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Abstract

As high GHZ processors become prevalent, adding hardware support to ensure the cor-
rectness and security of programs will be just as important, for the average user, as further
increases in processor performance. The goal of our research is to focus on developing
compiler and hardware support for efficiently performing software checks that can be left
on all of the time, even in production code releases, to provide a significant increase in the
correctness and security of software.

In this paper we focus on the performance of checking the correctness of pointers. We
focus on pointers since a significant amount of bugs and security issues (buffer overflows) in
programs are due to memory bugs resulting from incorrect usage of pointers. To determine
if a pointer reference is correct many techniques require additional information to be kept
track of called meta-data. The meta-data is checked when a pointer is dereferenced to verify
some property about the pointer or the object. The first part of our paper focuses on where
to efficiently keep track of this meta-data information and the overheads for performing
safety checks like bounds checking and dangling pointer checks. We then focus on archi-
tecture extensions to reduce the overhead of these meta-data checks. We examine these
optimizations in the presence of two meta-data checking applications – bounds checking
and dangling pointer checks and show that we can reduce the overhead of these pointer
checks from 148% down to 21% on average.

1. Introduction

Computer system trends have increased the importance of providing efficient solutions to
finding and preventing software bugs. Lower hardware costs and increasing hardware relia-
bility have significantly reduced hardware’s importance in terms of total computer cost [1, 2].
This has increased the software’s component in the total cost of ownership of a system, due
to software’s increasing complexity, and especially bugs. In addition, with the wide spread
use of the Internet and how easy it is to release patches, software is released with more
potential bugs than in the past. Given these trends it is just as important to examine
efficient compiler and hardware support for software correctness, security, and debugging
as it is to increase the performance of the next generation of processors.

In this paper we focus on the performance of dynamically checking the correctness of
pointers. We focus on pointers since a significant amount of bugs in programs are related
to memory corruption bugs dealing with the pointers [3]. To determine if a pointer is
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correct, many dynamic software checking techniques require additional information to be
kept track of along with each pointer, which is called meta-data of a pointer. Checks are
performed using the meta-data when a pointer is dereferenced to verify some property about
the pointer or the object. The two example meta-data checking techniques we examine in
this paper for pointer correctness are bounds checking and dangling pointer checks. Bounds
checking checks a pointer dereference to make sure it is within the bounds of the object
being dereferenced, and if not an exception is raised. A dangling pointer check, checks a
pointer dereference to make sure the pointer still points to a valid object and the object
it last thought it was pointing to. Meta-data is used for both of these dynamic checks to
determine if the pointer’s usage is valid.

The first part of our paper focuses on where to efficiently keep track of this meta-data
information. The meta-data for some software checks, such as bounds checking, can be
stored with the pointer or alternatively it can be stored with the object itself. We find that
storing the meta-data with the object, instead of with the pointer, scales better in terms of
performance as the amount of meta-data that needs to be kept track of increases. We then
examine Meta-Data Checking (MDC) architecture extensions to efficiently do the meta-data
checks. The goal of all of these techniques is to reduce the overhead of meta-data checks
enough so that the checks can be left in the release versions of software. The contributions
of this paper are:

• We provide a detailed trade-off (micro-architectural effects) analysis to determine
where to store the meta-data for bounds checking and dangling pointer checks. We
show that storing the meta-data with the object provides better performance and will
scale better if additional meta-data needs to be tracked for doing more checks for a
pointer.

• We propose architecture and ISA extensions to reduce the average overhead of meta-
data checks to 21%, when performing both bounds checking and dangling pointer
checks. In comparison, existing software techniques, result in 148% slowdown for the
same checks.

2. Methodology

In this section we describe our compiler that we used to implement the meta-data checks
we examined in this paper, and the simulation infrastructure to gather our results. All our
simulations are based on x86.

2.1. Compiler

We build our compiler infrastructure out of 2.95 GCC. The meta-data checks we exam-
ine in this paper include bounds checking and dangling pointer checks. We implemented
these two checks starting from a bounds checking patch provided by Greg McGary [4]. Mc-
Gary’s infrastructure performs bounds checking of C references, including automatic bounds
generation for static and dynamically allocated objects using pointer meta-data (which is
conventionally referred to as fat pointers) and static bounds information.

We modified the McGary version of gcc in several respects. First, we modified the
compiler to optionally generate the object meta-data that will be described in subsec-
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tion 4.1.. Second, we modified it to use the x86 bound instruction, instead of a sequence
of compare-branch-trap x86 instructions to do bounds checking. Third, we eliminated re-
dundant bounds instructions by modifying common-subexpression-elimination to remove
redundant bounds in a trace region. Forth, we add the dangling pointer check for stack and
heap objects. As tag checks for statics objects is not necessary, we skip dangling checks on
them. We also model the meta-check instructions described in Section 5.

We verified that McGary’s bounds check detects all buffer overflow attacks in Wilander’s
test case [5]. Subsequent major functionality changes were reverified with this test case.
We also verified that the software bounds checker was able to detect bounds violation in
the AccMon benchmarks [6].

2.2. Simulation Model

We used SimpleScalar 4.0 x86 Tool Set [7] for simulating our x86 binaries. The configuration
is given in Table 1 and based loosely on an AMD Athlon processor, as this represents a
widely deployed modern desktop system, and a pipeline that is more reasonable to emulate.

Fetch Width 4 inst

Issue Width 4 inst

Func Units 4-ialu, 1-imult, 2-mem, 3fpalu, 1-fpmult

Reorder buf RUU: 32, LSQ: 32

L1D 16KB, 2 way, 64B Block, 3 cycle latency

L1I 16KB, 2 way, 64B Block, 3 cycle latency

L2 Unified 2MB, 16 way, 64B Block, 20 cycle latency

DTLB 128 entry, 30 cycle miss penalty

ITLB 64, 30 cycle miss penalty

Memory 275 cycle latency

Branch Pred 16K meta chooser between gshare (8K entry)
and bimodal table (8k entry); 16 Return
Address Stack; 512 BTB; 10 cycle misprediction penalty

Table 1: Simulation model based on the AMD Athlon.

