Performance Monitoring of Management Systems *

Wagner Meira Jr. Patricia Aguiar
José Marcos Nogueira Christiano Mata Machado
Departamento de Ciéncia da Computacao RPR
UFMG Telemar Minas

Belo Horizonte — MG 31270-010

(meira, pati, jmarcos)@dcc.ufmg.br, christiano@telemig.com.br

Abstract

Telecommunications Management Networks, when deployed in plants of medium
or high complexity, can have highly complex structured and a great number of
hardware and software components. In such cases, they are distributed systems with
many interactions between the computational processes, where the correct behavior
and good performance become critical issues in the operation of the telecom plants.

In this paper we present SisMonit, the performance monitoring system of the
SIS - Integrated Supervision System. It is characterized by high flexibility and
multiple functionalities concerning data acquisitions granularity and detail level of
performance information generated.

1 Introduction

Telecommunications Management Networks (TMN), when deployed in plants of medium
or high complexity, can have highly complex structured and a great number of hard-
ware and software components. In such cases, they are distributed systems with many
interactions between the computacional processes, where the correct behavior and good
performance become critical issues in the operation of the telecom plants. As a result of
its size and complexity, both the systems and management networks demand performance
and fault management for themselves.

Performance monitoring of these management systems is necessary not only to su-
pervise its normal tasks, verifying whether the computational costs are within expected
computational costs, but also subsidize the evaluation of the system design, its config-
uration parameters, and possible needed changes. The performance tuning process of
management systems, similarly to other parallel and distributed systems [3], is cyclic and
each cycle can be divided into five phases that can be summarized by the following ques-
tions: (1) how well the system is performing; (2) if performance is not good, what kind
of performance problem is affecting the system; (3) where the problem is ocurring; (4)

*This work was supported by Telemar Minas in a joint project with the Federal University of Minas
Gerais. Telemar Minas is a Telecom operator of the Minas Gerais state/Brazil and is part of the Telemar
System.

why the problem is ocurring; and (5) how we can solve the problem. A monitoring sys-
tem must provide performance data that support determining answers for the first three
questions. Obviously, automating all these phases is beyond the scope of a monitoring
system, mainly the last two, which are still being targeted by current research [2].

There are several scenarios where performance management is essential, such as when a
data capturing agent is overloading the machine processor, a database query for generating
an alarm report is prohibitively expensive in terms of computation, or the latency for an
operator-requested action is high. Moreover, in order to correlate performance measures
to system activities, it becomes necessary to monitor internal events from the various
modules, as well as their temporal and spatial relationships.

There are some management system characteristics that drive the strategies for im-
plementing the performance monitor. The variety of entities and events that must be
supervised demand flexible mechanisms in terms of acquisition frequency and granularity,
which also aim to maximizing the amount of information about the system behavior with
the smallest overhead possible. Management systems such as the Integrated Supervision
System (SIS) [1, 6, 4] are composed by several modules, where changes are neither desir-
able nor easy to be performed. As a consequence, module’s instrumentation can not be
modified very frequently. Finally, since these systems are under continuous development,
modules are frequently rebuilt, when functionalities are added, deleted or changed, de-
manding a monitoring system that is both adaptive and modular, so that monitoring a
module do not disturb on the execution of other modules.

In this paper we present SisMonit, which is the performance monitoring system of
SIS, a telecommunication management system developed by Telemar-MG and DCC-
UFMG [1]. The next section describes SisMonit architecture and implementation. Sec-
tion 4 describes how to employ the monitoring system. We illustrate the use of our
monitoring system by describing how we monitor agents and managers in Section 5. The
last section presents our conclusions and some future work.

2 Performance Monitoring of TMN Systems

Functionally, SIS is a three-level hierarchy of central units (Figure 1), a structure adopted
by several telecommunications companies for their operations and maintenance centers.

The first level comprises UCPs (main central units) that are responsible for the man-
agement of the whole plant. The second level is composed by UCRs (regional central
units) that supervise a region, allowing its autonomous operation. The lowest level is
composed by UCSs (sub-regional central units) that supervises a sub-region, also allow-
ing the sub-regions to work autonomously. UCSs are also responsible for gathering the
information that is used by SIS, through interaction with supervision sub-systems (SSS),
network elements themselves, or communication adapters.

