— (B1,B2) = TermToBimonth(T) ; emit: [bimonth = B1:B2] /| (P,R) = (.75,.75)
R,) [term = T1]V [term = T2] — (B1,B2) = TermToBimonth(T1,T2) ; emit: [bimonth = B1:B2] /| (P,R)=(0.8,1.0)
R5) [fn = F] — emit: [review contains F] // (P,R) = (0.9,0.7)
Rg) [In =L] = A = LnFnToName(L, "*"); emit: [name = A] /| (P,R)=(1.0,1.0)
Rz) [In =L]A[fn = F] » A = LnFnToName(L, F); emit: [name = A] // (P,R) = (1.0,1.0)
Rg) [price in P1:P2] — emit: [price > P1] A [price < P2] // (P,R) = (1.0,1.0)
Rg) [subject = S] — K = SubjKwds(S); emit: [review contains K] /] (P,R) = (0.9,0.7)
Ryo) [title = T] = W = WordsIn(T); emit: [title contains W] /| (P,R) = (0.9,1.0)

Figure 4: Example mapping specificatiéfy,.q with respect taF = RThresh(.7).

mechanism (to handle semantic units that can be comptexkRThresh(.7), i.e., S(v) = M, (assuming no other rele-
queries) for general approximate translation. vant mappings exist). Rul&, simply matches anformat

We stress that our contribution i®ot the rule system constraintf (as amatching at the left side and defineX f)
itself, but its integration with a general query mappingith respect taF at theemit clause of the right side.
scheme. The “reference” rule system is rather simelg,( Furthermore, we notice that a query asking for a pair of
it has no recursion and negation). However, note that our fdrmats (such a® Vv d, whered = [format = dvd]) can
gorithm can work with any rule mechanism that satisfies oonrap perfectly to a particular type.g, [type = video]).
soundness and completeness requirements (see later). Stioce we cannot construct this perfect (and thus the clos-
instance, if necessary, our framework can adopt more &st) mapping from the components, such a query forms a
phisticated rules that support recursive query pattezrgs ( new semantic unit and thus Rulg, defines its transla-
a conjunction of arbitrary number of conjuncts). Neverthéion. At the left side,R, will match a disjunctive pattern
less, we believe that our simple system is well suited to m¢&irmat = F1] V [format = F2] for thoseF1 andF?2 that sat-
query translation tasks, as we will demonstrate throughsfy the conditionFormatPair(-) as a pair of formats. For
case study in Section 6. a matchingn (e.g, m = vV d), the right side then finds the

Figure 4 shows anapping specificatiof,,.q consisting corresponding type with functiofype0fPair(-) and emits
of rulesRy, ..., Ry for translating queries that search foS(m). Note that we assume that conditions and functions
media items of books, audios, and videos (based on a raa both implemented externally with some programming
scenario that Section 6 will study). Our discussion assumasguage€.g, our implementation uses Java). |
F= RThresh(.7). Each rule defines the closest mapping
(with respect ta¥) of the matching query patterns, as we Our discussion will assume an original quey,,., =
nextillustrate. (Note that, as Section 6 will discuss, we typith V ¢)(v V d) as a running example. (Referring to Fig-
cally only need a rule for a query “pattern” rather than evenre 5(a), we are querying the VHS or DVD titles by Tom
“instance.”) Figure 4 also shows the estimaf@ R) for Hanks or Tom Cruise. Note that we omit theoperator for
the particular mappings. We stress that our algorithm wilbtational simplicity.) To map a query, we begin by match-
not require these numeric values to compute the best mimey it to the rules to find the subqueries for constructing the
pings. However, if we want to quantify the actual closenegserall mapping, as we next illustrate.
of an output mapping, we can estimate it based orPthaed
R of the rules (using the technique in [5]). Example 8 (Rule Matching): Consider matching@,,.,

] ] against rules<,,.q; i.e., we want to find the subqueries of

Example 7 (Mapping Rules): We illustrate ruleR, and () that match a pattern described by some rul&jp.q.
R, for translating medidormat. Suppose that the originalsince a matching can be any complex query (with conjunc-
context expects formatsardcover and softcover (for tjons, disjunctions, or both), we perform the matching on
books),cassette anddisc (for audios), andrhs anddvd  some normal form, say, DNF (Disjunctive Normal Form).
(for videos). In contrast, the target accepts meglig of (e could have instead chosen CNF or Conjunctive Normal
book, audio, andvideo. _ Form. The choice is not critical, but it does affect how we

