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Abstract-This work introduces the wavelet transform as an important element for ATM
traffic prediction. Two methods are proposed. The first method proposes data fittings by the
fGn model of parameter H, adequate for long dependence stationary processes. The estimated
H is accomplished by a method based on Wavelet analysis. A small order Wiener filter is
projected to implement the prediction and the final proposal results in a filter coefficient
correction method that improves the prediction quality. The second method proposes a
combination of wavelet transforms to feed forward artificial neural networks. Wavelet
transforms are used to preprocess the nonlinear time-series in order to provide a step-closer
phase learning paradigm to the artificial neural network. The network uses a variable length
time window on approximation coefficients over all scales. This approach improves the
generalization ability as well as the accuracy of the artificial neural network for ATM traffic
prediction. Both prediction methods are evaluated on traffic data files from Bellcore.
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1 Introduction

During the last years, many researchers have observed the self-similarity of Asynchronous
Transfer Mode (ATM) traffic. For the prediction process is of fundamental importance the
certain modeling of the statistical multiplexing process, which promotes the traffic switching
with variable bandwidths on different applications. Recently, several works modeled ATM
traffic as a fractal phenomenon, with self-similarity and long dependence characteristics
(11021031

The multiplexing process of nodes in ATM networks uses a finite buffer, the long-time
dependence produces delays and loss of cells, compromising the network quality service
parameter and producing congestion situations. Then, the traffic prediction task with some
antecedence may provide the network controllers a multiplexing adjustment to avoid or
minimize these effects.

2 ATM traffic models

ATM traffic has the self-similarity property that establishes the preservation of the statistical
properties in different time scales. The fractal geometry and the fractal process offer facilities
for the understanding, modeling and analysis of self-similarity processes [4][10]. A stochastic

process x(t) defined in the time interval (-c0,00) for any real number a>0, is statistically self
similar with Hurst parameter H if follows the relation :

x(t) =, a’Hx(at) (@)
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where =d denotes equality in the statistical sense. In the case of the ATM traffic, the self-
similarity modeling helps to extract the traffic burstiness in different time scales. Previous
studies have shown that in the case of ATM traftic, the Hurst parameter is H>0.5 [1].

Self-similar processes have been used to model the traffic fractal behavior [3][4], due to the
fact that the increment processes of these models are long dependence stationary. These
properties are also present in the incremental traffic process [1][2]. These processes are called
stochastic processes 1/f'and constitute an important model class for different applications in
signal processing, pointed recently at applications in network traffic [7][9]. Two models are
highlighted in the literature: the fractional Brownian motion (fBm) and the fractional
Gaussian noise (fGn). For fBm and fGn definitions, see Appendix A.

In the signal processing analysis there are several mathematical tools for signal
decomposition. The use of wavelets is especially interesting for signals that have non-
stationary variations and self-similarity characteristics [S]. The wavelet transform functions
make it possible to frame a signal in regions of variable size that allows the analysis of the
signal in different time scales, producing an automatic mapping of a signal in a time-
frequency plane. For wavelet transform definitions, see Appendix B.

3 The traffic prediction problem with wavelet analysis application

3.1 fGn model with wavelet analysis

With this method, the ATM traffic increments process is modeled as a fractional Gaussian
noise with Hurst parameter 4. The fGn model adjustment to the traffic increments requires
the H parameter estimate for the measured traffic. The idea to use the details (Wavelet
coefficients) for the H parameter estimate is interpreted as a generalization method proposed
by Allan in 1996 [11]. He stats that there is an association between self-similarity associate
variance and long dependence, introducing an estimator that improves the variance estimate
where the term:

L3 Xy @

is substituted by “ALLAN's variance”, defined as:

%Z,, XD (n+1)-XD(n)? ®

In other words, there have been used dyadic bases for the wavelet representation, such that
X(D=27, corresponds to the details, i.e. the wavelet coefficients. This improvement results
from the fact that wavelets are capable of descorrelate long range dependence (LRD)
processes, thus vard ,, ~2’* where a=2H-1.