One of the main characteristics of SIS’s software architecture (Figure 2) is to have
just one source code that is configured and installed to perform supervision tasks in any
of the hierarchy levels. We can divide this software architecture into four major fami-
lies of software modules: (1) system management; (2) access (managers, monitors, and
agents); (3) DBMS interfacing, and (4) man-machine interfacing. Each central unit is im-
plemented through several modules that exchange messages while performing supervising
tasks. Notice that there may be several instances of managers, monitors, and interfaces
to both DBMS and operators.

-Qsss

ER - QSIS/Q3

Agente

Figure 1: Functional Architecture

SSS

SSS

N

Bancode |q—
Dados

SGBD

uc
MonitorSSS Sisterm
—
Ucproc
Gerente
(—
InterfaceBD
MeSox MeSox

T
\

_w| Agente

Agente

Figure 2: Software Architecture

i

Terminal

L

Terminal

For such a large system, performance monitoring is absolutely necessary for under-
standing performance phenomena such as requests presenting high turn-around times,
large communication latencies between modules, and contention for the database system.
Thus, from this brief description, we can identify some of the system’s characteristics that
are relevant for the sake of performance monitoring:

e the system is completely distributed and its components are heterogeneous, from
both software and hardware perspectives;

e the connectivity among modules also varies significantly, ranging from Ethernet to
slow twisted pair links;

e the system is being enhanced continuously, as a consequence of technological ad-
vances and new services to customers; and

e modules are inserted, removed or modified all the time, and changes should be
restricted as much as possible to a single module.

Given the number, dynamicity, complexity, and diversity of SIS’s components, there
are some requirements that must be fullfilled for a performance monitoring system:

Location capability: performance data should contain location information that allows
users to quantify the performance of not only the various modules but also internal
functions and events.

Functionality Correlation: it should be possible to correlate activities associated with
the same events and tasks in different modules.

Non-intrusive: The monitoring task should not disturb the performance of the moni-
tored modules.

Flexible: the monitoring strategy may change during the module execution without
affecting the module functioning.

In the next section we describe SisMonit, a monitoring system we developed that
satisfies all these requirements.

3 SisMonit: Design and Implementation

3.1 DMonitoring Strategy

Since the target applications are very diverse as well as their monitoring requirements,
the monitoring strategy should emphasize flexibility and simplicity without reducing the
quality and the level of detail of the monitored data. We define our monitoring strategy
from four perspectives: storage, acquisition, monitoring level, and notification. These
perspectives are discussed in the sections that follow.

3.1.1 Storage

Storage of performance data in SisMonit is based on event classes. Event classes abstract
activities or exceptions of the monitored component, such as alarms and management
actions. Each event has a set of attributes that are inherent to the event class and may be
configured in according to monitoring needs and intrinsic characteristics of the monitored
event. Fach distinct set of attributes and their values identify an instance of the class.
SisMonit keeps a performance profile for each instance, which stores information such as
number of occurrences and cumulative duration of the events that fall in the instance.
The instances of each class are organized as a tree, where the each level considers an
attribute as branch criterion, and the assignment of attributes to levels is configurable.
Thus, the monitoring process produces a forrest of profile trees, where each tree stores
the profiles of a class of events.

The profiles are also accumulated hierarchically, i.e., the measures of each instance are
also summarized in their tree ancestors, and the root of each sub-tree stores performance
data for all nodes in the sub-tree. This cumulative performance data is kept in a second
set. of node variables, so that both cumulative and non-cumlative data are available for
analysis.

3.1.2 Monitoring Level

Measurement data can be divided into three levels of detail, which provide an increasing
amount of information about the monitored application: (1) counters; (2) timers; and
(3) log events. SisMonit supports these three measurement levels, but it is usually hard
to determine, upfront, the level that will be employed during the component’s life cycle.
Moreover, it is usually necessary to vary the level of detail in order to accomplish activ-
ities such as performance tuning. Therefore, we chose to provide a flexible monitoring
mechanism that may acquire performance data at various levels of detail from the same
instrumented code. Details about the measurement level are hidden inside the monitoring
library, and the measurement level is set in the configuration file.