First, consider aformat constraint such ass = strycture the algorithm, as Section 5.2 will discuss.)
[forma'F = vhs]. As an atomic constraint, it needs a rule Specifically, we write), ., in a DNF to compare it with
to define its mapping. To illustrate, we have at leagie DNF patterns of the rules. Note that a DNF has the form

two choices: First, consided/; = [type = video]. D ~ S o
X X . ; 1 V-V Dy. (Note that we writeX to stress that itis a
Since M, will access both VHS and DVD titles, it hasg,ninction: we will similarly useX for a disjunction). For

(P,R) = (.5,1) (assuming VHS accounts fdi0% of Q... we haveD, = (thv), .., Dy = (tcd) (see Figure 5).

videos). With F= RThresh(.7) (see Eq. 3),M; has a 2
closeness ofF(.5,1) = .5. Alternatively, mapping\f, — As our framework also assumes, each rule specifies a DNF

[desc contains vhs] simply looks for the keyword injesc Pattern of the formi, v --- v d,,: e.g, rule R, has pattern

(a textual description of the media). Suppose that abdtt With dy:[format = F1] andd,:[format = F2].

80% VHS descriptions mention the word, and on the other We next determine if the rule pattern matches some sub-
hand only VHS items da}/, will have (P,R) = (1,.8) or query ofQ,,,.q- TO see if a patter® represents aubquery
F(1,.8) = 1. ThusM; is the closest mapping with respectve check if everyd; in P is “simpler” than some differ-
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DNF(Qred O rule (and thus this requirement). Note that any individual

constraint (such asg) is clearly a semantic unie.g, R; and

Rs3 in K,,.q both describe such single-constraint units.
Moreover, a semantic unit can be a composite query

(such a Vv d). Our separability results (Section 4.2) show

that query compositions can be inseparable (and thus form

t = [n=tom] a unit) depending on the particul&{P, R). For instance,

h={n=hanks]  C = [n=cruise ] since forF= RThresh(.7) disjunctions are not always sep-

V = fformat=vhs] O = [format =dvd] arable (see [5] for the formal results), a semantic umaty

(a) Matchings in query DNF. contain disjunctionse_.g, asink, aljd_R4. (Obviously we

rule | matching rule output (P,R) only need a rule for interrelated disjunctsy, we do not
Ry |my v Ty :|desc contains vhs] 1, 8) need one fofin = hanks] V [format = dvd].) Similarly, we
Ry |my :d 7 :|desc contains dvd] (1., 8) may expect a semantic unit with conjunctions [aj, Rr. _
Ry |myqiv Vd |fiteg:[type = video] (1.,1.) In fact, as Section 4.2 dlscussedz for any plose_ness metric
Rs |my :t 7 :[review contains tom] (.9,.7) other thanMinSup and MaxSub, neither disjunctions nor
Re |my :h 7ty :[name = "hanks, "] (1.,1.) conjunctions are always separable, and thus a semantic unit
Re |me :c e :[name = "cruise,x"] |(1.,1.) may be just any complex queries. Although in many cases
R: |mn:th | g :[name = "hanks,tom"] |(1.,1.) a unit might be no more complex than simple disjunctions
Ry | my, :te iz :[name = "cruise,tom"]| (1., 1.) or conjunctions (as if,,.4), our algorithm can generally

. . . handle any complex units.
i (b) Matchings and their mappings. ] We stress that our soundness and completeness require-
Figure 5: Example querg),,.., = t(h V ¢)(v V d) and its ments together enable the analogoutilyide-and-conquer
matchings with respect thq. approach. Given an original quefy, if Q can match a rule,

entD; in the query. Note that, since bofhy andcij are a thenitselfis a semantic unit. We simply fire the rule to com-

simple conjunction, we say thay is simplerthan D; (or puteS(Q). Suppose) denotes the rule output after match-

D; is more complexhand;) if d; matches some part of -2 @, the soundness requirement ensuresdii@t) = ¢Q.

% ; o A ) .~ Forinstance, sinc@ Vv d) will match ruleR., it follows that

D;. For instance, consider pattedpn Vv d» of Ry: Sinced; S(vV d) = [type = video] as given byR,.

can rrlatch; (with F1 bound to cons}anths), it is simpler On the other hand, i) does not match any rule, then by

than D; (among others). Similarlyl, can matchd (with  the completeness requireméptis not a semantic unit. In

F2 = dvd) and is thus simpler tha®,. ThusR, matches other words, we can construg{) with the semantic units

subquerw V d (or m,q in Figure 5) of@,,,..,1.€.,vVdisa thatare subqueries 6J. For instance, sinc@,,., contains

matching toR;. the matching subqueries shown in Figure 5, these semantic
We repeat this process for every rule to find all the matchnits will be thebuilding blocksfor constructingS(@,,,.4)-

ings. Figure 5(a) indicates these matchings as subtree$Soth construction of complex mappings thus becomes the

