
On the Power of Semantic Partitioning of Web Documents

Guizhen Yang Saikat Mukherjee
Wenfang Tan I.V. Ramakrishnan

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
{guizyang, saikat, wtan, ram}@cs.sunysb.edu

Hasan Davulcu
Department of Computer Science

and Engineering
Arizona State University
Tempe, AZ 85287-5406

hdavulcu@asu.edu

1 Introduction
A growing number of Web sites are maintained by content
management software and thus a large number of Web pages
are machine-generated via templates. Normally in such Web
pages there is implicitly a fixed “schema” and what changes
is the content. Informally a schema for a Web page repre-
sents concepts and relationships among them in a hierarchi-
cal fashion. For example, Figure 1 is a screen shot of the
New York Times front page (see http://www.nytimes.com).
Observe that this page includes: (i) a taxonomy of items
such as “NEWS” (consisting of hyperlinks labeled with “In-
ternational”, “National”, ...), “OPINION” (consisting of hy-
perlinks “Editorial/Op-Ed”, ...), etc.; (ii) several headlines
of news articles where each article begins with a hyperlink
labeled with the news headline (e.g., “Bush tells Nation ...”)
followed by the author of the article (e.g., “By Richard W.
Stevenson ...”), followed by a time-stamp and a text sum-
mary of the article (e.g., “President Bush portrayed ...”). The
schema for this fragment of the New York Times front page
therefore includes the taxonomy (which does not change) and
the template for the news article. We should point out that the
schema will also include several additional elements pertain-
ing to other content appearing in the page.

Figure 1: New York Times Front Page

The important question then is: Can the implicit schema in
template-driven HTML documents be made explicit? We for-
mulate the problem of schema discovery from HTML docu-

ments as one of discovering semantic structures in Web doc-
uments and partitioning them accordingly. Our objective is
to take a HTML document generated by a template and au-
tomatically partition it into semantically meaningful clusters
via structural and semantic analysis. Each partition will con-
sist of items related to a semantic concept. For example, Fig-
ure 2 is such a tree corresponding to the New York Times
front page in Figure 1. Observe in this figure that the head-
line news items are all grouped under the “Headline News”
category.

Headline News

Editorials/Op−Ed

Reader’s Opinions

Arts

International

Business

Technology

National

Washington

NEWS

OPINION

FEATURES

Bush Tells ...

By ...

President Bush ...

Text: ...

News Analysis ...

Israeli ...

Democrats say ...

By ...

The Democrat ...

Text: ...

By ...

Figure 2: Screen Shot of the Semantic Partition Tree for New
York Times Front Page

Semantic partitioning has several important and powerful
implications in practice. First, it eases the task of formu-
lating queries to retrieve data from Web documents. In the
New York Times example, one can pose a query to retrieve all
the links under the “NEWS” item in the taxonomy. Knowl-
edge of the schema made explicit via semantic partitioning is
the key to transforming legacy HTML documents into more
semantics-oriented document formats such as XML [XML,
2003] and DAML [DAML, 2000]. Yet another application is
audio-browsable Web content. By putting a dialog interface
to the content of a Web page which is reorganized based on
the knowledge of its schema, a user can easily browse its con-
tent using audio. More generally a Web site itself can be nav-
igated using voice commands. Audio browsable Web content
can significantly expand the reach of the Web to visually chal-
lenged individuals. Finally semantic partitioning can enable
the creation of self-repairing wrappers, the technology that

font0
font0

font2 font3font2

font1
font4

font3

font4

font1
font4

font0

font0

tr
td td

table

...

td td td tdtd

imgimg a a a

"NEWS" "FEA..."

tr

td

"By..."

a a a a a

"Bush..."

strong

"President..."

"News..."

"Text:..." strong

"Democrats..."

"By..."

"The..."

"Text:..."

"National"

"International"

"Art"

"Books"

a

td

tr trtrtrtr tr
...