To better understand sources of delays in the processor pipeline, we modified Sim-
pleScalar to classify every cycle in terms of generic delay sources. If a delay prevents useful
instruction execution for that cycle, then that cycle is categorized by that delay type, oth-
erwise that cycle is counted towards execution ex. A cycle is attributed to execution in this
case, even if some other delay event is occurring, because the out-of-order pipeline is still
doing useful work. Data-cache misses often stall data-dependent instructions, completely
starving the pipeline, and are classified as dc. Because we want to know when data-cache
misses occur, even though useful instructions are being executed, we classify cycles when
this combination is the case as dc/ex. Front-end pipeline starving events are classified as
either branch misprediction brm, or other front-end stalls (i.e.instruction cache miss) fe.
Almost all of our results are classified with these five breakdowns as stacked graphs with
the y-axis labeled Normalized Execution.
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2.3. Benchmarks and Simulation Points

For our results we use programs from the SPEC INT 2000 benchmarks. These are bzip,
crafty, gzip, mcf, parser, twolf and vpr. We do not provide results for the other SPEC
benchmarks, either because (a) they did not compile with our baseline McGary compiler
described above, or (b) they did not completely run or run correctly under the new x86
SimpleScalar we are developing jointing with Michigan. We simulated each program using
the reference input for 100 million instructions (for baseline) at a representative simulation
point chosen by SimPoint [8].

For our analysis we generate different binaries to look at the different bounds checking
approaches examined in the rest of this paper. For example, the baseline binary has no
bounds checking at all, and we have another binary that includes the bound instruction
to perform bounds checking, and another for checking dangling pointers, etc. Since we
have multiple versions, we need to make sure that we simulate the exact same part of the
program’s execution across these different binaries. To do this we use the single simulation
point for the baseline binary, and we perform binary matching to find the exact same code
sequence (a unique one) in the bounds checked binaries that corresponds to the simulation
point. We then used this to determine when to start simulation for the binary, and did
similar binary matching analysis to figure out when to stop simulation.

Since different number of instructions are simulated between the different binaries to
represent the same part of execution, we report results in terms of number of cycles executed
normalized to the baseline binary without any safety checking.

3. What is Meta-Data?

Sullivan and Chillarege [3] provided a detailed analysis of the failure reports from the IBM
mainframe MVS operating system. They found that memory corrupting bugs are more
likely to cause a high priority bug report by a ratio of three-to-one. Memory corrupting
bugs often allows the program to continue for some time, potentially corrupting data and
obscuring the bug’s identity, instead of stopping at the point of failure. They found the top
five causes of these memory corruption bugs are buffer overflow 20%, deallocated memory
19%, corrupt pointers 13%, type mismatch 12%, and 13% unknown [3]. Over half of the
data-corrupting failures are directly due to memory mismanagement.

Buffer overflow attacks exploit bugs to deny service or even take over the program.
As the name implies the adversary injects arbitrary data through a program’s external
interface e.g. network sockets, file IO, or command line arguments to overwrite program
data. This causes the program to crash or execute a program of the attacker’s choosing [5].
CERT data [9] from 1997 to 2003 shows that 50% or more of CERT security adversaries
are due buffer overflow attacks. A 2004 study found that unpatched and Windows XP SP1
connected to the Internet would be taken over in less than four minutes [10].

Runtime safety checks using meta-data can prevent many of the above software failures.
Software safety checks and maintenance activities often require some persistent knowledge
of the object(s) they are operating on. Meta-data is a catch-all term for this persistent
data, that exists outside the normal application activity. It usually is not visible to the
programmer, having been automatically inserted by the compiler or some other tool. The
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following is a set of safety checks and memory management techniques that use meta-data
to find and prevent the above top five memory corruption causes.

• Bounds Checking - Bounds checking verifies that a memory reference of an object, or
array falls within the bounds of that structure. The meta-data used to perform this
check is the object’s low and high bounds [4].

• Dangling Pointer Checking - C and C++ require programmer managed memory. Free-
ing memory still referenced by the program results in a dangling pointer. If referenced,
the stale pointer will incorrectly access the freed memory. We can tag the pointer and
the object with a unique ID upon object allocation. If the object is freed, the object
tag is cleared. Stale pointers are then identified by a tag mismatch with the object.
The stored meta-data to perform this check is a tag stored with the pointer and a tag
stored with the object [11].

• Garbage Collection - Garbage collectors perform automatic management of memory.
Because it periodically scans through pointer references and marks used memory, it
needs to temporarily store meta-data. A mark is stored in the object’s meta-data to
keep track of which objects have been visited [12]. Additional meta-data stored with
an object can include the location of the pointers within the object, which enables
the garbage collector to continue sweeping the heap.

For the rest of the paper, we will use both bounds checking and dangling pointer checking
to examine where the meta-data should be stored, the efficiency of meta-data checks, and
optimizations to reduce the meta-data check overhead.

4. Where to Store the Meta-Data and the Performance Overhead

As described in the prior section, software checks, such as bounds and dangling pointer
checking, require additional persistent memory called meta-data to store the bounds or
tag information. In this section we focus on examining the performance trade-off between
storing this meta-data either along with the pointer or with the object.

4.1. Meta-Data Options

Figure 1(a) shows the two standard options for where to store the meta-data. For some
checks, the meta-data can be, or needs to be, associated with the pointer to the object, which
we call Pointer Meta-Data (PMD). Another option is to store the meta-data with the object
itself, which we call Object Meta-Data (OMD) in Figure 1(a). For some checks, where to
store the meta-data is an implementation option, whereas for other checks the information
needs to be stored as either PMD or OMD. We use bounds checking and dangling pointer
checks to demonstrate this.

For bounds checking, the high and low bounds are typically stored adjacent to the
pointer as PMD shown in Figure 1(b). This is also called a fat-pointer [4, 13, 14]. Because
the bounds information is directly associated with the pointer, obtaining the meta-data is
fast and handles the problem of interior or out-of-bounds pointers due to pointer arithmetic.
Interior or out-of-bounds pointers makes it difficult to associate a pointer to its object as
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PTR low high

(b) Pointer Meta-Data (PMD) 
for Bound Checking

(d) PMD and OMD for Dangling-
Pointer check

OBJ

PTR link ptrtag

OBJ objtag

(c) Object Meta-Data (OMD)
for Bounds Checking

PTR link

OBJ low high

POINTER pointer meta data

OBJECT object meta data

(a) Meta-Data Locations 

Figure 1: Meta-data Representations. An arrow indicates a pointer to data associated with
the object. Highlighted blocks are meta-data.

the pointer no longer references the base of the object. Alternatively, we propose that the
meta-data for bounds checking could be stored with the referent object as OMD shown in
Figure 1(c). For this option, a link is stored adjacent to the pointer, which will provide the
address to the location where the object meta-data is stored. The link is necessary largely
due to interior and out-of-bounds pointers.

The other example we focus on in this paper is the dangling pointer checks. The meta-
data for this check needs a pointer tag stored as PMD and an object tag stored as OMD.
This is shown in Figure 1(d). Just as with the OMD bounds checking, a link is required as
part of the PMD to find the object tag stored as part of the object meta-data [11, 15].