Q@ ,eq'S DNF. Figure 5(b) then summarizes each matchimgain challenge of our framework, which we next discuss.

m, the rule output forn (denoted bym), and the estimated : i ) ;

(P, R) (from Figure 4). (As noted, our algorithm does no?'2 Algorithm NFB: Normal-Form Based Algorithm

need these parameter values for computing mappings) Th.is section presents the core algorithm of our query trans-
lation framework. Based on the rule system just discussed,

To enable query translation, we assume two essential Adgorithm NFB will construct the mapping of a given query
guirements for semantic rulesirst, we require that each from the semantic units that it contains.
rule define the closest mappings of the matching queriesTo construct a complex mapping, we are essentially look-
with respect taF (P, R)— which we refer to as theound- ing for a rewriting using the semantic units. For instance,
nessequirementi(e. a rule generates sound mappings). Teonsider our example quegy,,.,. As we will see, we can
determine such mappings, we can use source statisticsc@rstruct its mapping from that of the units,, m;., and
perform sample queries) to estimate the precision and reeall; (see Figure 5)i.e., S(Q,,cq) = (Mzn V Mie) (Mipq)-
for different mappings (as Example 7 showed) and chog®ecall thatm denotes the rule output for a matching)
the one with the highest(P, R). In fact, we can also sim- In other words, we rewrité),, ., into a Boolean function
ply makeintuitive choicesj.e., in practice a closeness funcof these units:B; (m, mice, Mmyq) = (men V me) (Myg)-
tion is not explicitly required when defining mapping rules(Note that as a rewriting; is logically equivalenttd),,,.,.)
which Section 6 will discuss. We refer to such a rewriting as decompositionsince it
Secongdwe require that there be one rule for every séreaks the query into the semantic units. Based on de-
mantic unit— which we refer to as theompletenesse- compositionB; (but not others), we can simply construct
quirement, since it enforces necessary rules be suppliedS&Y,,...) = B1(Mzn, Mite, Myd)-
semantic unife.g, v andwv V d in our example) is a query  There exisimanydecompositions for a given queeyg,
whose closest mapping cannot be constructed from thatB®f = (mq, V me.)(m, V my) is another one for),,,. -
its subqueries. Since a semantic unit is “atomic” in queRor query mapping we want to find safe decomposi-
translation, its mapping must be manually defined withteon, in which everycomposition (conjunction or disjunc-
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Queg = th Dc)(v T d) Kineg at the root, and similarly Step (4) will form separable dis-

(L ONF Nomaization | —» [ 2 Foale Meiohing | junctions (orsafedisjunctions) at the Ieave_s. Spgcifically,
' - as Example 9 below explains, Step (3) will rewrs,,.,
¢ Qmeg = thv Dthd Dtev Dted g‘gé #i"u?;g) into a conjunctive form (see Figure 6) that is separable,
[ 3.safe Conjunction | +————— %79 e, S(Q,.) = S(th V tc)S(v Vv d). Step (4) then further
| Queg= (thOtc)(v Od) rewrites each resulted conjunct into a separable disjunction
[ 4 safe Disjunction | «———— of the semantic uniti.e., the first conjunct agm;;, V my.)
} B=(myOmy)(my) and the second &%n,4), which Example 10 will illustrate.
[ 5. Mapping Construction] Algorithm NFB We have thus formulated the safe decomposition in a CNF:
-li B = (myp V mye)(myq). Finally, Algorithm NFB simply
S(Quea) = (M I M) (My) constructsS(Q,,.;) from B as just discussed.