The H parameter estimate, using the method based on wavelet analysis [6] is obtained by
adjusting a straight line to the points log, (variance dj;) versus scale j, by the minimum
squares method. The straight line inclination coefficient corresponds to an estimate of H, by
Eq.4 as seen in figure 1.
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Figure 1. H estimate for linear regression about the wavelet coefficients variances in the scales.

3.2 Artificial neural networks with wavelet analysis

Some work has been done for ATM traffic prediction using artificial neural networks
(ANN)[14][15][16] ANNSs are characterized by a non-parametric modeling where there is no
need to understand the process statistical characteristics. During the learning process, the
correlation between input and output variables is inferred, so there is no necessity to know the
phenomenon statistical properties to be modeled. For signal processing some works include
the use of neural networks as predictors. In [17], Liang and Page discuss about the learning
capacity of an ANN and a multiresolution paradigm that decomposes the original signal in
several versions using wavelet transforms looking for the improvement of the ANN
generalization capacity.

Using the above work as a reference, the proposal of the predictor used in this work consists
to input the ANN a set of training sets preprocessed using the wavelet transform. The training
sets are formed with vectors of different sizes, unlike the traditional network learning which
employs a single signal representation for the entire training process. The ANN will be trained
with different scale versions of the original signal, trying to achieve a faster learning time and
a less computational effort.

4 ATM traffic prediction methods

Given a time series with n samples, {x[i],i=1,2,...n}, representing the number of cells
produced by an ATM source in n discrete time intervals, the goal is to predict the series value
in the time interval n+k, k=1,2,..., considering the series values until the time interval n. In
order to compare the prediction quality, the normalized mean square error (NMSE) was
adopted as a performance parameter. The NMSE is computed as:

NMSE = —— " [(x(k) - x(k)]?

2
o n

()]

where x(k) is the observed value of the time series at time k, x(k) is of predicted value of x (k)
and o is the variance of the time series over the prediction duration. Thus, a NMSE=1
corresponds to predicting the estimated mean of the series.

4.1 fGn and Wiener predictor modeling

Before entering the filtering process, a decomposition of the signal using the wavelet
transform leads to the A parameter estimate. From the fGn model autocorrelation functions
R.[k] and the H parameter estimate, a Wiener filter of order M is projected. A recursive
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prediction process is executed to obtain the sequence next values {X[n]}, like described in
Fig. 2.

Therefore the process is stationary, the Wiener filter outputs are optimal process estimates for
the minimum square sense traffic increments [8]:

Ko+ k|l = 3 [l — m] ©
el
Optimal predictor coefficients are calculated from:
h*=Rr, (7
where
r, =[R.(k).R,(k +1),R,(k+2),...R (k + M)] ®
and
R.(0) R .. RM-=I)
R | RO RO - RGO )
ROI-) RGM) . RO

Such that R,(.) is the autocorrelation function of the fGn model calculated from Eq.A-6 and
Eq.A-7.
In order to compare the quality prediction the theoretical NMSE (e7) is computed as:

h'r, (10)
Va

and the normalized mean square error (es) is computed from Eq.5.

e, =1-

W Aln+ ]
Wiener Filter >
k-steps Ry (k)

-2

(A) (B)

(A) Approximation coefficients
(B) Wavelet coefficients.

Figure 2. Traffic increments prediction algorithm with Wiener Filter projected by the fGn model and H
parameter estimate using wavelet analysis.
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The value of the H parameter estimate only depends on the variances from the decomposition
wavelet scales. For a real time prediction, if exists a significant alteration of H, the Wiener
filter coefficients are recalculated to continue the prediction process.