4.1.1. Meta-Data Overhead

Depending on where the meta-data is stored, as a PMD or OMD, the performance overhead
will vary. This is because, the two representations will have different cache spatial locality.
To examine this tradeoff, we ran experiments allocating different number of PMD and OMD
words for all pointers and allocated objects. At each pointer reference (each time the pointer
register was used in a memory operation) we access the last meta-data word. Therefore
the overhead measured comes from copying and maintaining the meta-data and accessing
the last meta-data word. For these results we broke the execution time into the percent
of execution time (cycles) fetch was stalled (fe), the execution due to branch misprediction
(brm), data cache misses (dc), overlapped data cache miss with execution (dc/ex), and
execution (ex) where there were no stalls.

In Figure 2(a), we compiled the programs so that there was 1 (1pmd), 2 (2pmd), 3
(3pmd) or 5 (5pmd) extra words associated with the pointer representing the effects of
having PMD of that size. The additional overhead occurs from two sources with PMD.
The first overhead comes from copying the meta-data. Every pointer assignment during
execution has to also copy the pointer meta-data to the new pointer. The increase due to
this can be seen in twolf as the number of execution cycles went up. The more dominant
increase in overhead comes from the increase in data cache misses (dc) from the pointers
with PMD. This effect is seen for the data cache sensitive benchmarks like (mcf, parser
and twolf).

In Figure 2(b), we experiment with varying OMD sizes. We store 2 (2omd), 3 (3omd),
6 (6omd), and 9 (9omd) extra words along with each allocated object. In addition, each
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Figure 2: Performance overhead for maintaining pointer meta-data (top graph) and object
meta-data (bottom graph). Results are shown for various sizes of meta-data.
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pointer has 1 extra word, which provides the link from the pointer to the OMD as shown in
Figure 1(c). Irrespective of the size of OMD, the overhead has a fixed cost of copying just
the link word on every pointer assignment as opposed to copying all the meta-data in the
case of PMD. The size of the pointer is also a constant two words (one word for the pointer
itself and another for the link). The graph shows a nearly flat trend even as larger object
meta-data sizes are allocated.

Storing meta-data with the objects scales better than storing it with the pointer, espe-
cially for programs like mcf and parser because (a) there are many more pointers stored in
memory than objects, and (b) storing the meta-data with objects allows sharing of meta-
data among the multiple pointers that point to the same object.

4.2. Storing Meta-Data for Bounds and Dangling Pointer Checks

We now examine the overheads of implementing bounds checking and dangling pointer
checks and show how these overheads differ based on the layout used for storing meta-data.

4.2.1. Bounds Checking

Bounds checking uses the low and high boundary information associated with each memory
object to determine if an out-of-bounds pointer reference has occurred. This is done for each
source code pointer dereference or array reference. The x86 instruction set has an explicit
instruction bound for performing bounds checking as shown in Figure 3(a) and (b). The
code example assumes that the pointer is stored in register ptr reg and the base address
for the two words storing the high and low bounds is the second parameter. Figure 3(a)
assumes the meta-data is stored as PMD as in Figure 1(b). The other option would be to
store the bounds as OMD as in Figure 1(c), and Figure 3(b) shows the code for this. In
this case, the link pointer is loaded, and then passed to the bound instruction.

The differences between storing the bounds meta-data as OMD vs PMD are:

• Sharing of Meta-Data - Storing the meta-data with the object will allow the meta-data
to be shared across several pointers to the same object.

• Number of Pointers vs Number of Objects - Related to the above point is that some
programs have many more pointers than objects. For example, programs like mcf and
parser where each object has N pointers. For these programs, storing the bounds as
PMD requires significantly more storage (and data cache usage) than storing them
with the object. Storing meta-data with the object enables sharing them between
pointers pointing to the same object.

• Reducing the PMD to 1 Word - Moving the meta-data to the object reduces the PMD
from 2 words down to 1 word, and this is the link word to the object meta-data.

• Overhead of Extra Link Load - The OMD approach has the additional overhead of
loading the link register. Note, that the link register overhead for the OMD case can
actually be fairly small. This is because the link register can be hoisted to occur at
the same time as the pointer load. If these both overlap, then the cost of the link load
can be minimal.
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bound ptr_reg, [base_reg+4] mov [base_reg+4], link_reg

...

...

bound ptr_reg, [link_reg]

(a) PMD x86 Bound Instruction (b) OMD x86 Bound Instruction

mov [base_reg+4], link_reg

mov [link_reg], objtag_reg

mov [base_reg+8], ptrtag_reg

cmp objtag_reg, ptrtag_reg

jeq done

trap

(c) Dangling Pointer Check

Figure 3: x86 implementation of the bounds instruction storing the meta-data with the
pointer (a), and storing the meta-data with the object (b). (c) shows the pseudo
code for performing the dangling pointer check where the link register and pointer
tag are stored as pointer meta-data and the object tag is stored as object meta-
data.

---------------------------

bound ptr_reg, [base_reg+4]

---------------------------

load [base_reg+4], low_reg

cmplt_trap ptr_reg, low_reg

load [base_reg+8], high_reg

cmpgt_trap ptr_reg, high_reg

Figure 4: The baseline micro-op expansion of the x86 Bound Instruction.
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For C, several researchers use the PMD representation for bounds checking [4, 13, 14].
Others [16, 9] use a table lookup on the pointer address to determine the bounds. The table
lookup scheme has the advantage in that it is not necessary to change the memory layout
of the data objects. The meta data required to do a bounds check is obtained by doing a
table lookup on the bounds meta-data table. Since C allows interior pointers, a fast hash
lookup on the object address cannot be done, and instead we have to use tree search which
would incur significant performance overhead. We therefore, concentrate on the PMD and
OMD representation for our analysis.

4.2.2. Dangling Pointer Checks

Dangling pointer check determines if a referenced object has been freed and potentially
reallocated, but incorrectly accessed afterward with the old pointer. It does this by associ-
ating a tag with the pointer and a second tag with the object, with the property that they
must match. At object creation, a unique tag id is assigned to both the pointer, and object
tags. When the object is freed, the object tag field is cleared. A pointer dereference to the
object performs a tag check. If they mismatch then the pointer must point to an object
that’s been either freed or reallocated. The x86 pseudo code for implementing a dangling
pointer check is shown in Figure 3(c). The meta-data for the dangling pointer needs to be
stored as in Figure 1(d), where there is a link and pointer tag stored as pointer meta-data,
and the object tag is stored as object meta-data.