Figure 3: DOM Tree Fragment of New York Times Front
Page

provides a database-like interface to Web documents. The
rest of this paper describes our approach to semantic parti-
tioning and its applications.

2 Semantic Partitioning
Herein we describe the ideas underlying our approach to se-
mantic partitioning that is carried out through a combination
of structural and semantic analysis.

2.1 Structural Analysis
Structural analysis is based on the observation that in well-
organized HTML documents semantically related items, as
discerned in their rendered views, exhibit spatial locality. For
example, observe that in Figure 1 all the taxonomic items
such as “NEWS”, “OPINION”, “FEATURES”, etc., and the
corresponding hyperlinks under them are all spatially clus-
tered together. The same observation holds for all the head-
line news items, their associated authors, and the correspond-
ing text summary. This organization is particularly clear
in Web sites (especially those owned by portals, product
vendors, service providers, etc.) that are maintained using
content management software which automatically generates
Web pages from templates.

In most Web documents spatial locality can be identified
by looking for similarities in the path structures of the cor-
responding DOM trees. For example, the root-to-leaf path
strings of all the links under the “NEWS” item in the tax-
onomy (“International”, “National”, etc.) in Figure 1, which
consist of tag names and their associated attributes (see Fig-
ure 3), are all identical: tr · td · table · tr · td · a · font0 (here
font tags with different subscripts denote font tags with dif-
ferent attribute values such as size, color, etc.). The content
categories in the taxonomy such as “NEWS”, “OPINION”,
and “FEATURES” also have similar path structures.

If related items in a Web page exhibit spatial locality, we
can find structurally similar Web page elements by looking
for patterns in the occurrences of path strings of the leaf nodes

in a DOM (sub)tree. For instance, let us denote the path
string tr · td · table · tr · td · img from Figure 3 using T1,
and tr · td · table · tr · td · a · font0 using T2. The sub-
tree rooted at table (shown circled) in Figure 3 has the fol-
lowing string: T1T2T2 . . . T1T2T2 The problem of spa-
tial locality discovery can then be reduced to the problem of
sequential pattern analysis. For instance, T1T

∗
2 (here ∗ de-

notes Kleene closure) is a sequential pattern that can be ob-
served from the string T1T2T2 . . . T1T2T2 . . ., in which T1

represents a taxonomic item such as “NEWS”, “OPINION”,
etc. and T ∗

2 represents the collection of hyperlinks, such as
“International”, “National”, etc. Similarly, we can obtain
the string, T3T4T5T6T6T3T4T5T6, and the sequential pattern,
T3T4T5T

∗
6 , from the subtree rooted at td (shown circled) in

Figure 3. (Here T3, T4, T5, T6 denote the the path strings con-
taining font1, font2, font3, font4, respectively.)

Sequential pattern discovery can be performed recursively
bottom-up starting from the leaves of the DOM tree of a Web
page. Near-leaf patterns correspond to small partitions. Small
partitions can be aggregated into bigger partitions for Web
pages with rich content such as Yahoo. The algorithmic de-
tails of structural analysis is provided below.

2.2 Algorithms

To transform the DOM tree of a HTML document into a tree-
like semantic structure, we simply invoke the top-level algo-
rithm PartitionTree on the root of the given DOM tree.
This algorithm first traverses the DOM tree top-down and
then restructures it bottom-up.

Algorithm PartitionTree(n)
input

n : a node in a DOM tree
begin
1. if n is a leaf node then
2. n.type = the sequence of HTML tags from the root to n
3. else if n has only one child node c then
4. PartitionTree(c)
5. Replace n with c and remove n from the DOM tree.
6. else
7. for each child node x of n do PartitionTree(x) endfor
8. FindPartition(n)
9. endif
end

In our data structure, each node of the tree has an addi-
tional attribute, type, which stores the type assigned to this
node. This attribute basically encodes the summary of struc-
tural recurrence discovered for the subtree rooted at this node.
We will use the notation n.type to represent the type attribute
of a node n.