Figure 6: lllustration of AlgorithmNFB for query@,,,.q

with respect to rules, ... Example 9 (Safe Conjunction): We explain Step (3) of

Algorithm NFB, which uses functioSafeConj to rewrite an
tion) is guaranteed to be separable. The optimal mapput query into a conjunction that is guaranteed to be sepa-
ping can then be constructed straightforwardly from suchble. As a basis, to determine whether a conjunction is sep-
a decomposition: We simply separate every compositicaarable, we have developed the sufficient conditions (called
and thus only deal with the semantic units by their rulethe safetyconditions) that imply the separability. Due to
To demonstrate, note thd?, is such a safe decomposispace limitations, we will leave to reference [5] the safety
tion (which can be shown by our results in [5] for deteformalism. We simply stress here that the conjunction that
mining suchsafety. Because,,., = Bi, we can ob- Step (3) formulates will satisfy our formal safety conditions
tain S(Q,,cq) Or S(B1) as[S(myp) V S(mie)]S(myq) (by in [5] and thus must be separable.
separating every composition sindg is safe). Apply- Intuitively, to eventually form a safe decomposition of
ing the rules for the units (Figure 5), we can construct tlig,, ., using the semantic units (see Figure 5), we first form
mapping formBy, i.e, S(Q,,.q) = (M V Mz)Tyg = a safe decomposition for every conjunction in the former
([name = "hanks,tom"] V [name = "cruise,tom"]) A using that in the latter. Note that, since bagh,., and
[type = video]. the units are written in DNF, all their conjunctions are ex-
Therefore, the main challenge for mapping a query is piicit at the leaves (of the query tre@g, Q,,., has(thv),
find its safe decomposition. Our results (as we will see (#d), (tcv), and(ted) as Figure 6 shows. In particular,
Theorem 1) show that, in practical cases, there exists exattl§y can rewrite(thv) as (t)(h)(th)(v) with the four “sub-
onesafe decomposition (among many possible rewritinggynjunctions” from unitsm;, mp, men, andm,q. We
for a query. Our AlgorithmVFB (Figure 7) will find such a can then omit(t) and (k), since they are subexpressions
unique decomposition to construct the closest mapping. of (th) and are thus redundante, they will not con-
Given a querw and mappmg ruleg<, NFB will out- tribute to the next step). Consequently, we have rewrit-
put the closest mapping @} with respect to the closenesden Qs = (th)(v) V (th)(d) V (tc)(v) V (tc)(d) or
metric (P, R) that K is defined upon. Referring to Fig-V{(th)(v), (th)(d), (tc)(v), (te)(d)}.
ure 7, NFB first formulates the safe decomposition in Step Our goal here is to formulate a conjunction (at the root
(1) through Step (4), and finally Step (5) construsts)) o_f the query tree). Smcg the apovg rewriting is dISJl.JnC—
accordingly. We will illustrate by translating,,., using tive, Step (b) ofSafeConj simply distributes the outer dis-
Kmea, Which defines the mappings undee RThresh(.7). junction over the inner conjunctions (using the standard
Figure 6 summarizes this process, showing the input aRgolean algebra). Omitting any redundancies, we will ob-
output for each step. tain a conjunctive forn®), .., = C1C> with two conjuncts
Algorithm NFB (for Normal-Form-Baseliis essentially C1 = (th V tc) andC> = (v V d). (In [5] we show that the
based on Boolean normal forms to systematically rewritec@njunction is safe and thus separable.)
query into a safe decomposition. As Figure 6 sho&B Finally, Step (c) ofSafeConj determines if every such
starts by normalizing the input query into a DNF (of th€onjunct is ready for Step (4) of AlgorithiVFB, or else
constraints) in Step (1) and finally formulates the safe dlénEEdS further rewriting. In other words, we want to test if
CompositionB as a CNF (of the semantic units) in Step (4pz can .be written as the Sum of the contained L:IﬂitS (which is
Note that we could have instead structuretbial algorithm €ssentially the safe disjunction that Step (4) will formulate).
that starts with a CNF and concludes at a DNF. In particular, referring to Figure /> contains unitsn.,, mgq
As an overview, we now summarize hoWiFB works andm.q. Since we can indeed writ€; as their sumie.,
(Figure 6). Step (1) first normalize$,,,, into a DNF, on ¢z = My V ma V myq), it does not need further rewriting,
which Step (2) performs rule matching. Section 5.1 di@nd similarly neither does. .
cussed these steps, resulting in the matching units in Fig-In general, while not shown in the above example, any
ure 5. NFB will then rewrite @,,., into a safe decompo-resulted conjunct that cannot be written as a sum-of-units
sition B in a CNF (as just mentioned), a simglgo-level will be further “decomposed.” In other words, suchwill
tree with a root conjunction and some leaf disjunctions. T rewritten, by recursively callin§afeConj, into simpler
ensure that such CNF rewriting is safe, Step (3) focusasnjuncts. To illustrate, consider a quewy V yz, and sup-
on forming a separable conjunction (osafeconjunction) pose that the matching units ate = wz V y, ms = w,
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Algorithm NFB: Normal-Form Based Query Mapping
Input: e Q: an arbitrary query in the original context.
e K: the constraint mapping specification for a target system 7' w.r.t. a closeness criterion F.
Output: S(Q), the closest mapping of @ for T w.r.t. F.
Procedure:
(1) DNF Normalization:
e convert () into DNF: DNF(Q) + Zln:ll f)l, where D is a simple conjunction of constraints.
(2) Rule Matching:
o if ) itself matches a rule: S(Q) «+ Q; output S(Q) // fire the rule for Q as a semantic unit.
e clse: find all the matchings mi,...,m, of @ w.r.t. K; note m; is in DNF: m; = EJ,J
(3) Safe Conjunction: // rewrite DNF(Q) into a safe conjunction Q = A(C), such that
e C={C1,...,Cn} + SafeConj(DNF(Q)) // every conjunct Cj, can then form a safe disjunction.
(4) Safe Disjunction:
o for all C, € €: rewrite Cr, = &1V -+ V & into C = th for all matchings m; s.t.:
— every dAH- in mm; appears as some #; in Cy, // i.e., m; can be found in G and m; C C.
// omit m; if m; C my for some my, and thus m; is redundant because of my .
— Amy s.t. mi C my, i.e., m; covers only a subset of Z; terms that m; does
® B(mi,...,my) szl Cr // the safe decompositon in terms of the matchings as units.
(5) Mapping Construction:
o compute m; for each m; actually used in B // fire rules for the relevant matchings.
e S(Q) + B(my,...,my); output S(Q) // construct the mapping from B.

