
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

INTEGRATION OF THE FREEBSD TCP/IP-STACK
INTO THE DISCRETE EVENT SIMULATOR OMNET++

Roland Bless
Mark Doll

Institute of Telematics
University of Karlsruhe

76128 Karlsruhe, GERMANY
ABSTRACT

The discrete event simulator OMNeT++, that is programmed
in C++, shows a steady growing popularity. Due to its well-
structured nature, it is easy to understand and easy to use. A
shortcoming of it, however, is the limited number of available
simulation models. Especially, for network simulations a
validated TCP implementation was missing. In order to
avoid a re-implementation of a full-featured TCP, including
all potential implementation errors and costly validation
tests, we integrated a TCP/IP stack of a real operating
system into OMNeT++. In this paper we show that such
a port is feasible with reasonable effort and we describe
difficulties of the integration process as well as the applied
solutions. We also present some evaluation results that
outline memory and CPU usage.

1 INTRODUCTION

Investigation of new network protocols and mechanisms
often require simulations in order to study their behavior
and reactions to different parameter settings in larger scale
environments. But results are only reliable in case the
simulation models are verified to emulate the real protocol
behavior. Therefore, validated implementations of network
protocols in simulators are an important precondition for
meaningful simulations.

OMNeT++ (Varga 2004) is a discrete event simulator
based on C++, and it is highly modular, very well structured
and scalable. It provides a basic infrastructure wherein
modules exchange messages. Thus, it is not restricted to
network simulations and due to its hierarchical structure, the
level of simulation detail can be increased incrementally.

Its disadvantage, compared to other simulators, like ns-
2 (Information Science Institute (ISI) 2004) for example, is
the currently limited amount of available simulation models
for different network protocols and technologies. One of the
predominant protocols in the Internet is the Transmission
Control Protocol TCP, because most applications, including
the World-Wide Web transfer protocol HTTP, are using it for
reliable data transfer. But for the discrete event simulator
OMNeT++ there were no validated TCP implementations
available yet. The TCP implementation must be complete,
i.e., it must offer all essential features that real implemen-
tations use. Moreover, its behavior must also be compliant
with the relevant standards. Therefore, many tests must be
performed to validate the implementation against all proto-
col features which is costly and time consuming. A lack of
validation, however, may lead to wrong simulation results
and conclusions.

Our approach aimed to re-use an existing full-featured
TCP implementation of a current operating system in or-
der to avoid a re-implementation of a full-featured TCP,
including all potential implementation errors and costly
validation tests. We adapted the FreeBSD TCP/IP im-
plementation to integrate it into OMNeT++. We choose
FreeBSD (FreeBSD 2004), because its implementation is
more structured than other implementations like Linux. The
efforts were indeed successful so that now a full featured
TCP/IP implementation is available for OMNeT++.

The paper is organized as follows. First, we describe
some properties of the OMNeT++ and FreeBSD respectively.
Then integration problems of FreeBSD and OMNeT++ are
pointed out in section 3. The applied evaluation process is
described in section 4. The paper closes in section 5 with
a summary and outlook on further work.

2 OMNET++ AND FREEBSD

OMNeT++ (Varga 2004) is a discrete event simulator pro-
grammed in C++. The name OMNeT++ stands for Objective
Modular Network Testbed in C++. It has an open-source
distribution policy and can be used free of charge by aca-
demic research institutions. It runs on Windows and Unix
platforms, including Linux, and offers a command line inter-
face as well as a graphical user interface. In this paper, we



Bless and Doll
focus on network protocol simulation, although OMNeT++
can be used, for instance, to model queueing networks,
multiprocessors and other distributed hardware systems as
well as to validate hardware architectures, too.