4.3. Meta-Data Checking Overhead

When using bounds checking or dangling pointer checking, the checks occur at pointer
dereferences, which can create large run-time overhead. Figure 5 shows the overhead for
using the bounds checking instruction in Figure 3(a), where it is translated into the micro-
op sequence in Figure 4(a) when executed in the pipeline. The second bar in Figure 5 shows
the results for storing the bounds as PMD as in Figure 3(a). The first bar shows the results
for storing the bounds as OMD as in Figure 3(b). The overhead of bounds checking is 81%
on average when the bounds are stored in PMD but is 48.4% when the bounds are stored in
OMD. The overhead comes from increased number of instructions from having to copy the
pointer meta-data, the additional micro-ops to perform the check, and the increase number
of cache misses.

As part of this study, we also want to examine the effect of performing multiple safety
meta-checks on a pointer at the same time. In addition, looking farther into the future
having multiple forms of meta-data stored with an object can potentially even aid hardware
optimizations.

To examine the effect of performing multiple safety checks, we also provide results in
Figure 5 for performing both bounds checking and dangling pointer checks for pointers at
the same time. This is equivalent to executing the code in Figure 3(a) and (c) at the pointer
dereference when the bounds are stored as PMD, or executing the code in Figure 3(b) and
(c) at the pointer dereference when the bounds are stored as OMD.

To perform the combined check for PMD, the pointer-meta data is now 4 words wide
since it contains the high and low bounds, a link to the object meta-data, and the dangling
pointer tag. Then the object meta-data contains just the dangling object tag. To perform
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Figure 5: Bounds and combined Dangling Pointer and Bounds check overhead.

the combined check for OMD, the pointer-meta data is only 2 words wide since it contains
only a link to the object meta-data, and the dangling pointer tag. Then the object meta-
data contains 3 words, which includes the low and high bounds and the dangling object
tag.

The fourth bar in Figure 5 shows results for bounds plus dangling checks where the
bounds information is associated with PMD. The third bar shows results for doing both
the checks, but for these bounds information is associated with OMD. The performance
overhead increases greatly due to the wider pointer-meta data as we saw in our earlier
results in Figure 2.

5. Meta Data Checker

The performance overhead of meta-data checks needed for bounds checking and dangling
pointer checks shown in the previous section is still too high for these safety checks to
be incorporated into released software. In this section we examine Meta-Data Checking
(MDC) architecture extensions to reduce the overhead of meta-data checks. The architec-
ture extensions include, extending the x86 ISA with a new instruction, called the meta-check
instruction and the necessary hardware support to implement and use it.

5.1. Motivation for Meta Checker Instruction

The special meta-check instruction (explained later) is designed to meet following goals
which strive to reduce the performance overhead and at the same time provide enough
flexibility to support a variety of checks that need meta-data.

• Reduce Additional Instructions in Binary to Perform the Check - As shown in Fig-
ure 3 the dangling pointer check executes about five x86 instructions for each check
(around 7 micro-ops expanding out the address generation). This can result in regis-
ter spill and consume fetch bandwidth, which can adversely affect the performance.
A generic meta-data instruction can be used to concisely represent this check, so that

11



Chuang, Narayanasamy & Calder

when pointer dereferencing instruction is executed a sequence of micro-ops to perform
additional checks will be automatically generated.

• Flexible Meta Data Representation and Efficient Cache Usage - As we noted in the
prior section, object meta-data layout is efficient in terms of performance but for some
checks like dangling pointer checks we also need pointer meta-data. So having the
flexibility to associate the meta-data as either PMD or OMD (wherever appropriate)
would be important for adding customized instructions for efficiently executing safety
checks.

5.2. Overview of Meta Data Check Architecture Extensions

We propose extending the ISA with a special instruction called the meta-check instruc-
tion to perform the memory safety checks. The meta-checks are bound to a virtual register,
which at compile time is determined to hold a pointer. The virtual register for a meta-check
is explicitly represented in the meta-check instruction. When that register is used (deref-
erenced) by a load or store memory operation, the meta-check micro-op instructions are
inserted into the execution stream to perform the check. These meta-check micro-ops are
inserted before the memory operation. Thus, check operations need not be explicitly spec-
ified for each pointer dereferencing memory operation, reducing register spill and pressure
on fetch bandwidth.

A sequence of meta-check instructions is used perform a bounds check and/or a dangling
pointer check. One can view each meta-check as an assertion or a rule that a pointer value
in the register must obey. The meta-check instruction is coded with few values - here we
will briefly explain the important fields. One field specifies the type of the check operation
(eg: less than, greater than, equal to etc – operations using which the compiler can perform
required safety checks) and another field specifies the virtual register that needs to be
associated with that check. The check operation also needs the meta-data to compare
against the pointer value in the register. Hence, each meta-check instruction also specifies
the sources for meta-data, which can be a PMD or an OMD or another virtual register.

When a meta-check instruction is executed, MDCT Meta-Data Check Table is updated.
MDCT is a finite sized buffer to hold the information needed to later perform the meta-data
checks associated with a given virtual register. Each meta-check instruction is assigned an
entry in the MDCT. For a given virtual register, the compiler can use multiple meta-check
instructions to associate more than one check with the virtual register. While executing a
memory operation, during the register renaming stage, the MDCT is accessed to determine
the checks that need to be performed for the register used by the memory operation. Then
required micro-op instructions are inserted into the pipeline which will automatically load
the required meta-data into the physical registers and execute the check operations.

The micro-op expansion for the meta-check instruction could be supported by techniques
such as DISE [17]. By generating the micro-ops to perform the safety check when the virtual
register holding the pointer is used, we avoid the need to explicitly insert those checks in the
binary. As a result, we also avoid register spill as we don’t have to use virtual registers in
the binary to hold the meta-check’s temporary values. The format and the implementation
of the meta-check instruction is flexible enough to support different types of meta-data
layouts, and also potentially many different types of checks.
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The remainder of this section will describe the format of the meta-check instruction, few
sample checks that can be performed with the meta-check instruction, and the hardware
extensions required to support this instruction.

5.3. Meta-Check Instruction

A meta-check instruction binds a check operation to a virtual register, which will be executed
whenever a memory operation uses the register. The format of the meta-check instruction
we modeled is shown below.

meta-check ptr_reg, slot, offset(ptr_base), meta-operand-1, meta-operand-2, cond

At a high level, ptr reg is the register containing the pointer over which safety check
need to be performed. offset(ptr base) specifies the address where we can find the
pointer meta-data. The meta-operand field in the instruction is a bit mask that specifies
which field in the meta-data needs to be used for the check (there are two masks for two
operands). cond is the check operation to be executed. Here is a more detailed definition
of the fields for the instruction:

• ptr reg - is the virtual register that contains the pointer value that the compiler
wants to associate the check with. It is assumed that the register will contain the
pointer before executing the meta-check instruction.