In Line 2 of the algorithm PartitionTree, all the leaf
nodes are typed. Internal nodes with only one child are han-
dled in Lines 4–5. In such a case, the type of this only
child node is computed and then simply propagated up the
tree. However, for an internal node with multiple children,
we first invoke PartitionTree on all of its children to col-
lect their type information (Line 6). Then the algorithm
FindPartition is invoked upon this node to perform a pat-
tern discovery on its children nodes (Line 7).

Algorithm FindPartition(n)
input

n : an internal node in a DOM tree
begin
1. S = the sequence of all the child nodes of n
2. for each node c in S do
3. if c.flatten = true then
4. Replace c with the sequence of all the child nodes of c.
5. endif
6. endfor
7. τ = ε
8. do
9. Collapse adjacent nodes in S which share the same type.
10. α = MaximalRepeatingSubstring(TypeStr(S))
11. if α 6= ε then τ = α endif
12. if |α| > 1 then
13. for each substring ρ in S such that TypeStr(ρ) = α do
14. Replace ρ with NewNode(ρ,seq(α)).
15. endfor
16. endif
17. while |α| > 1
18. if τ = ε then
19. n.flatten = true
20. else
21. Partition S into β0γβ1 . . . γβm, where TypeStr(γ) = τ .
22. for each γβi do
23. Replace γβi with NewNode(γβi , NewType(τ)).
24. endfor
25. n.type = NewType(τ)
26. endif
27. Make the nodes in S the new children of n.
end

The algorithm FindPartition takes an internal node, n,
as input. Its main function is to discover structurally similar
items among all the children of n and restructure the subtree
rooted at n accordingly. Because our algorithm climbs up a
DOM tree from leaf nodes to the root, structural similarity
may not be observed until it reaches a node high enough.
Therefore, we associate a boolean attribute, flatten, with
each node to signal whether a structural similarity pattern has
been discovered at this node. The value of this attribute is
initialized to false for each node. However, if a pattern (or
type) is not found at a node, then its flatten attribute is set
to true (Line 19).

In Lines 1–6, all the child nodes of n are collected into a
sequence, which will be partitioned into semantically related
items later if they share structural similarity. But if we en-
counter a node, c, whose flatten attribute has the value true
(which means a pattern is not found at this node), then we
move all the child nodes of c into this sequence for further
processing.

Note that when the algorithm FindPartition is invoked
on a node, all of its descendant nodes are already typed. In-
tuitively, since the type of a node summarizes the structure
of the subtree rooted at that node, analysis of the sequence of
sibling types is essential for structural similarity pattern dis-
covery, which is done in two stages by our algorithm.

In the first stage, consecutive nodes having equivalent types
are collapsed into a single node (Line 9). The intuition behind
this is that they all relate to the same item. Next, in Line 10,
an attempt is made to find a maximal repeating substring of
the string corresponding to the type sequence of S (returned
by TypeStr(S)).

If such a substring does not exist (hence no structural sim-
ilarity), then the loop in Lines 8–17 is exited and the flatten
attribute of the current node is set to true (Line 19). However,
if a maximal repeating substring, α, is found and α contains

at least two elements (|α| > 1), then the sequence of consec-
utive nodes whose type sequence matches α is merged into
a new node created by the procedure NewNode (Lines 12–
16). The first argument of NewNode contains the sequence
of nodes to be merged while the second argument indicates
the type of this new node. The above collapsing-pattern-
discovering-merging process is repeated until it cannot be
performed any more.

In the main part of the second stage (Lines 21–25), the last
pattern discovered during the first stage is used to partition the
remaining sequence of nodes further. This is a simple heuris-
tic that we apply to handle variations in document structures
(e.g., missing data items). Note that if τ contains only one
type, then NewType(τ) returns τ directly; otherwise, it re-
turns the compound type seq(τ).