Its simulation models consist of a network of simple
modules and compound modules. Due to the fully hierar-
chical design of OMNeT++ the latter can be composed of
simple modules or further compound modules (there is no
limit of nesting levels). The system module is the top-level
module that encompasses all compound and simple mod-
ules of a simulation. An example for a module hierarchy is
shown in Figure 1. Simple modules are programmed in C++,
the network topology and simulation parameter values are
specified in an own language that is called NED (Network
Description). A module can have gates that establish con-
nections to other modules via links, which have an assigned
data rate and bit error rate. Messages between modules
are either sent via gates and traverse the outgoing links,
or, can be sent directly to other modules. Simple modules
typically ‘wait’ for messages which can also stem from the
module itself (so-called self messages). Upon arrival of a
message the module can perform the necessary actions in
a method called handleMessage() (processing within
this method takes no simulation time). The module usually
generates new messages and sends them to other modules or
itself. These messages are inserted into a central queue (the
so-called future event set that is implemented as heap) and
taken out by the receiving module. Simulation time only
passes from event to event in discrete steps, so OMNeT++
has its own time domain.

Out gate

In gate

System Module Simple Modules

Compound Module Compound Module

Figure 1: Example of a Module Hierarchy in OMNeT++

For network simulations ns-2 is a well-known discrete
event simulator targeted at networking research. It provides a
huge number of different protocol models, e.g., simulation
of TCP, routing, and multicast protocols over wired and
wireless (local and satellite) networks. On the one hand,
if one compares OMNeT++ with ns-2 one may find that
OMNeT++ has a cleaner structure (it is thus easier to learn),
and, that it is more scalable (Bless 2002). On the other hand,
there were no validated TCP implementations available for
OMNeT++. In order to find a remedy for this problem, we
wanted to integrate a TCP protocol implementation of an
existing and widely-used operating system into OMNeT++.
This should avoid a re-implementation of a full-featured
TCP, including all potential implementation errors and costly
validation tests.

FreeBSD is a freely available UNIX implementation
and its kernel offers an implementation of TCP. FreeBSD
has a traditional monolithic kernel and uses function calls
as well as interrupts to perform its tasks. For instance, such
an interrupt is triggered by a network interface card (NIC)
that receives a data packet. At the lowest layer, a device
driver for the NIC allocates a memory buffer, a so-called
MBuf, and copies the packet contents into this buffer.

Table 1 shows a comparison of the different features.
In order to use functions of FreeBSD in OMNeT++ we have
to overcome several differences. The integration process is
described in the next section.

3 INTEGRATION OF FREEBSD INTO OMNeT++

In order to accomplish the integration of FreeBSD into
OMNeT++ we need to find a synthesis between the distinct
features of the different worlds. The monolithic nature of
the FreeBSD kernel is no real obstacle, because integration
of the complete code into one module may be easier this
way. Because C is a subset of C++, it is also possible to
use C code with C++ code together, but one must take care
of the different linkage.

Table 1: Overview of Major Differences between
FreeBSD and OMNeT++
Feature FreeBSD OMNeT++

Structure monolithic modular
Scope one TCP stack

per host
several TCP
stacks per
simulation

Interaction function calls message sending
Interruption hardware/timer

interrupts
not possible
while processing
a message

Language C C++

3.1 Source Code Adaptation

One problem were the conflicting definitions of similar
include files within the OMNeT++ host system (in our case
Linux) and FreeBSD. For example the structure sockaddr
shows slight differences between Linux and FreeBSD that
are nevertheless incompatible with each other. The solution
was to use all the FreeBSD include files for compilation of
the FreeBSD code and to define corresponding structures
with a different name on the OMNeT++ side. This has also
the advantage that the FreeBSD part may be also easily
ported to the version of OMNeT++ that runs on top of
the Windows operating system. Thus, OMNeT++ uses the
include files of its host operating system, and the FreeBSD



Bless and Doll
part uses its own set of include files to use the correct
structure definitions.