Function SafeConj(DNF(Q) = 21721 151): // rewrite a query in DNF into a safe conjunction in CNF.
(a) Conjunction Rewriting: // rewrite each D; using the DNF disjuncts of any matching m; found in Q.
o for all D;: rewrite D; = H(f” for all d;; (a disjunct of DNF(m;); see Step (2) above) s.t.:
- Jij D 151, i.e., dij is a subconjunction of D, // as simple conjunctions, ciij is simpler than Dj.
- A dyrjr s.t. (fi]- is a subconjunction of ciizj: /| omit d;; that is simpler than other (iirj/.
(b) CNF Formulation: /| standard Boolean algebra to convert @ into a conjunctive form.
e rewrite (@ in CNF (in terms of the ciij’s), e, Q= HC’, for all C' s.t.
-C= &1V -V Im, where every &; denotes some dij from Dy as formulated in (a)
// omit C if C" C C for some C', and thus C is redundant in the CNF of Q.
- AC =&\ V- Vi, st Vi), 38,8 Cd
(¢) Recursive Rewriting:
o C < ¢ // to store the formulated conjuncts.
eforall C =&, V-V &, formulated in (b):
— M « {m; | every di; in m; appears as some #; in C'} // all m; found in C s.t. m; C C.
— if every & in C appears as d;; in some m; in M: // i.e., C' = V(M).
C+—CuU {é} // a safe disjunction of Step (4) can be formed; no need for further rewriting
else: @ «— @ U SafeConj(C) J/ recursively perform further rewriting of C.
o return € // DNF(Q) is rewritten safely into A(C).

Figure 7: AlgorithmNFB for approximate query translation.

ms = x, my = y, andms = z. Givenwz V yz as in- the contained unitse.g, C> = (my, Vmg V myq). Re-

put, SafeConj will first rewrite it into (wz V y)(wz V z). moving the redundant termsd., m, C my,q andmg C

Conjunct(wz V y) can be written as sum-of-units simplym.), we obtainCy = m,e. Similarly, we can rewrite

asmy, but the latter conjunct cannot. Consequently, a r€4 = (myg, V my.). (We show in [5] that the disjunction

cursive callSafeConj(wz V z) will further rewrite the latter is indeed safe).

into (wV z)(z V z), where the new conjuncts can be written It turns out that, when semantic units are not “interlock-

as(ms V ms) and(ms V ms) respectively. ing,” the disjunctions so formulated will be safe and thus
This recursive process will eventually terminate and preeparable. As we will see, in the rare interlocking cases, a

duce a separable conjunction: Intuitively, every recursicafe decomposition may not exist and thus Step (4) may not

will derive strictly simpler subqueries as just illustratedorm safe disjunctions. For the majority of cases, as in this

Eventually,SafeConj will terminate with the simplest form example, the resulted disjunctions (and thus the decomposi-

(if not earlier),i.e., a disjunction of atomic constraints.@g, tion overall) are safe. [

w V z), which is trivially a sum of single-constraint units.

Please refer to reference [5] for a formal proof that the con- BY constructing a safe decomposition, AlgorithittB

junctions so formulated are separable. will generate the best translation, as we have illustrated.
After forming the safe conjunction in Step (3) as judessentially, based on the optimal mappings for semantic

shown, AlgorithmNFB will then focus on the disjunctions Units (as given by sound rules), and by respecting constraint

in Step (4), as the following example illustrates. dependencies (as t'h'e units indicate) to preserve optimality
through query rewritingNFB guarantees the overall opti-