Now we illustrate the working steps of the algorithm
FindPartition using an example. For simplicity, we will
just show how it manipulates a sequence of types and
omit other details. Suppose the type sequence of S is
T1T2T3T2T3T4T1T2T3T5 immediately before the algorithm
executes the loop starting at Line 8. T2T3 is a maximal repeat-
ing substring. Let us use a new type T6 to denote seq(T2T3).
Then after the first iteration of the loop, the type sequence be-
comes T1T6T6T4T1T6T5. The first two occurrences of T6 can
be collapsed into one, resulting in T1T6T4T1T6T5, in which
T1T6 is a maximal repeating substring. Again, we use a new
type T7 to represent seq(T1T6). So after the second itera-
tion the type sequence becomes T7T4T7T5 and the loop ter-
minates. It is not hard to see that the first T7 and the following
T4 will be put into one partition and the rest into another par-
tition. T7 is the type assigned to the current node.

The algorithms PartitionTree and FindPartition are
illustrated using the DOM tree fragment shown in Figure 3.
Let us consider the subtree rooted at the node td (shown cir-
cled) spanning the leaf nodes from “Bush...” to “Text...”.
The type of the “Bush...” leaf node, denoted by T1, is
tr · td · tr · td · a · font1 · strong. Observe that the leaf node
“Democrats...” has the same type T1. So we can assign the
types T1, T2, T3, T4, T4, T1, T2, T3, T4 to the leaf nodes from
“Bush...” to “Text...”, respectively. Observe that all these leaf
nodes are the only child of their parent node. As a result, their
ancestor nodes are deleted (Lines 4–5 of PartitionTree) un-
til they are propagated up the subtree and become siblings
under the nearest td node.

Now the algorithm FindPartition is invoked on the se-
quence of types T1T2T3T4T4T1T2T3T4. First, the two con-
secutive occurrences of T4 are collapsed together (Line 9
of FindPartition). The resulting type sequence is
T1T2T3T4T1T2T3T4, in which T1T2T3T4 is a maximal re-
peating substring. So the original sequence of nodes is par-
titioned into two parts, each corresponding to the pattern
T1T2T3T4. The type assigned to the td node (nearest to the
“Bush...” leaf node) is seq(T1T2T3T4).

2.3 Semantic Analysis
Partitioning. The content and structure of template-
generated Web pages will still vary due to, e.g., updates to the
backend databases that are used to populate the templates and
slight variations in presentation styles. Therefore, a purely

structural analysis will not always generate “correct” parti-
tions. However, structural analysis can be combined with se-
mantic analysis to produce high quality partitions. For exam-
ple, to determine whether two segments of text are related,
we use WordNet1 to identify semantically-related nouns they
may share. The notion of semantic relatedness is derived
from the different types of relationships found in WordNet,
like synonyms, hypernyms, etc. These sorts of simple heuris-
tics can work well on news and consumer product Web pages.
The output of the semantic analysis module is provided to the
structural analysis module to provide additional constraints
during the partition process.

Labeling. The PartitionTree algorithm transforms a
HTML document into a tree of partitions. However, in order
to derive a schema from the partition tree it is necessary to
summarize the content of the partitions. A succinct summary
of a partition is known as the label of the partition. We have
used a combination of heuristics based on structural analysis
and domain knowledge to label partitions.

Very often it is the case that the labels of leaf partitions (in
the partition tree) are usually provided by Web site designers
in the page itself. In such circumstances, the node contain-
ing the label, having type T1, is followed by multiple sibling
nodes each having the same type T2 which is different from
T1. This is illustrated in the circled text in the left-hand side
menu in Figure 1, where the node “NEWS”, with type T1,
is followed by the sibling nodes “International”, “National”,
“Washington”, etc. each having the type T2. In such a case,
the content of the first node is made the label of the entire par-
tition. This results in the labeled partition “NEWS” as shown
in Figure 2.