4.2 ANN predictor with phase learning.

The model consists of an ANN with a prior preprocessing of the signal using the Haar wavelet
transform in the following manner: being X the original signal, 7(x") is the learning activity
done in the x” scale of the original signal X". The resulting x" signal is composed only by the
approximation coefficients. The details of the signal are discarded in each calculated scale.
When r increases, the quantity of points of the original signal in the scale x" diminishes in a
proportion 2. Though, this can be interpreted as a visualization of the signal when fewer
details and a lesser quantity of points. Interpreting the notation T()—>Tix) as the training
activity 7; with training set X’ preceding the training activity 7; with training set x', the training
activities are given by the set {T(x) r=1,2,3,..n}, where Ty(x)—>Tyx') for i=j-1 e n>>I.
Clearly appears that the set 7y(x’) denotes the training activity with the original signal. Figure
3 illustrates the model for the prediction task. The ANN weights are initialized just once
during the first training activity (with the higher scale), afterwards they are just adjusted by
the next learning activities with the lower scales.

i=rr-1,r-2,..,0
X' m>r>=(
N
X S M
“1

3

2 S )

Xn

Figure 3. MLP network with DWT Haar signal preprocessing for ATM traffic prediction. The ANN input
consists of m neurons, with two hidden layers and one output neuron. The vectors x', resulting of the
approximation coefficients of Haar wavelet transform are the different input training sets.

5. Results

Due to unavailability of ATM network traffic data in operational networks, a traffic
conversion procedure on Bellcore Ethernet traffic files was made, gathering the packages in
regular time intervals and dividing the total byte number by the equivalent size of an ATM
cell. Three resulting series were obtained: BC-OCTEXT, BC-OCTINT and BC-AUG. The
series BC-OCTINT consists of 1,759 seconds, in a time scale of 1 second, corresponding to
29 minutes and 31 seconds of internal traffic. The series BC-OCTEXT consists of 122,797.83
seconds, corresponding to 1,000,000 of packets of external traffic in a minute scale, resulting
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in 2046 points corresponding to 34 hours and 10 minutes of traffic. The series BC-AUG
consists of 3,142.82 seconds, corresponding to 1.000.0000 of Ethernet packets.

5.1 Results obtained with fGn and Wiener predictor modeling

To separately evaluate the prediction quality and fGn adaptation to the traffic increments, the
prediction of the time series BC-AUG (scale = 1s) was made, generated by the method
Random Midpoint Displacement for H = 0.8. The parameter H was esteemed through wavelet
analysis and the found value for the series BC-AUG resulted in 0.8107.

A comparison of the predicted curve and the real curve for fGn model for time series
BC-AUG are illustrated in figure 4. The results of the experiments are summarized in the
Tables 1(a) and 1(b). Predictors are evaluated with order M = 6 and M = 100 to 1 step and to
5-steps.

However the increments process of BC-AUG time series practically introduces the same H of
fGn and it differs of a Gaussian process (see Fig. 5). This justifies that the simulated errors are
greater than the theoretical ones. Soon the model does not adjust perfectly to the data, but a
fractal model can be more difficult to treat. The signal prediction follows the original signal,
but with a smaller amplitude. To improve the prediction, adjusting the amplitude and keeping
the proportionality between filter coefficients whose sum equals to 1 induced the
normalization of the optimal coefficients in the following form:

h* (11)
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Figure 4. (a) fGn Series (solid line) and prediction (dotted line), Wiener of order M = 6; (b) BC-AUG series
(solid line) and prediction (dotted line), Wiener of order M=6.

Filter fGn Series BC-AUG Series | Filter fGn Series BC-AUG Series
1-step H=0.80 A=0.8107 5-step H=0.80 A=0.8107
M=6 er=0.7031 er=10.6782 M=6 er=0.8982 |er=0.8828
es=10.7899 es=0.8621 es=0.9430 |eg=1.5947
M=100 er=0.6939 er=0.6687 M=100 er=0.8743 |er=0.8568
es=0.7824 es=0.6537 es=0.9297 |es=0.9622
(a) (b)

Table 1. Error comparison between fGn and BC-AUG prediction (a) Wiener of order M = 6 and M = 100 to 1
step; (b) Wiener M = 6 and M = 100 to 5 steps.
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Figure 5. (a) histogram of the fGn series (H=0.8) 4096 points and (b) of the BC-AUG series (s)(ﬁ =0.8107)
3142 points.