As mentioned before, attributes are module specific and also configurable from a
file. Although some management platforms have pre-defined monitoring hierarchies (i.e.,
MIBs), we believe that it is hard to define these hierarchies a priori, as a consequence
of the system dynamic behavior — frequent insertions and deletions. Besides, code in-
strumentation is flexible by definition, since it is performed by the module programmer
himself.

3.1.3 Acquisition

As mentioned, SisMonit supports the acquisition of three types of performance data: (1)
counters, (2) timers, and (3) log records. Counters are accumulators that are incremented
whenever the associated event occurs. Counters are a low-cost strategy, since it is not
necessary to perform any system call to register an event. Timers are similar to coun-
ters, but store the cumulative duration of a class of events and not only the number of
occurrences. They are more intrusive than counters, since they require system calls in
order to read the system clock. Log record writes the events and related information
(e.g., attributes, starting and ending time) to the monitoring output file. It is the most
intrusive data acquisition strategy, as a consequence of system calls for not only reading

the system clock, but also writing the records.

Given the task module variety, it is hard to define a single measurement granularity for
all applications and classes of events that should be monitored. Notice that measurements
can not be the same for all modules, because of their differences and monitoring needs
for each application.

The acquisition of event performance data is comprehensive regarding strategy, i.e.,
whenever we employ timers, counters are also kept, and whenever we employ log records,
both timers and counters are kept.

3.1.4 Notification

Monitoring information notification may happen on demand (i.e., the monitored process
answers a message that requests for information) or periodic (i.e., interval, number of
events, filled buffer). The notification strategy, as other parameters, is also defined in the
configuration file. An example of monitoring output file can be seen in Figure 3.

Mar 31 10:24:18 picard 61704.monit: O 8267 P Alarm MFDC 1539 0 0.000000 2102.3
01063

Mar 31 10:24:18 picard 61704 .monit: O 8280 P Alarm_MFDC Entity="picard" 342
0 0.000000 1855.973507

Mar 31 10:24:18 picard 61704 .monit: O 8281 P Alarm_MFDC Entity="picard"

Protocol_type="PING" O 171 1771.487818 0.000000

Mar 31 10:24:18 picard 61704 .monit: O 8282 P Alarm_MFDC Entity="picard"

Protocol_type="RPS" 0 171 84.485689 0.000000

Mar 31 10:24:18 picard 61704.monit: O 8283 P Protocol_replay 171 0 0.000000
53.997456

Mar 31 10:24:18 picard 61704 .monit: O 8284 P Protocol_replay Entity="picar
d" 171 0 0.000000 53.997456

Mar 31 10:24:18 picard 61704.monit: O 8285 P Protocol_replay Entity="picar
d" Protocol_type="PING" O 171 53.997456 0.000000

Figure 3: Monitoring Output Sample

3.2 Instrumentation Interface

In this section we present the monitoring interface of SisMonit. This interface is also
comprehensive, since it allows monitoring at the various levels. It also aims to minimize
the need for frequent code instrumentations or changes in existing instrumentations, and
is flexible regarding data granularity and the amount of detail about the events.

Since instrumentation of SIS modules is performed explicitly and based on library
functions, the monitoring granularity may be as coarse (or thin) as needed. As discussed,
the number and nature of attributes vary among classes of events and are also configurable.
This attribute-related flexibility is also supported by the proposed interface through an
attribute definition scheme based on comparisons between strings, making it virtually
unlimited. Each attribute is identified by a string and may be of the following types:

Integer: 32-bit integer.

Real: 64-bit floating point number.
String: string delimited by the null character.

Date hour: formatted string containing a clock value up to microseconds, e.g., 1999:-
03:31:08:04:23:236876.