• slot - The compiler should be allowed to bind more than one check with a particular
virtual register (bounds check requires two meta-check operations, dangling pointer
check requires one, and to do both we need three meta-checks to be associated with
the pointer register). To keep track of the checks associated with a virtual register,
we use a table called MDCT (explained later in Section 5.5.). To bound the size of
the MDCT, we must limit the number of meta-checks associated with each virtual
register. For this study, we use a limit of four. The slot bits specify which of the
four possible meta-checks is being defined by the instruction for the specified virtual
ptr reg.

• offset(ptr base) - ptr base is the register containing the address where the pointer
(loaded into ptr reg) is located in memory. An offset from this ptr base address, is
where we can find the pointer meta-data in memory. The pointer meta-data can
contain all the necessary meta-data or can contain a link to the object meta-data
(refer Figure 1). On executing the meta-check instruction, a physical register will be
allocated and ptr base plus offset will be saved to into it (this value is referred to as
MD base, which is the effective address required to access the pointer meta-data) .

• meta-operand-1 and meta-operand-2 - There can be multiple fields in the pointer
meta-data or object meta-data. For example, for bounds checking, we need two fields
(one for low bounds and another for high bounds) in the meta-data. These specify
where to find the two source operands required to perform the check operation. These
could take one of the following type:

O(OMD_Mask)|P(PMD_Mask)|ptr|const
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These formats mean:

– N-bit PMD Mask - It is possible that a pointer has many meta-data associated
with it. This field indicates which pointer meta-data word(s) should be used as
operand(s) for the meta-data check specified by the instruction. This could be
implemented as an offset instead of a Mask.

– N-bit OMD Mask - Similar to the above PMD Mask, the OMD Mask indicates
which object meta-data word(s) should be used in this meta-data check. This
could be implemented as an offset instead of a Mask.

– ptr - this specifies to use the value in the pointer register that triggered the
check as an operand for the meta-check (this is the ptr reg that the instruction
associates the check with. It is already specified in the meta-check encoding but
this field here specifies whether to use it as an operand for the meta-check or
not).

– const - A small N-bit constant.

• cond - this determines the type of check to perform using the meta-data. The sup-
ported traditional types of checks could be: EQ, NEQ, GT, GTE, LT, and LTE.

The meta-check instruction binds a check operation (comparison of two meta-operands
using the condition specified) to the specified virtual register ptr reg. The two meta-
operands could be both meta-data, or the comparison could be between one meta-data
and the value in ptr reg. They also could be both from the PMD or both from the OMD.
The order in which the expression is evaluated is from left to right in terms of the ptr reg

and meta-data words specified in the PMD and OMD being compared.
The execution of meta-check instruction results in two updates. First, the meta-check

instruction allocates a physical register and saves the meta-data base address value called
the MD base in the physical register. The MD base is computed from the ptr base by adding
to it a fixed one pointer-word offset- (offset(ptr base)). This MD base pointer contains
the address of the 1st word of the pointer meta-data. From base pointer we obtain all PMD
addresses by adding the PMD mask offset. If OMD is being used, 1st word of the pointer
meta-data will be the link pointer to object meta-data. From the link pointer we can obtain
all the OMD by adding OMD mask offset.

Second, the required information for executing the check operation is stored in the
MDCT, so that later on, when a memory operation access the virtual register the check
operation can be automatically inserted into the pipeline (MDCT and other extensions to
the pipeline to execute the meta-check instruction will be described later in Section 5.5.).

The reason for going with the above fairly generic meta-check instruction description is
to not make an assumption about where data is located in the PMD and OMD for the type
of checks that might want to be performed. The only assumption is that when there is a
link, the first word of the PMD is the link to the OMD.

5.4. Using the Meta-Check Instruction

To better understand the meta-check instruction, lets look at using the meta-check instruc-
tion for performing bounds checking and dangling pointer checks. In the example below,
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(1) corresponds to the dangling pointer check in Figure 1(d), (2) corresponds to the PMD
bounds checking in Figure 1(b), (3) corresponds to the OMD layout of bounds checking in
Figure 1(c), and (4) corresponds to performing both OMD bounds checking and the dan-
gling pointer check on the same pointer. In this last case, the object tag is the third word
of the object meta-data.

----------------------------------------------------------------------------------

(1) Dangling Pointer Check: Compare second PMD field with first OMD field

meta-check ptr_reg, 00, off(ptr_base), P(0100), O(1000), NEQ

----------------------------------------------------------------------------------

(2) Bounds Check using Pointer Meta Data (PMD)

meta-check ptr_reg, 00, off(ptr_base), P(1000), ptr, GT // Check Lower Bound

meta-check ptr_reg, 01, off(ptr_base), P(0100), ptr, LT // Check Upper Bound

----------------------------------------------------------------------------------

(3) Bounds Check using Object Meta Data (OMD)

meta-check ptr_reg, 00, off(ptr_base), O(1000), ptr, GT // Check Lower Bound

meta-check ptr_reg, 01, off(ptr_base), O(0100), ptr, LT // Check Upper Bound

----------------------------------------------------------------------------------

(4) Combining Bounds Check using OMD and Dangling Pointer Check

meta-check ptr_reg, 00, off(ptr_base), O(1000), ptr, GT // Check Lower Bound

meta-check ptr_reg, 01, off(ptr_base), O(0100), ptr, LT // Check Upper Bound

meta-check ptr_reg, 10, off(ptr_base), O(0010), P(0100), NEQ

----------------------------------------------------------------------------------

Figure 6: Example meta-check instructions for dangling pointer and bounds checking. P

stands for meta-check data stored as the PMD, and O stands for meta-check data
stored as the OMD.

In Figure 6(1), the first meta-check instruction is for specifying a dangling pointer check.
As explained in Section 4.2.2., to perform a dangling pointer check, the tag stored in the
pointer PMD is compared against the tag stored in the OMD. Because it uses OMD, the
first word after the pointer (in the PMD) is the pointer to the OMD. The second word
in the PMD is the pointer tag and the first word in OMD is the object tag. These are
specified by the bit masks PMD mask and OMD mask. These source operands for the NEQ
check operation will cause a trap if they are not equal. Note, the example shows just 4-bits
for the masks, but the masks can be longer based on how many bits are available in the
instruction encoding. In addition, to allow access to larger meta-data structures, an offset
into the meta-data could be used instead of a mask.

Figure 6(2) shows using the meta-check instructions for bounds checking using the layout
where the bounds information is stored in the PMD, as shown in the Figure 1(b). One check
instruction is for comparing the ptr reg address, when it is used in a later instruction, with
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the lower bound stored in the first word of PMD and the other one compares the ptr reg

address with the higher bound stored in the second word of PMD.
After the meta-check is registered for a given ptr reg, any instruction that uses that

register (before it is redefined) for an address calculation has the corresponding checks
inserted into the instruction stream. The architecture to support this is described later.
The checks are inserted directly after the address generation and before any remaining
operations for that instruction. If a virtual register has associated with it multiple meta-
checks, as in bounds checking, the architecture inserts the micro-op checks based on their
instruction slot number. In addition, all of the meta-checks assigned to the same virtual
register must specify the same base register, since the value of the base register is only
stored once in the architecture.