Figure 6 illustrates the improvement in the prediction with the adjustment in the great
coefficients. The error obtained for BC-AUG prediction decreased from 0.8621(a) to 0.6736
in (b), well nearest to the theoretical error 0.6782.

In figure 7, for the BC-OCTINT series, scale of 1s (# = 0.8042), a theoretical error of 0.6934
was obtained, a simulated of 0.9140 before the adjustment and 0.3835 after (b). In a related
work for the same time series [10], a LMS filter is implemented resulting in a error of 0.4769
with an order M = 20.

BC-AUG Series Prediction BC-AUG Series Prediction
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Figure 6. Comparison between BC-AUG prediction: (a) without great coefficients adjustment, (b) with
adjustment.
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Figure 7. Comparison between BC-OCTINT prediction: (a)without optimal coefficients adjustment, (b) with
adjustment.
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5.2 Results obtained with Artificial Neural Networks

In the case of the BC-OCTEXT time series, three sets were used: a training set, formed by
elements 1 to 800, a validation set formed by elements from 801 to 1000 and a test set formed
by elements 1001 to 2000. The prediction was made using a MLP network with m=10, two
neurons in each hidden layer, resulting in a configuration of 10x2x2x1 and a learning rate of
0.01. In this case, the prediction quality was resulting NMSE=0.42506. Figure 8(a) shows the
prediction result.

In the case of the BC-OCTINT time series, the training set was formed with 600 points (800
to 1499), the validation set from points 100 to 599 and the test set with points from 1500 to
1699. A MLP 20x10x10x1 was used with a learning rate of 0.01 and the prediction result
quality was a NMSE value of 0.92008, which shows a low generalization capacity of the
network, as seen in figure 8(b).

In the second experiment it appeared that the training sets could be reduced as well as the
MLP complexity. Also, it was observed that the early stopping procedure adopted in the first
experiment did not improve the prediction quality, so there was no need for defining a
validation set. The training set for the time series BC-OCTEXT was formed with 64 points
and the test set was formed with elements from point 1001 to 2000. The scale of
decomposition using the predictor model described in figure 2 was j=3 resulting in 4 training
sets X, %, x" and X, the latter corresponding to the original time series. The training sets are
shown in figure 9. The MLP used was 4x2x2x1, resulting in a less computational effort for
training. The prediction quality was NMSE=0.39951, as illustrated in figure 10.

In the case of the time series BC-OCTINT the training set was formed by the elements 1 to
256 and the test set with elements from point 1000 to 1699. It is important to note that in this
second test set, there is an interval of abrupt variation that might increase the prediction
difficulty. As with the time series BC-OCTEXT, the MLP used was a 4x2x2x1 and the
prediction quality was NMSE=0.46195, showing a significant improvement. The prediction
result is illustrated in figure 11.

04]

03]

oy “o
Figure 8. (a) BC-OCTEXT prediction with NMSE=0.42506. Real time series solid line, predicted time series
dotted line. (b) BC-OCTINT prediction with NMSE=0.92008. Real time series solid line, predicted time series

dotted line.
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Figure 9. BC-OCTEXT: training sets, four scales x°, x', X', x".
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Figure 10. BC-OCTEXT MLP-wavelet transform prediction with NMSE=0.39951, real time series solid line,
predicted time series dotted line.
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Figure 11. BC-OCTINT MLP-wavelet transform prediction with NMSE=0.46195, real time series solid line,
predicted time series dotted line.
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6. Conclusions

The fGn model adjustment of the traffic increments is not to perform and a juster model can
lead to a more difficult treatment. The Wiener filter optimal coefficients normalization
process results in a simulated error reduction, leading to a set of theoretical limits, validating
the proposed method.