Even though the above heuristic performs well in prac-
tice, it is not a general technique to label arbitrary leaf par-
titions. Moreover, the heuristic cannot be applied to label
internal partitions in the partition tree. In general, such labels
will be very hard to obtain without leveraging some domain
knowledge, commonly referred to as ontologies. Informally
an ontology describes concepts, along with their features or
attributes, in a domain of interest. Typically, the ontology
captures a hierarchical parent-child relationship between the
concepts. Given such a representation of a domain knowl-
edge, the labeling problem is essentially reduced to classify-
ing a partition to an appropriate concept in the ontology. An
internal partition is classified to the least common ancestor
concept of the concepts to which its children partitions have
been classified. Thus, labeling is a 3-step process whereby:
(i) the domain ontology has to be engineered; (ii) a classifier
for every concept has to be generated; and (iii) the “best”
concept for every partition is discovered using the classifiers
and the taxonomy of concepts.

Recently there has been a lot of work on engineering do-
main ontologies [DAML, 2000]. In principle, our labeling
technique can be used with any domain ontology which has
been enriched with concept classifiers. For our work, we
have used the human edited taxonomy of the Open Direc-
tory Project2 as our reference ontology. The use of the Open

1http://www.cogsci.princeton.edu/˜wn/
2http://www.dmoz.org

Directory Project ontology facilitates automatic generation of
concept classifiers, as described below.

We use a combination of rules and statistical analysis as
the concept classifier. The rules represent structural features
of the particular concept. For example, in a News ontology
the concept “Headline News” can be structurally character-
ized by a set of items where each item is characterized by a
hyperlink, keywords for recognizing news sources (such as
AP, Reuters, By, From, etc.), patterns for recognizing date
and time when the news item was filed, and features asso-
ciated with news summaries such as constraints on the text
length. Using this rule, we were able to label the partitions
corresponding to the circled texts in the central column of
Figure 1 as “Headline News”. The labeled partition “Head-
line News” is shown in Figure 2.

While rules are expressive, statistical features are easier to
generate for a concept. As such, we train a statistical clas-
sifier, in particular a Naive Bayes classifier [Mitchell, 1997],
for every concept in the ontology. Associated with every con-
cept in the Open Directory Project ontology is a set of Web
pages which have been manually classified as pertaining to
that concept. The bag of words contained in these pages can
be used to train a Naive Bayes classifier for that concept. Note
that training such a concept classifier is completely automatic
due to the existing corpus of associated pages for that con-
cept. Moreover, the high precision of human editing in the
Open Directory Project results in fairly accurate concept clas-
sifiers.

3 Applications of Semantic Partitioning
Several important applications are enabled by semantic parti-
tioning. Herein we briefly sketch a few of them.

3.1 Semantic Annotations of Web Documents
The objective of the Semantic Web [The Semantic Web,
2003] is to define and share machine processable data which
will enable a variety of automated tasks ranging from infor-
mation search to data integration to Web services. The tech-
niques for semantic partitioning proposed in this paper can
serve as a useful technology for transforming unstructured
HTML documents into structured data that is amenable to
machine processing such as querying and reasoning. Specif-
ically the transformed document will be annotated with se-
mantic information derived by the semantic partitioning al-
gorithm. Figure 1 is an example of such a transformed docu-
ment. These annotations can be further aligned with the stan-
dard vocabulary of a specific ontology domain and presented
as RDF documents [RDF, 2003] using machine learning tech-
niques [Doan et al., 2003].

3.2 Self-Repairing Wrappers
Wrappers are programs that provide database-like interfaces
to Web sources [Adelberg, 1998; Ashish and Knoblock,
1997; Hammer et al., 1997; Perkowitz et al., 1997; Atzeni
and Mecca, 1997]. Techniques for programmatic, semi-
and fully- automated wrapper construction has been exten-
sively researched and wrapper-based tools have been devel-
oped [Crescenzi et al., 2001; Sahuguet and Azavant, 1999;

Baumgartner et al., 2001; Liu et al., 2000; Kushmerick et
al., 1997; Chidlovskii, 2001; Muslea et al., 1999; Ashish and
Knoblock, 1997; Cohen et al., 2002; Hsu and Dung, 1998].
Fully and semi-automated approaches for constructing wrap-
pers are typically based on the idea of learning from labeled
examples. To build a wrapper examples of data of interest
are labeled. From these examples, the system learns extrac-
tion expressions (such as regular expressions) using syntactic
cues, such as HTML tags, and keyword strings in the pages.
Extracting data of interest from Web sites amounts to ap-
plying these expressions at the appropriate locations in Web
pages.