To give an example of how the checks are inserted automatically into the instruction
stream, assume we insert the meta-check instructions in Figure 6 (2) into the binary after
a load of a pointer to virtual register r1. Then before r1 is redefined, we see a use of it in
the instruction sub offset(r1), immediate. Below is the micro-op sequence generated
for the x86 subtract instruction along with the two meta-checks for bounds checking and
their meta-data access loads that are inserted right after the address generation.

// Original x86 instruction

sub offset(r1), immediate

// micro-op expended of subtract

1. agen tmpAddrReg = r1 + offset // address generation

2. agen lowaddr = P(1000)+ MD_base // meta-check: compute low bound address

3. load low = M[lowaddr] // meta-check: load low bound from PMD base

4. cmp_gt_trap low, tmpAddrReg // meta-check: compare low bound

5. agen highaddr = P(0100)+ MD_base // meta-check: compute high bound address

6. load high = M[highaddr] // meta-check: load high bound from PMD base

7. cmp_lt_trap high, tmpAddrReg // meta-check: compare high bound

8. load tmpReg = M[tmpAddrReg] // load real data

9. sub tmpReg = temReg - immediate // perform the subtract

10. store M[tmpAddrReg] = tmpReg // store the result

One advantage of doing the above, is that if a trap occurs, it will be caught before
the store commits and the PC that will be marked as having the exception is the store.
This allows an exception handler or debugger to know exactly the instruction that violated
the safety check. In comparison, when a bound instruction is used, the PC of the bound
instruction would be marked as having the exception.

5.5. Hardware Support for Meta-Check Instruction

Meta-check instructions are buffered in the Meta-Data Check Table as noted above. Cur-
rently we assume its capacity to be four entries for each virtual register (which we believe is
sufficient to perform a variety of checks like the ones discussed in this paper). Therefore, for
x86, we need thirty-two entries in MDCT (eight times four). When a meta-check instruction
is decoded, it populates an entry in the MDCT table. If it is the first meta-check assign-
ment for the virtual register, a physical register is allocated. The base pointer (MD base)
to the PMD meta-data is computed (from the ptr reg and offset specified in the meta-check
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instruction) and stored in the physical register. The mapping between the physical register
holding MD base and the virtual register to which the meta-check is associated in stored
in the Meta-Data Base Register Map (MDBRM) shown in Table 3. MDBRM has an entry
for each virtual register (eight entries in the case of x86) keeping track of the base address
of the pointer meta-data. Both the MDCT and MDBRM can be directly written and read
so as to enable context switching.

On executing a memory operation, the MDCT is consulted to determine if check oper-
ations are bound to the virtual register that is used for effective address computation (we
will refer to this register as pointer-register). If so, check instructions corresponding to that
pointer-register are micro-op expanded and inserted into the pipeline before executing the
memory operation itself. The MDCT, shown in the Table 2, contains the following fields.
The first field holds the virtual register that will hold the pointer we want to check, the
second is the slot identifier, the next two fields hold the first and the second meta-check
operand bits, and the last field holds the condition to evaluate the check expression. The
table is direct-mapped indexed first by the virtual register and then by the slot number.
Similar to the register rename map, the MDCT keeps track of only the most recent definition
for each virtual register.

Table 3 shows the physical register holding the base address of the pointer stored in a
virtual register. When the first meta-check instruction is encountered for a virtual register,
a physical register is allocated to hold the base address of the pointer. All meta-checks for
a virtual register definition have the same pointer base address, so they all use this physical
register, which is used to get access to the PMD (the first field in PMD contains the link
to the OMD, if OMD is used) for the micro-op expanded checks.

Pointer Slot 1st 2nd Operation
Virtual Operand Operand

reg reg reg

r1 0 O(1000) ptr GT
r1 1 O(0100) ptr LT
r1 2 O(0010) P(0100) NEQ
r1 3

Table 2: Meta-Data Check Table (MDCT).

Pointer Physical Register
Virtual containing

reg MD base

r1 p20
r2 p2
r3 -

Table 3: Meta-Data Register Map (MDBRM).
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We now describe what happens when a meta-check is fetched, and when the pointer
register we are watching is used for an address generation.

Expanding a Meta-Check Sequence- Take for example the three meta-check instruc-
tions in Figure 6(4). After executing those three meta-check instructions, the state of the
MDCT table will be as shown in Table 2 and MDBRM table in Table 3. The virtual register
r1 is the pointer register to be checked (the register into which the pointer would have been
loaded). On executing the first meta-check instruction, a physical register p20 is allocated
to address of the start of the PMD. This is the MD base, and it is shared among all the
meta-checks for the same virtual register r1.

Then the micro-code engine automatically inserts into the instruction stream instruc-
tions to perform the check comparisons in the table when there is a use of r1 for a memory
reference. The micro-ops first load the meta-data using the value stored in the MDBRM
along with the offsets specified in the meta-check operands stored in the MDCT.

If the micro-op expansion uses the OMD data, it first inserts an instruction to load
the link register to the OMD. In this example it allocates p8 as the link register. Next
expansion generates the load operations for the meta-data, using as the base register: for
PMD meta-data, which is register p20, and for OMD meta-data is accessed via the link
register p8. For the example in Figure 6(4), the following micro-ops would be inserted to
perform the bounds and dangling pointer check. As described earlier for the store example,
these checks will be inserted in the instruction stream between the address generation and
the rest of the instruction’s execution.

load p8 = [p20]

agen p25 = O(1000) + p8

load p2 = [p25]

cmp_gt_trap p2, p10

agen p26 = O(0100) + p8

load p4 = [p26]

cmp_lt_trap p4, p10

agen p27 = O(0010) + p8

load p8 = [p27]

agen p28 = P(0100) + p20

load p5 = [p28]

cmp_neq_trap p16, p5

Freeing MDCT and MDBRM Table Entries and their Physical Registers -

When a virtual register is redefined by an instruction, the MDCT and MDBRM entries
corresponding to that register are removed, since the virtual register has been redefined.

But note that the physical base register allocated to those entries is not freed until the
instruction that is redefining the virtual register commits. When a new register definition
occurs, if there are hits in the MDCT, we (1) remove the entries from the MDCT, and
(2) remove the base pointer register mapping from MDBRM. When this new instruction
commits, we know that we can then free the base pointer physical register. This is similar to
the conventional algorithm used to manage freeing physical registers in current architectures.