The conventional learning process in neural networks is sometimes inadequate for nonlinear,
nonstationary signal prediction problems and often yields poor generalization performance.
The combination of artificial neural networks and wavelet transforms for ATM traffic
prediction permits a preprocessing of the signal that has a fractal behavior. The ATM traffic
treated as a self-similar process, with same statistical information in different time scales
induces the use of wavelet transforms to produce different training patterns with less or more
details. The neural network learns gradually from simpler to more complex training sets
introducing a phase learning paradigm. This process permits a neural network complexity
reduction and the pursuit of predictors that have a better generalization capacity with a low
computational cost that appears to perform well enough to be of practical value. The
generalization of these results for other types of time series should depend on the
compatibility of the wavelet transform and the process model that represents the time series.

Appendix A

Definition fBm: The discrete fractional Brownian motion (fBm) with parameter H, 0 < H < 1
is a nonstationary stochastic process, By[n], n e Z, Gaussian and H-sssi, such that B5[0] = 0
with stationary increments and finite normal dimension distribution.

fBm has the following statistical properties:

Autocorrelation function:

52 2H 2H 2H (A-l)
Rlnok1= 508, 118, bl = 2 [+ <]
that reflects the nonstationarity of the process, variant with temporal displacement.
Variance:
Var{BH [n]}: Gz‘n‘zn (A-2)
Power density is given empirically by:
Sei(@) = /| )™ (A-3)
Equation A-3 can be interpreted as a spectrum generalized of the self-similarity of the form:
BH[n]:a’HBH[anfbl, a>0e Vb (A-4)

The fractional Brownian motion increment process is called fractional Gaussian noise (fGn)
and it introduces a long term and slow decay dependence variance (high variability), when %2
<H<I.
Definition fGn: X[n], ne Z, is a fractional Gaussian noise with parameter H and
corresponds to the increments process of a fractional Brownian motion(fBm) with parameter
H with the form:

X[n] = By[n] — Buln-m] (A-5)

Evaluating fGn statistical properties shows that the autocorrelation function is given by:
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R, (k) = %” (1P e+ 1P =2 ) (a-6)
where:
cost (A-7)
(-
Vy =T1-2H) T
Appendix B

Wavelet analysis

In the wavelet analysis, the low signal frequencies are identified as the approximation
coefficients and the high frequencies are identified as the details. This can be seen as the
original signal passing in a filtering process, with a low-pass filter producing the
approximation coefficients and a high-pass filter producing the details. Given a scale function
¢’ and a basic wavelet /, the discrete wavelet transform (DWT) is defined as:

X)) —>Ha,,,keZi{d,,j=12,..J,keZ}} (B-1)
The coefficients are defined as the internal product between X and two sets of functions:
a,=<X.¢" > dy=<X,y" > (B-2)

v/, (respectively ¢, ) representing translations and dilations of y’ (respectively ¢), called
basic wavelet function. Mallat [18] introduced a pyramidal algorithm for computing wavelet
transforms by using the wavelet coefficients as filter coefficients. For the composition the
algorithm employs a lowpass filter L and a highpass filter H, as illustrated in figure B-1 for a
Haar wavelet system with J levels.

The multiresolution analysis (MRA) resides in the computation of a wavelet system for the
decomposition and reconstruction of a signal x(#) using an orthonormal base. There are two
fundamental functions used to obtain a wavelet system: the scale function and the basic
wavelet function, as seen in Eq. B-3 Eq. B-4, respectively, where Z are the integer set and ay
are the wavelet coefficients. Both functions are prototypes of a class of orthonormal functions.

y dix

[:l S N e B 51 >
_mm Sy S M
s B B

Figure B-1: Mallat's pyramidal algorithm (DWT HAAR , J levels)
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()= a,p(2t—k) (B-3)

kez

v =2 (D a,, 62~ k) (B-4)

keZ
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