Example 10 (Safe Disjunction): Continuing our example, mal mappings. Our results below show that, in the vast
Step (4) will next rewrite each conjun€t; into a safe dis- majority of cases, namely when no semantic units “inter-
junction. (Like our discussion for conjunctions, the resultddck” (defined below), a query will have aniquesafe de-
disjunctions will satisfy the formal safety conditions in refeomposition. Consequently, AlgorithiFB will find this
erence [5] and thus must be separable.) As just illustrateajque decomposition and thus construct the closest map-
Step (3) ensures that evety can be written as the sum ofping. Please refer to reference [5] for a proof.
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Theorem 1 (Unique Safe Decomposition)Given a query  We believe that such interlocking cases will be rare in
() and a mapping specificatidi w.r.t. some closeness crite-practice. As we intuitively noted above, interlock occurs
rion F, if @ has no interlocking semantic units by matchingetween such “overlapping” units as,, andm,.. That
K, then is, interlocking will happen only when a constraietd, =
e there exists ainiquesafe decomposition of), from in our example) participates botha conjunction unité.g,
which§(Q) w.r.t. F can be constructed, and mgy) and a disjunction unit €.g, m,y.). If = appears in
e Algorithm NFB will find the safe decomposition andonly simple-disjunction units, lik¢z v y) and(z V z), no
outputS(Q). interlocking will form. (Similarly, no simple-conjunction
1its can interlock.) Because a semantic unit represents in-
erdependencies among its constraints, such complex inter-
locking is very unlikely in practice. In fact, in our case study
pfieal mapping systems (see Section 6), we have indeed ob-
served no instances of such an “anomaly.”
When interlocking does occur, because no safe decom-
sition exists, AlgorithmVFB will not be able to construct
Q). We can address these exceptional cases in two ways:

Otherwise, when there are interlocking units, a safe deco
position for@) may not exist.

On the other hand, Theorem 1 also states that, whe
guery involves interlocking units, it magot have a safe
decomposition. Note tha& still have a best mapping, but
S(Q) must instead be found among the unsafe decomp
tions. (Our completeness requirement in Section 5.1 ass X . ! ; .
thatS(Q) can be constructed frosomedecomposition us- TSt We may simply require these interlocking querieg(

ing its semantic units.) We formally define interlocking bety V 2) be defined by rules. Alternatively, we can find all
low, and then illustrate with Example 11. the unsafe decompositions, estimate the closeness of each

corresponding mapping, and select the besf@3). Note
Definition 1 (Interlocking Units): A set of semantic units that it is possible to estimate tfi/2 andR parameters and
U is interlocking if for some m € U, there exist thus the closeness of a constructed mapping; we show such
m1,...,my also ini such that the following hold: estimation technique in [5] due to space limitations.
(1) Let DNF(m) = Egk and DNF (m;) = Edz’j- (a) Finally, we conclut_je by analyzing the running time of
Every m; has somel;; that overlaps with but is not AI90Mthm NFB. First, in Step (1) and Step (3)&, subrou-
. . s ~ . tine SafeConj), NFB will perform DNF and CNF conver-
strictly simpler than somel;;; at least one sucll;; is  gjon respectively. Such a conversion is in general exponen-
strictly more complex than the correspondifig (b)m  tial in the number of query constraints (because the Boolean

is simpler than(m; V...V my). satisfiability problem is NP-complete [37]). However, this
(2) Let CNF(m) = []é and CNF(m;) = []¢;. For conversion has been well studied and practical algorithms
somecy, ¢y C Y0 Gy, butéy, ¢, Vi m have been proposed in the literature [38]. Therefore, for
gueries of practical sizes, we believe this normalization can
Example 11 (Interlocking Units): Consider queryQ) = be reasonably efficient.