Even though multiple definitions of a virtual register can be alive at a time, the MDCT
and MDBRM table needs to only hold the check instructions and base meta-data mapping
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corresponding to the latest definitions of the virtual registers. This is because decoding and
renaming are done in-order, and the tables are used to just generate the micro operations
in-order during the decode stage.

Branch Mispredictions, Context Switches and Exceptions - Branch mispecula-
tions are handled in modern architectures by checkpointing the register rename table. To
support our extensions, the physical register mapping of the MDCT and MDBRM is check-
pointed as with any other renamed register set. Upon recovering from a misprediction, the
check-point map is restored.

Context switching imposes additional burdens, as the MDCT and MDBRM state must
be saved to software memory (kernel stack). We narrowly expose the MDCT/MDBRM
architecture to enable efficient saving and restoring of state. For the MDCT, the saved
state is the original meta-check opcode encoding. When we store an entry from the MDCT
to memory, it recovers the original meta-check representation, which is stored in the MDCT.
We also save and restore the value of the base pointer register from the MDBRM for that
meta-check. Upon restoring the meta-check instruction along with the base value, we restore
the meta-check into the MDCT table and allocate a new register in the MDBRM. As there
are up to 32 meta-check instruction entries and eight base pointer entries, the context
switcher checks if the register is used for meta-check instructions, spilling them only if
necessary. We keep track of the use status in a bit vector indexed by virtual register number.
Upon restore we walk through the bit vector, and reload the corresponding previously used
MDCT table entries and the base register.

5.6. Link and Pointer Meta Data Compression

We observed that there are two pieces of information that typically can be compressed in
the PMD. The upper bits of the link are usually the same as the pointer value. One can
potentially provide a special version of the above meta-check instruction, so that the first
two data items in the PMD are compressed into one word. The link would use 20-bits, and
this leaves 12-bits to be used for something else. We examine using this combination for
compressing the dangling PMD pointer tag and the link together. In doing this, the PMD
in Figure 1(d) becomes only one word instead of two words. We examine the effects of this
optimization in the results section.

6. Results for Bounds and Dangling Pointer Checks

In this section we will discuss the benefit of Meta-Data Checking (MDC) architecture. First
we will discuss the results for doing just the bounds checking and then discuss results for
doing both bounds and dangling pointer checks.

6.1. Performance of Bounds Checking

In the Section 4 we discussed the overheads of bounds checking implementations. There we
did not assume any architectural support but instead implemented bounds checking using
existing x86 assembly instructions. Those results are shown again in the Figure 7(a). The
result labeled as bnd-pmd shows the overhead of bounds checking using PMD layout (shown
in the Figure 1(b)) and the one labeled as bnd-omd shows the bounds checking overhead
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when we use OMD layout (shown in the Figure 1(c)). In addition, Figure 7(a) shows
the overhead of bounds checking when we implement it using the meta-check instruction
described in the previous section. This result is labeled as bnd-omd-MDC. For all the results
we again break the execution time between fetch stall (fe), branch misprediction (brm), data
cache misses (dc), overlapped data cache miss with execution (dc/ex), and execution (ex)
where there were no stalls.

We see that the average overhead is 81% when the bounds are stored with the PMD but
we incur only 48% overhead when the bounds are stored with the OMD. This improvement
can be attributed to the improvement in data cache miss rates as we now share the bounds
information for an object across all the pointers to that object.

Using the MDC architecture the average overhead of bounds checking is reduced signif-
icantly to 21%. These savings can be attributed to the reduction in time spent in execution
(represented by ex and dc/ex in the Figure). Time spent due to ex and dc/ex is consistently
reduced across all the benchmarks. Especially for programs like bzip, the performance im-
provement is significantly reduced from 43.7% to 8.3%.

For programs like mcf, we do not see appreciable gains. The reason is that mcf is memory
bounded and a greater proportion of the execution time is spent servicing cache misses. The
MDC architecture, though it optimizes the number of instructions fetched and executed,
the overhead due to increased memory footprint to store the meta-data information still
remains. But, note that the stalls due to data cache misses is significantly reduced in OMD
layout (bnd-omd) as compared to PMD layout (bnd-pmd).

To summarize, our meta-data layout coupled with meta-check instruction reduce the
average overhead of bounds checking to 21% slowdown which is a significant reduction when
compared to 81% incurred by current software implementations when providing complete
bounds checking.

6.2. Performance of Dangling Pointer Check

Figure 7(b) shows the overhead for performing dangling pointer checks on top of bounds
checks. The two results from Figure 2(b), bnd-pmd-dng and bnd-omd-dng are reproduced
here for comparison. The bounds check and the dangling pointer check are implemented
for these two results using only x86 instructions.

Before discussing the results, here is a quick summary on how the meta-data is laid out.
For bnd-pmd-dng, the bounds information is associated with PMD. There will be four PMD
words: two for bounds, one for link address and another for pointer tag needed for the
dangling check. In addition there will be one OMD word to hold the object tag needed for
dangling pointer check. For the bnd-omd-dng results, bounds information is associated with
OMD, which means there will be just two PMD words (one for link address and another for
pointer tag) but three OMD words (high, low bounds and one more word for object tag).

The overhead of these implementations are pretty steep. The overhead for bnd-pmd-
dng configuration is 148% which we expected as it uses four PMD words. Especially, since
the dangling pointer check needs a link address it is definitely better to store bounds in
OMD. When we do that, we see a significant reduction in the average overhead to 63.9%
(corresponding to bnd-omd-dng).
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Figure 7: Normalized execution time for bounds checking (top graph) and dangling pointer
check (bottom graph) using the meta-check instruction.

bnd-omd-dng-MDC in the Figure 2(b) corresponds to the implementation that assumes
the MDC architecture. The average overhead reduces to 29.8% from 63.9% when we apply
MDC architecture optimizations. We achieve this reduction in performance overhead by
reducing the number of instructions inserted into the binary to perform the check. This
can be noted by comparing the reduction in ex and dc/ex components.

Finally, as described in the Section 5.6., we can compress the link address and the
pointer tag into one PMD word. The result corresponding to this optimization is labeled as
bnd-omd-dng-MDC+Comp. This compression reduces the increase in memory footprint and
as a result yields better cache performance. On average, the overhead reduces to 21.2%,
which is only a slight increase in overhead for adding dangling pointer checks on top of
bounds checking. This shows that our approach scales well and that as long as we can
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avoid increasing the PMD size we can keep the performance degradation within tolerable
limits.