A critical problem confronting wrapper technology is
changes in Web pages. Frequently, Web sites change to ac-
commodate new presentation formats, services, and content
offerings. Such changes can cause “brittleness” in data ex-
tractors thereby causing wrappers to fail. For example, if the
headline news in New York Times’s front page becomes em-
bedded within a list structure instead of a table as shown in
Figure 3 then the extraction expression learned with the table
structure will fail to locate the news items. This raises the
important question of whether it is possible to build resilient
wrappers that can automatically adapt to structural changes
in Web pages.

In a previous work we had attacked this problem from a
syntactic viewpoint [Davulcu et al., 2000]. A truly robust so-
lution, however, will require semantic knowledge of the con-
tent in a Web page. The semantic partitioning ideas described
in this paper can form the foundation for such a solution. To
understand the idea at a high level, let us examine how a self-
repairing wrapper based on semantic partitioning, will handle
the change in New York Times’s front page that makes each
news item occur as a list instead of a table element. The old
extraction expression matching the circled td (in Figure 3)
node will fail to correctly identify the subtree containing all
the news items, so the system will re-partition the Web page.
If it finds a partition in the re-partitioned page labeled “Head-
line News” then it will once again generate the extraction ex-
pressions appropriate for the elements in this partition and
update the information that it maintains for extraction runs.
Thus semantic partitioning can contribute to making wrap-
pers self-repairing.

For this self-repair process to work the wrapper will have to
include the labels of the partitions that contain the data items
marked for extraction. Recall that our labeling procedure can
be enriched by using an ontology. In such a case we will also
record in the wrapper the node in the ontology to which the
partition is mapped. Self-repairing wrappers is a topic that
has received little attention in the literature. The approach
based on semantic partitioning seems quite promising.

3.3 Creating Audio-Browsable Web Content
The primary mode of interaction with the Web is via browsers
that are designed for visual modes of interaction. This de-
nies access to an entire community of users who suffer from
visual disabilities. Semantic partitioning can lead to the cre-
ation of a new generation of technologies that will empower
visually impaired individuals to access and navigate Web sites
using non-visual modalities, such as voice commands and au-

dio output. A unique aspect of such technologies will be that
it will enable audio-based exploratory browsing of Web con-
tent in a structured and efficient way, and more importantly
the audio-browsable content will not depend on special con-
tent providers.

An envisioned audio-browser system based on semantic
partitioning will work as follows. First the user provides the
URL to the system, say http://www.nytimes.com, via audio
or keyboard. After retrieving the front page of New York
Times in Figure 1, the system performs structural and seman-
tic analysis on this Web page to determine homogeneous, se-
mantically related segments in it. The result is the semantic
partition tree shown in Figure 2.

<form id="home">
<field name="choice">
<prompt>
Alice, please choose one of these:

Headline News.
News.
Opinion.
Exit.

</prompt>
<grammar> Headline News|News|Opinion|..|Exit </grammar>
<filled>
<if cond="choice==’Headline News’">
<goto next="#headline_news"/>

<elseif cond="choice==’News’"/>
<goto next="#news"/>

<elseif cond="choice==’Opinion’"/>
<goto next="#opinion"/>

<elseif cond="choice==’Exit’"/><exit/>
</if>

</filled>
</field>

</form>

Figure 4: Fragment of a VoiceXML Dialog for Browsing the
Partition Tree in Figure 2

Next the audio-browser system automatically generates a
speech dialog interface to the partitioned segments. Such
a dialog can be created using the emerging standard of
VoiceXML [VoiceXML, 2003]. Part of a sample VoiceXML
dialog for the partition tree in Figure 2 is shown in Figure 4.
The <prompt> tag indicates that the VoiceXML browser
should play back all of the enclosed text in its scope as syn-
thesized speech. A <field> tag is used to indicate an input
field. It signals the VoiceXML browser to listen for user input
and interpret it according to a grammar specified in the script.