zy V z. Suppose that (by matching rule@)has semantic  Furthermore, the other steps of AlgorithifB are quite
units (written in DNF):m,y. = (x) V (2), may = (2y), efficient and actually run in linear time of the input size:
mg = (x), my = (y), andm. = (z). Note that these units Consider a query) and rulesk’ as input (note that they are
are interlocking: Intuitively, an interlock exists becausis all in DNF after Step (1)). LetDg and Ng be the num-
involved in both conjunctiom,,, and disjunctionn,..  ber of disjuncts and constraints-per-disjunct in the DNF of
More formally, we show the interlocking by Definition 1.); similarly, let Dr and N be those of the DNF query
Letm = myy., m1 = mgy, andmy = m.. First, Condi- pattern in a rule. LetR be the number of rules id.
tion (1) will hold: Term (zy) of m, satisfies (a) with re- With these input size parameters, Step (2) will take time
spect to tern(z) of m, and similarly term(z) of m» with  O(NoNrDgDgR): Thatis, the algorithm will match each
respect to ternfz) of m. In addition, term(zy) of m, is pair of constraints (thus the factd¥y Ng), for each pair
also strictly more complex thafw) of m. Becausen is of query and rule disjuncts (thus the factby D), and
indeed a subexpression of; V ma, (b) is also satisfied. for each rule (thus the factdt). Step (4) will then run in
Second, sinc€NF(m) = (z V z), CNF(m1) = (z)(y), O(CqM) time, whereC is the number of CNF conjuncts
and CNF(mz) = (z), Condition (2) also holds becausef @ (thus an upper bound of what Step (3) can generate)
(xV2z) C(x)V(z)while (zVz)Z (z)and(zVz) € (2). andM is the number of matchings found in Step (2). Fi-
Consequently may not have a safe decompositionally, Step (5) will simply take time o (M).
(by Theorem 1) because of the interlocking. Intuitively, . . ]
to rewrite Q using the semantic units, we must separa@ Practical Implications: A Case Study
either the disjunction (betweemy andz) or the conjunc- To verify that our framework makes sense in practice, we
tion (between: andy). (Otherwise remains monolithic.) explore several sources on the Web. We wish to study how
However, neither will be safe— The former, such as into “program” our general framework for a specific mapping
By = myy V m,, will break the dependency between system. Thatis, we will demonstrate the mapping rules for a
andz (as indicated byn,..) and thus is not safei(e., it representative scenario. Through this concrete example, we
will fail the safety conditions in [5]). Similarly, the latteralso want to understand practical issues such as the ease of
will breakmy,,, such as ilB, = mgy.(m, Vm.), whichis composing rules, the number of rules typically required, and
also unsafe (by the safety conditions in [5]). m whether approximation is essential in practice. This case
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Bg)

B7)

Target Source: BN at www.barnesandnoble.com

S2 = MapSubjHeading(S1); emit: [subject = S2]
[subject contains W]

S = SubjKwdToSubjHeading(W); emit: [subject = S]
[format = F1] — F2 = MapFormat(F1); emit: [format = F2]

1)
S5)
)
1)

Ss)

Target Source: Socrates at socrates.stanford.edu

[title O T] — [title O T]
[A = NJ]; LnOrFn(A) — emit: [au contains N]
[subject O S1]; EqualsOrStarts(0)

S2 = MapSubjHeading(S1); emit: [subject = S2]
[subject contains W1]

W2 = MapSubjKwd(W1); emit: [subject contains W2]
[format = F] — [keyword contains F]

mappings are given bi,, B3, andB,. In addition, note

e L e s, [He contains W that True (a trivial superset) andlalse (a trivial subset) are

B3) [In= L]~ A = LuFnToName(L, null); emit: [author = A both possible mappings (when no better ones exist, as in
By) [In=L]A[fn = F] = A = LnFnToName(L, F); emit: [author = A]| rules Sg, Eg, and E7), which will effectively remove the

Bs) [subject O S1]; EqualsOrStarts(0) — matching units from the translated query.

6.2 Observations

Our case study shows that the query-mapping framework
that we have presented can be easily applied in practice. The
number of mapping rules are small: Observe that constraint
dependencies exist only within a cluster of attribuig(

{In, fn} as in B, and{format} as inSs) and are typically
simple. Thus we will only need a few more rules (that de-
scribe compositional units) than the number of atomic con-
straint patterns in the original context. In addition, note that

we only need a rule for a quempattern (e.g, [subject O
S1] of Bs) when itsinstantiations(e.g, [subject = "web
design"] and[subject starts "web"]) share the same way

Sg) [format = hardcover]V [format = paperback] — True

Target Source: EB at wuw.evenbetter.com
E,) [title O T] = W = WordsIn(T); emit: [title contains W]

Es) [fn = F] ~ emit: [keyword contains F] of mapping, which we found to be true in our study. Fur-
E3) [In = L]+ A = LoFnToName(L, null); emit: [author = A] thermore, it is often possible to reuse mapping rules for dif-
?; {L’Lb:eg ’ [;']‘ i Qi’ Sojdirii‘(‘g)‘f”::“;tﬁk? Wirr”dlio[::;::rvi Al ferent sources as they share some common constraigts;

EZ) [for:]at CHo omit: False y Es, E3, andE, are reused fronB,, B, andB,. _

Ey) [format — hardcover] V [format — paperback] s True Furthermore, we indeed observed no instances of inter-

. . . locking units (as Section 5.2 discussed). Note that semantic
Figure 8: Rules for mappingmazonto different sources. nits essentially indicate the correspondence of attributes,
study is based on a similar scenario that is available onliséch as theonjunctionof In andfn versusauthor (or sim-
for demonstrating our translation server (see Section 7). ilarly month andyear versusdate) and thedisjunctionof