Time: time interval in seconds and microseconds.
The monitoring interface is composed by the following primitives:

initmonit(argmonit): reads the configuration file argmonit and initializes the moni-
toring data structures.

evid = eventstart(class, parent): sets the beginning of an event from class class that
should be referenced by evid. If parent, another event being also monitored, is not
null, all of its attributes are inherited.

eventattr(evid, id, tipo, valor): defines an attribute identified by id of event evid,
setting the value valor that has type tipo.

eventstop(evid): suspends temporarily the monitoring of evid, applicable to log records
and timers.

eventresume(evid): resumes the monitoring of evid, applicable to log records and
timers.

eventend(evid): indicates that event evid terminated and causes the associated profiles
to be updated.

eventreset(evid): initializes the data structures associated with evid.

eventget(evid,med): returns the current monitoring measures associated with event
evid in med.

eventflush(evid): prints event evid to the monitoring output file.

Finally, notice that, by using this interface, it is possible to monitor events that overlap
partially or totally, without any instrumentation changes.

4 Using SisMonit

After instrumenting the module code, the generation of performance profiles is speci-
fied through configuration files. This section describes the possible settings and how
diverse monitoring demands can be satisfied. The configuration file contains the follow-
ing information: i) measurement strategy; i) notification strategy; iii) event classes and
attributes that should be monitored; iv) supervision predicates; v) filters; and vi) output
files.

All information is stored in a configuration file that is loaded by the monitored mod-
ule. In the sections that follow we describe the two entities that are specified in the
configuration file: event classes and monitoring predicates.

4.1 Event Classes

As defined in Section 3.1.1, event classes abstract modulés activities or exceptions that
we want to monitor. Each class attribute is characterized by an identifier, its type, and
a name. Event classes may be organized as hierarchies, inheriting attributes of other
classes. There are two types of statements for defining classes in configuration files:

Class Definition: defines the class identificator and its ancestral class, if there is any.
This statement starts with the string @C.

Attribute Definition: defines an attribute, through its type and name. This statement
starts with the string ©A.

@C Alarms

@A Alarms Entity string

@C Alarm-MFDC Alarms

@A Alarm-MFDC Protocol string
@C Protocol-replay Alarm-MFDC
@C Trap-received Alarms

@C Date

Figure 4: Examples of Classes and Attributes

Figure 4 presents the description of five classes (Alarms, Alarm-MFDC, Protocol-re-
play, Trap-received e Date). Alarms contains only Entity which is a string. The
classes Alarm-MFDC and Trap-received are derived from Alarms, inheriting Entity.
Alarm-MFDC has another attribute, Protocol-type, that is also a string. Finally, Date
does not have any attribute.

4.2 Monitoring Predicates

Monitoring predicates specify how the monitoring should be performed from six per-
spectives: i) event classes or sub-classes; i7) monitoring strategy (counter, timer ou log
record); iii) notification frequency (e.g., at the end of module’s execution, periodically);
iv) monitoring output file; v) monitoring conditions; and vi) attributes that are written
in the output file.

There is one predicate per line (which starts with the string @P) specifying the event
class, monitoring strategy, notification frequency and output file. The conditions that
have to be satisfied for enabling the monitoring are expressed through a logical expression,
which is delimited by parenthesis, being a sequence of term conjunctions (&&), disjunctions
(I'1) ou negations (!). Each term is composed by a relational operator ==, = < > >=
e <=) that establishes a relation to be satisfied between literals or variables. Besides
class attributes, expressions may contain monitoring internal variables, which are listed
in Table 1.

Figure 5 presents three examples of predicates. The first predicate specifies that we
will keep counters for all classes; notifications occurr every other first minute and second
in the file /1og. The second predicate specifies that events from the class Alarms that

Id | Strategy Meaning

@DH | All current date and time
@CT | All counter cumulative value
@TI | Timer and Log record | timer value

@TM | Timer and Log record | timer cumulative value
@DE | Registro event duration

Table 1: Monitoring internal variables

occur between 7:50 and 8:00 AM daily are timed; notification is performed on the file /1og
as soon as the file buffer fills, and the Entity is printed. The third predicate generates
records immediately for events from the class Alarm-MFDC whose Protocol-type is equal
to PING and duration greater than two seconds; the record is generated in the file /log.