Once this dialog interface is created, the user navigates
the partitioned segments on demand. Following the above
VoiceXML script, the system reads out the labels of the top-
level partitions (‘NEWS”, “OPINION”, ..., “Headline News”,
..., etc.), pausing briefly after each item to let the user pick a
partition by saying the label. If the user says “News”, the sys-
tem reads out the label and type of each item in the “NEWS”
partition (in this case all the items are navigation links so
type information may be summarized at the beginning). Once
again, the user can pick any item by saying the label. If the
user says “Business”, the system follows this link to the busi-
ness page, semantically partitions the resulting page, and sets
it up for exploratory browsing with audio again. On the other
hand the user may wish to listen to the headline news. In this

case the user will ask the system to explore the headline news
items one by one. At any point the user can also say any one
of a set of browsing commands, such as “Back”, “Start over”
(from the beginning of the segment), “Repeat” (last item) or
“Stop”.

The above dialog lets the user explore the page depth-
first. Alternatively, a dialog can be generated for breadth-first
browsing. The user would tell the system which top-level
items to keep (e.g., Headline News and Opinion) and which
to drop. The system would then let the user to explore each
selected section separately.

4 Related Work
There is a large body of work on discovering schema infor-
mation from either XML documents [Goldman and Widom,
1997; Nestorov et al., 1998; Garofalakis et al., 2000] or
XML queries [Papakonstantinou and Velikhov, 1999; Pa-
pakonstantinou and Vianu, 2000]. However, the problem of
recovering semantic structures from HTML documents has
only been explored recently.

In [Yang and Zhang, 2001] Yang and Zhang propose to
build semantic structures from HTML documents by detect-
ing patterns and separation boundaries. They view a HTML
document as a sequence of HTML tags and texts. Their pat-
tern discovery technique relies on a hand-coded similarity
function. Moreover, they do not consider the problem of la-
beling a partition.

The work of Chung et al. [Chung et al., 2002] takes ad-
vantage of tree structures of HTML documents to transform
them into XML counterparts. Their approach makes use of
domain knowledge that is hand-coded into a concept classi-
fier to identify elementary concepts and group them into big-
ger, structural concepts. However, their techniques do not
fully explore layout regularity which is commonly observed
in template-driven HTML documents.

Recently the proposals of [Crescenzi et al., 2001; Arasu
and Garcia-Molina, 2003] address the issue of schema dis-
covery from a collection of Web pages. Our problem departs
slightly from theirs because we are concerned with schema
discovery from individual pages.

Finally, it is worth contrasting the problem of schema
discovery for template-driven HTML documents to the im-
portant, well-studied problem of wrapper-based data extrac-
tion [Hammer et al., 1997; Cohen et al., 2002; Liu et al.,
2000]. We should point out that wrappers generate domain-
specific queriable interface to HTML documents which is or-
thogonal to the schema discovery problem.

5 Conclusion
In this paper we proposed techniques based on structural and
semantic analysis to partition Web documents into seman-
tic structures. The idea of semantic partitioning has impor-
tant implication to other data management problems. Cur-
rently we are exploring adapting our techniques to such prob-
lems as semantic annotation of Web documents, building self-
repairing wrappers, and creating audio-browsable Web con-
tent.

References
[Adelberg, 1998] B. Adelberg. Nodose: A tool for semi-automatically extracting struc-

tured and semi-structured data from text documents. In ACM SIGMOD, 1998.

[Arasu and Garcia-Molina, 2003] Arvind Arasu and Hector Garcia-Molina. Extracting
structured data from web pages. In ACM SIGMOD, 2003.

[Ashish and Knoblock, 1997] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. ACM SIGMOD Record, 26(4), 1997.