) format versugype. We have observed no attributes involved
6.1 ABook-Search Mediator in bothtypes of correspondence, without which interlocking
Let us consider building a book-search mediator that iaimply cannot occur (Section 5.2). Our algorithm will thus
tegrates online sourceémazonat www.amazon.com and generate the unique best mappings in the practical cases.
BN at www.barnsandnoble.com (both are online book-  While our framework is formally supported by the notion
stores),EB atwww.evenbetter.com (@ comparison shop- of closeness, a closeness functiomd explicitly required
ping service), andSocratesat socrates.stanford.edu when defining a mapping rule. That is, given a semantic
(Stanford library online catalog, currently not publicly acunit, we canintuitively choose its best mapping when there
cessible). Our scenario assumes that the mediator integratescompeting choices (without explicitly computing their
these sources by adoptidgnazons query context and thuscloseness with a metric as in Example 7). Such mappings
needs translation for the other sources. are thus defined with sonimplicit metric that corresponds

We will thus demonstrate constraint mappings fro® the “intuition” we may have in mind. However, we stress
Amazonto respectivelyBN, EB, andSocratesFor each tar- that, as Theorem 1 states, our algorithms will preserve the
get source, we compare its constraint vocabulagy, Sup- optimality with respect to any closeness metrics that the
ported constraints as described in the specific query intgrapping rules conform to— be it explicitly or implicitly.
face and the documentations) with thatdshazonand de- ~ Furthermore, our case study shows that the general no-
fine the mapping rules. As Figure 8 shows, we need sewin of approximation (as this paper specifically introduces)
rules forBN, six rules forSocratesand seven rules faggB. is truly essential for a “usable” query-mapping framework.
As Section 5.1 discusses, each rule gives the best mapgifagerve that, among the twenty rules in Figure 8, only six
for the matching semantic unit with respect to the closend$®, Bi, Br, S1, Es, E4) are perfect mappings, a ratio of
metric, which we assume to & = PThresh(.7). Infact,in  30% — the other70% is not possible without approxima-
practice it isnotrequired to explicitly consider the closenesion. Moreover, we need a general framework that can deal
function, as we will discuss in Section 6.2. with all types of approximation,e., supersets.g, B1, S3),

For instance, rules3,, ..., B; map the constraints onsubsets€.g, Es), and hybrid mappings that contain both
attributestitle, In, fn, subject, and format in the Ama- false-positives and false-negativesq, B>, Bs). The ap-
zort context to ones ofitle, keyword, author, subject, and Proximate translation technique presented in this paper can
format in the BN context. Note that when defining mappinghus be very helpful in practice. We have studied additional
rules, we only need to focus on the correspondingtersof scenarios to the one presented here, and in all cases we have
attributes in either contexts. For instance, clugterfn} at found our observations to hold.

Amazoncorresponds tdauthor, keyword} at BN, whose 7 Conclusion

In this paper we have presented a framework and the as-
sociated algorithm for approximate query translation. Our

1Since Amazon distinguishes the first and last namesaimthor at-
tribute, we separate it intm andfn in translation.
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framework is robust under virtually any reasonable closg4]
ness metric that combines both precision and recall. We
also intuitively presented our results on the separability and
safety of query compositions (and we cover the full detailg)
in [5]). These results are critical for the development of any
algorithm that attempts approximate query translation. O]
Algorithm NFB will generate a unique best-mapping in the
practical cases when semantic units do not “interlock.” 14
While our algorithm generates the closest mappings, it
does not compute the actual “closeness,” in terms of the pre-
cision and recall parameters. (In fact, our algorithm does ribt!
explicitly use the parameter to compute the best mappings.)
While not essential for the operation of our algorithm, ine|
some cases it may be desirable to estimatgtlaadR (or
the corresponding closeness) of a mapping. As a compfe!
ment to our translation machinery, we have developed sim-
ple formulas for such estimation, and it is covered in [5]. [1g]
Although we present our approach specifically for trans-
lating queries across contexts, we believe its generality can
support much broader heterogeneous problems. For f
stance, the framework can be applied to ndgia and
gueries acrosentologies In fact, we have studied in [25] [20]
how to model data as conjunctive queries and thus apply the
minimal-superset algorithms [3] for data translation. 21]
We have implemented the approximate query translati[)n
mechanism described in this paper in the Stanford Digital
Libraries Project. Our implementation of an online transl#22]
tion server is available for demonstration. While the back-
end translation server is generic, we program it (by definipg,
specific mapping rules) to demonstrate a particular trans[la—
tion scenario of online media search (whose simplified vé24]
sion is presented in Section 6). The server is available at
http://www-db.stanford.edu/~kevin/aqt. 25
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