@P * counter ::::00:00 /log ()

@P Alarms timer buf /log ((@DH>:::07:50:00) && (@DH<:::08:00:00)) [Entity
QP Alarm-MFDC trace agora /log ((@DE>2.0)&&(Protocol-type=="PING")) [En
tity Protocol-type]

Figure 5: Monitoring Predicates Sample

5 Performance Monitoring of a agent

5.1 The agent/manager model

The generic interface between SIS and network elements follows the manager-agent model
[5]. A SIS-agent has three main modules: (1) MisUser, (2) LibAgente and (3) agent-spe-
cific code. The MisUser, Management Information Service User, provides a communi-
cation interface between the agent and the manager. It uses management systems services.
The Libagent is a library of functions that get information from a configuration file and
provides communication primitives between the agent and the MisUser. Agents use some
of these functions (e.g., Agentlnitialize, ReceiveResponse, GetAlarmsList). The general
agent behavior is defined by Libagent, which also contains the main function of the agent.
This module provides a standard way to build agents, abstracting all communication de-
tails. Besides, it also provides several support routines.

The specific agent module implements some routines related to network element, such
as parsing, mapping and physical communication with the network element. For each
new agent that employs Libagent, a specific module has to be implemented.

5.2 Monitoring the Agent MFDC

In order to demonstrate the use of SisMonit, we chose the MFDC agent, which was im-
plemented using the agent-manager model to supervise workstations and communication
equipments that use TCP/IP protocol. This agent employs RPS (remote ps), SNMP

(simple network management protocol) and ICMP (ICMP-ECHO - ping) to communi-
cate with the network elements. The communication between the agent and SIS employs
the Libagent primitives. Workstation supervision gets information about its availability,
memory usage, and per-process memory usage.

The supervision process consists of querying network elements using one of the pro-
tocols described above. If the network element is a workstation then we can use the
PING and RPS protocols. The agent gives information whether a workstation is commu-
nicating with all other hosts in the net by using the PING protocol. Information about
memory usage is available when the agent uses the RPS protocol. If the network element
is a router, the SNMP protocol is used, allowing the agent to get information about its
interface’s state. The querying process ends when the agent notifies its manager.

Each agent’s configuration is stored in the SIS database, which contains a list of the
network elements to be supervisioned and the respective communication protocol to be
used. Besides, the agent has information about the query interval and its manager. When
an agent process starts, configuration information is recovered by Libagent functions from
the Data Base. After determining which protocol it will be used to gather data from
the network element, a function from Libagent is called to initialize the physical layer
communication. Then, the agent enters in a loop where it blocks until it is time to query
the element, when the function GetAlarmsList is called. The agent stays in this loop
forever.

The performance of the MFDC agent is monitored by the SisMonit library (described
in Section 3). The MEFDC agent code was instrumented as well in the Libagent code.
At the Libagent, the monitoring goal was to determine the elapsed time between alarm
detection by an agent and its registration in SIS. A sample configuration file is presented
in Figure 4

5.3 Monitoring

The monitoring functions were inserted in the Libagent code as well the MFDC agent
code. We used the following event classes:

Alarms: used to monitor all alarms of SIS agents. This class was inserted at the Libagent
code. It has one attribute: Entity.

Alarm-MFDC: used to monitor only MFDC alarms. It’s derived from the class Alarms,
inheriting the attribute Entity. It has another attribute: Protocol-type.

Protocol-replay: used to monitor the alarms that describe communication failures be-
tween the agent and the supervised networks elements. It’s derived from the class
Alarm-MFDC inheriting the attributes Entity and Protocol-type.

Trap-received: used to monitor the function Trap-received from the agent’s code.

Date: used to monitor the function Date from the agent’s code.
The two attributes have the following meaning:

Entity: defines which is the supervisioned network element.

Protocol-type: defines the protocol used at the MFDC agent. The possible values of
this attribute are PING, RPS, and SNMP.

5.4 Performance Metrics

As mentioned, both Libagent and the agent itself were instrumented for gathering per-
formance information. Libagent monitoring provides the following information: i) time
to query the network element, detect occasional faults, and insert the proper alarm. ii)
number of generated alarms.

On the other hand, the agent-MFDC monitoring provides the following information:
i) When the communication between the agent and the network element has failed, and
how much time has passed since its detection and insertion into SIS alarms list. ii) How
frequent router interfaces had failed and the workstations had a high memory usage, and
how much time has passed since its detection and insertion into SIS alarms list. 74i) What
the cost of querying a socket for incoming SNMP packets is. 1v) What the cost to calculate
the alarms date is. v) What the number of generated alarms by the agent-MFDC is.