7. Related Work

In this paper we focus on providing comprehensive bounds checking and dangling check for
every pointer reference. Complete bounds checking is required to guarantee security. In
this section we will discuss the recent architectural and software proposals to assist bounds
checking.

7.1. Hardware Support for Bounds Checking

Recently there has been significant interest in providing hardware support to assist debug-
ging. Zhou et.al., proposed iWatcher [18] to monitor accesses to memory locations. The
memory location that needs to be monitored and the monitoring function that needs to be
executed when a monitored memory location is accessed are specified through a system call.
A bit is associated with each word in the L1 and L2 caches, so that the hardware knows
which locations need to be monitored (information will be lost when a block is evicted). A
software table is used to map the addresses of monitored locations and the monitoring func-
tion corresponding to them. When there is an access to a monitored location, the software
table is searched to access the monitoring function which is then executed. HeapMon [19]
is another related work which proposed to use status word for each word in the heap to
dynamically detect uninitialized or unallocated memory locations. Witchel et.al. proposed
Mondrian Memory protection [20] to provide fine grained protection down to a word using
hardware support, mediated by kernel.

The above proposals did not discuss and evaluate the performance overhead of checks like
bounds checking and dangling pointer checks, which require us to keep track of meta-data
information for pointers. In this paper, we discuss where to store the meta-data information
and propose ISA extensions that allows us to access and use meta-data efficiently.

Lam and Chiueh [21] examine optimizing bounds checking by cleverly exploiting a fea-
ture in the x86 architecture that is used to protect segments of memory. One segment is used
for each object and before dereferencing an object the segment registers are initialized with
the base (lower bound) and the limit (specifies upper bound) of the segment correspond-
ing to the object. When the object is dereferenced, the x86 architecture will verify if the
pointer is within the bounds of the segment. Using the segment registers in this way allows
for lower and upper bounds checking for objects up to 1MB, but not larger than that. Due
to the overhead of setting up the segment registers with the bounds, they propose to limit
the use of their technique to verify only the array references inside loops. In comparison, we
propose a general approach for meta-check instructions that allow various additional checks
to be done for pointers (eg: dangling pointer check). We apply our technique for protecting
all the pointer references (not just the arrays) and hence it is useful for pointer intensive
applications, and our approach works for objects (e.g., arrays) larger than 1MB.

Shao et al [22] examined having hardware instruction for bounds checking similar to the
x86 bounds instruction. They propose using a special bounds check instruction to reduce
the overheads of the software bounds check. One contribution of our work is that they only
look at using pointer meta-data, whereas we examine both object and pointer meta-data.
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The instruction they propose is almost identical to the x86 bound instruction, whereas we
have proposed a flexible ISA architecture to handle other software checks such as dangling
pointers. Also, the special bounds check instruction they use needs to load the bounds from
memory for each reference of the object. In comparison, in our implementation bounds are
held in registers which reduces the bounds check performance overhead.

In DISE [17], Corliss et.al. proposed a programming interface to the dynamic instruction
macro-expansion found in modern processors. A sequence of functions (essentially micro-
ops) are associated with an instruction and are dynamically injected into the pipeline when
that instruction is executed. They applied their technique for achieving memory fault
isolation, which ensures that the modules sharing the same address space are accessing
within the data or code segment that they can legally access. In their follow up work,
Corliss et.al. [23] used the DISE mechanism to efficiently implement watchpoints that will
be useful for implementing interactive debuggers. DISE can be used to associate and execute
additional checks like bounds checking and dangling pointer checks with instructions that
dereference pointers. But previous work has not analyzed the performance overhead of
using DISE like scheme for bounds checking and dangling pointer checks, which is analyzed
in this paper. Also, to perform such checks we need mechanisms to track and access the
meta-data efficiently, which are not addressed in the earlier works but are discussed in this
paper.

7.2. Software Based Solutions

Austin et.al. [11] implemented bounds checking and dangling pointer checking by doing
a source to source translation. For doing bounds checking, they tracked meta-data with
pointers (PMD). To implement dangling pointer checks, they had a capability table, which
holds capabilities of the objects (similar to object tags we used). Whenever an object is
created, an unique capability is generated and inserted into the table and also stored along
with the pointer to the object. When the pointer is referenced, they make sure that the
capability table contains the capability stored along with the pointer. Searching through
the capability table and using PMD for bounds checking could be expensive and they report
an execution overhead in the range of 130% to 540%.

Patil and Fischer [15] provided bounds and dangling pointers checks using a second
(shadow) processor running on a separate co-processor to accelerate checking. The original
program runs ahead while a sliced checker process follows the main thread, synchronizing
at system calls with a combined run-time overhead of 10%. Their solution involves source
to source translation to create a completely different shadow process which needs to be
executed concurrently on a different co-processor. The two processes need to be kept in
synchronization to ensure that they are executing along the same path in the program.
When compared to this approach, ours is very lightweight and requires less hardware re-
sources.

We recently proposed compiler optimizations for reducing the performance overhead
of bounds checks [24]. One of the optimizations involved pruning bounds checks for read
operations as they are not vulnerable to write buffer overflow attacks. The bounds checked
version of the binaries that we use in this work use compiler optimizations proposed in [24],
but only those that provide complete bounds checking. In this work, we further reduce
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the bounds check overhead using hardware support. The hardware optimizations proposed
in this work are complimentary to the compiler optimizations proposed in [24]. We also
consider the performance trade-offs at the micro-architectural level for placing the meta
data along with the pointer versus the object. In addition, the optimizations proposed here
are more generic, in that they are applicable for reducing the overhead of other safety checks
such as dangling pointer checks.

8. Conclusion

Automatic run-time pointer checking can detect memory bugs, provide security, and help
software developers find memory bugs efficiently. As programs get ever larger, and the cost
of bugs in dollars and security adversaries becomes painfully expensive, these techniques
become increasingly important.

Computer architecture needs to play a role in lowering the overhead of these software
checks. The meta-data checks we examine in this paper are bounds checking and dangling
pointer software checks. We provided a detailed analysis of the trade-offs for where to
store the meta-data, with the pointer or with the object. The results show that storing
the meta-data with the object instead of the pointer provides better results, especially for
programs like mcf and parser where there are many more pointers stored in memory than
objects (each object has several pointers). In addition, as many more different checks are
done on a pointer, storing the required meta-data with the object scales better in terms of
performance. Incorporating both bounds and dangling pointer checks using this approach
results in an average slowdown of 63.9%.

This slowdown is still too large for the checks to be used in released software. We
therefore propose an ISA and architecture extension using the meta-check instruction. The
meta-check loads the bounds and stores them into physical registers, and associates with a
pointer register a set of micro-ops to be inserted to perform the dynamic check whenever
that register is used to generate an address. This resulted in an average slowdown of 21.2%.
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