[Atzeni and Mecca, 1997] P. Atzeni and G. Mecca. Cut & paste. In ACM PODS, 1997.

[Baumgartner et al., 2001] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Vi-
sual web information extraction with lixto. In International Conference on Very
Large Data Bases (VLDB), 2001.

[Chidlovskii, 2001] Boris Chidlovskii. Wrapping web information providers by trans-
ducer induction. In European Conference on Machine Learning, 2001.

[Chung et al., 2002] Christina Yip Chung, Michael Gertz, and Neel Sundaresan. Re-
verse engineering for web data: From visual to semantic structures. In ICDE, 2002.

[Cohen et al., 2002] William Cohen, Matthew Hurst, and Lee Jensen. A flexible learn-
ing system for wrapping tables and lists in html documents. In International World
Wide Web Conference, 2002.

[Crescenzi et al., 2001] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo.
Roadrunner: Towards automatic data extraction from large web sites. In Interna-
tional Conference on Very Large Data Bases (VLDB), 2001.

[DAML, 2000] DARPA agent markup language, http://www.daml/org. 2000.

[Davulcu et al., 2000] H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Com-
putational aspects of resilient data extraction from semistructured sources. In ACM
PODS, May 2000.

[Doan et al., 2003] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Learning to
match the schemas of data sources: A multistrategy approach. 50(3):279–301, 2003.

[Garofalakis et al., 2000] Minos Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: A system for extracting document type descriptors from xml
documents. In ACM SIGMOD, 2000.

[Goldman and Widom, 1997] Roy Goldman and Jennifer Widom. DataGuides: En-
abling query formulation and optimization in semistructured databases. In VLDB,
1997.

[Hammer et al., 1997] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. M.
Breunig, and V. Vassalos. Template-based wrappers in the TSIMMIS system. In
ACM SIGMOD, 1997.

[Hsu and Dung, 1998] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state
transducers for semi-structured data extraction from the web. Information Systems,
23(8):521–538, 1998.

[Kushmerick et al., 1997] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper
induction for information extraction. In Intl. Joint Conf. on Artificial Intelligence,
volume 1, 1997.

[Liu et al., 2000] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled
wrapper construction system for web information sources. In ICDE, 2000.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[Muslea et al., 1999] Ion Muslea, Steve Minton, and Craig Knoblock. A hierarchical
approach to wrapper induction. In Proceedings of the Third International Confer-
ence on Autonomous Agents (Agents’99), pages 190–197, 1999.

[Nestorov et al., 1998] Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Ex-
tracting schema from semistructured data. In ACM SIGMOD, 1998.

[Papakonstantinou and Velikhov, 1999] Yannis Papakonstantinou and Pavel Velikhov.
Enhancing semistructured data mediators with document type definitions. In ICDE,
1999.

[Papakonstantinou and Vianu, 2000] Yannis Papakonstantinou and Victor Vianu. DTD
inference for views of xml data. In ACM PODS, 2000.

[Perkowitz et al., 1997] M. Perkowitz, R. B. Doorenbos, O. Etzioni, and D. S. Weld.
Learning to understand information on the internet: An example-based approach.
Journal of Intelligent Information Systems, 8(2), 1997.

[RDF, 2003] Resource description framework, http://www.w3/org/RDF. 2003.

[Sahuguet and Azavant, 1999] A. Sahuguet and F. Azavant. Web Ecology: Recycling
HTML pages as XML documents using W4F. In ACM SIGMOD Workshop on the
Web and Databases (WebDB), 1999.

[The Semantic Web, 2003] W3C semantic web, http://www.w3.org/2001/sw/. 2003.

[VoiceXML, 2003] Voicexml forum, http://www.voicexml.org/. 2003.

[XML, 2003] Extensible markup language, http://www.w3.org/XML/. 2003.

[Yang and Zhang, 2001] Yudong Yang and Hongjiang Zhang. HTML page analysis
based on visual cues. In ICDAR, 2001.