6 Remote Supervision

Our second monitoring example involves the agent MICRODX, which is also based on the
agent-manager model. This agent uses a centralized program to perform the communica-
tion with the network element (or remote unit) called PGR (Remote Manager Program).
PGR provides real time telemetry and telecommand operations from/to the monitored
devices. These devices are associated with objects (nodes and variables). Variables are
numerical entities and Node is a binary entity. Each agent configuration, which is stored
at the SIS database, has a list of the stations (remote which are the monitoring devices)
that will be supervised. The alarm acquistion is performed as follows: (1) the agent sends
a command to PGR asking for communication establishment between the agent and a
station; (2) after the communication is set, it sends the alarms updates to the log file;
(3) the agent gets the current alarm list; and (4) the agent sends to SIS all alarms using
Libagent. This process is common to all monitored stations.

6.1 Monitoring

Similarly to MFDC agent, both Libagent and Microdx were instrumented. A partial
monitoring configuration file is showed in Figure 6. We used the following classes of
events:

Alarms: used to monitor all alarms of SIS agents. This class was inserted at the Libagent
code. It comprises two attributes: Entity and Description.

Alarm-Microdx: used to monitoring only Microdx alarms. It’s derived from the class
Alarms, inheriting the attributes Entity and Description. It has another attribute:
Object.

The three attributes have the following meaning;:

Entity: used to define the supervisioned network element.
Description: contains the description of the alarm.

Object: defines object type, Node or Variable.

The performance metrics are basically the same of the MFDC agent.

eC
QA
QA
eC
QA

@p

7

Alarms

Alarms Entity string

Alarms Description string

Alarm_Microdx Alarms

Alarm_Microdx Object string

aux_tmp timer fim /var/adm ((@ct>55)&&(@ct<44)) [sev]

Figure 6: Microdx Configuration File

Conclusions and Future Work

In this paper we presented SisMonit, the performance monitoring system of the Integrated
Supervision System. This monitoring system is characterized by high flexibility and mul-
tiple functionalities, allowing different acquisition granularities and types of performance
data that can be collected. We also presented a usage example, where two modules, an
agent and a manager, were monitored.

We expect this monitoring system to be employed throughout the whole SIS platform

for performance management, allowing operators and system designers to monitor not
only each module in isolation, but also their interaction, identifying global bottlenecks.

References

[1]

H. Andrade, J. Nogueira, and A. Loureiro. On the experience of using software compo-
nents in a telecommunications network management project. In Proc. of International
Conference on Telecommunications - ICT98, 1998.

W. Meira Jr. Understanding Parallel Program Performance Using Cause-Effect Anal-
ysis. PhD thesis, Dept. of Computer Science — University of Rochester, Rochester,
NY, July 1997. Available as TR 663 — DCS — University of Rochester.

W. Meira Jr., T. LeBlanc, and V. Almeida. Using cause-effect analysis to understand
the performance of distributed programs. In Proceedings of SPDT98: SIGMETRICS
Symposium on Parallel and Distributed Tools, Welches, OR, August 1998. ACM.

José Marcos NOGUEIRA and Dilmar Malheiros MEIRA. The SIS Project: A Dis-
tributed Platform for the Integration of Telecommunication Management Systems.
RT SIS 3107, UFMG-DCC-ICEx, Belo Horizonte-MG, september 1995.

José Marcos S. NOGUEIRA, Patricia V.C. BICALHO, Murilo S. MONTEIRO, and
Joao E.R. DANTAS. Interfaceamento com Elementos de Rede: Especificacao da
Interface Genérica com o SIS. RT SIS 3104, UFMG-DCC-ICEx, Belo Horizonte-MG,
agosto 1994. 1¢ edicao.

R. Silva and H. Andrade J. Nogueira. Methodology and experience in bulding powerful
telecommunication network management agents. In Proc. of IFIP/IEEFE Distributed
System Operation and Management - DSOM 96, 1996.