The main problem to solve was related to the scope
of variables. In FreeBSD kernel variables are globally
declared and defined for one host only. But in a simulation
environment one wants to run several hosts in parallel, so
every required global and static FreeBSD variable must be
made local to each host. Thus, we used a structure to store
all the kernel variables for one host. Consequently, in the
FreeBSD source every occurrence of the variables must be
replaced by a reference into the corresponding structure. For
instance access to the variable xyz is replaced by D->xyz,
where D points to the current host structure that contains
all the global and static kernel variables for this particular
host. Unfortunately, the developers of FreeBSD used at
several places the same name for a variable and a type, e.g.,
the variable ifnet is also defined as a structure type with
the same name. Thus, it was not easily possible to use a
straightforward search and replace approach by a simple
script. However, changes in the FreeBSD were minimized
in order to reduce the probability of introducing new errors
and to allow for easier re-porting a later FreeBSD release.

3.2 Modules and Interactions

Early in the adaptation process it became clear that it was
much easier to adapt and integrate also functions like ARP
and the whole IP stack to OMNeT++ than to provide those
functions in OMNeT++ itself. This is reasonable due to the
existing dependencies of several protocols. For example, to
support path MTU discovery for TCP, the Internet Control
Message Protocol ICMP must be implemented, too.

Our design decision led to the approach to encapsulate
the complete TCP/IP into one OMNeT++ simple module.
Thus, the cHost class and OMNeT++ module encapsulates
the complete TCP/IP stack of FreeBSD and offers a message-
based interface to the application as well as an interface
(in- and out-gates) to the medium (cf. Figure 2). From
the FreeBSD’s viewpoint OMNeT++ is like a device that
transmits and receives ethernet frames.

A disadvantage of this approach may be that a FreeBSD
kernel cannot be removed easily, because the code is not
written for a proper cleanup since it is usually makes no
sense to remove a kernel.

There are two possibilities how hosts are connected to
each other: either by a direct point to point link (which is also
handled separately in FreeBSD) or via a broadcast capable
medium. Because OMNeT++ does not support 1:n- or n:1-
connections directly, one must provide a separate module
for this purpose. This module is provided by the class
cMedium which has basically the same functionality like a
simple ethernet switch. It is possible to assign IP network
prefixes to the cMedium in order to configure IP addresses
of attached hosts automatically.
Host

Application

Medium
cMedium

cHost

In gate

Out gate

NIC 1 NIC 2

FreeBSD TCP/IP Stack

cAppl

Figure 2: Module Structure

OMNeT++ messages cannot be used to exchange data
between both worlds, because they are C++ classes and
cannot be used within the FreeBSD part. In a cHost
module data can be put from OMNeT++ into the FreeBSD
domain by calling the FreeBSD function surrounded by
ENTER_BSD and LEAVE_BSDmacros. The other direction
is more complicated. Functions that can be called from the
FreeBSD domain must be present in the cHost class, but
this is C++ code and cannot be called from the C-based
FreeBSD part directly. Therefore, those functions must
be declared as functions with C calling conventions in the
OMNeT++ part. These can then access the current cHost
C++ object by using a this pointer that was set correctly
by the last ENTER_BSD macro. This is guaranteed to work,
because the FreeBSD part only gets active when called from
within OMNeT++ cHost class and after an ENTER_BSD.

The application interface for using TCP is essentially
the same as the well-known socket interface. The dif-
ference is that the traditional function calls are not used,
but equivalent OMNeT++ messages that are sent between
both modules (cf. Figure 2). Every socket function has
an equivalent OMNeT++ message that simply contains all
the necessary function parameters. In the cHost module
C wrapper functions convert between OMNeT++ messages
and function calls. Results of FreeBSD function calls are
also returned by messages to the application. The cAppl
class provides a sample application that simply opens a
connection to another host and sends a specified amount of
data. This way it can be used as load generator. The data
can contain real application data, because the application
byte stream is really passed from one host to the other.

A further adaptation problem occured with function calls
that block the calling process, or with functions that let a
process sleep or wait for a while. They must not stop in the
FreeBSD kernel part, because then the simulation would also
stop. This is due to the fact that a handleMessage()



Bless and Doll
procedure must finish in order to return control to the
OMNeT++ simulation kernel, so that it can pick the next
message from the event queue. Therefore, we used internally
(in the cHost module) only non-blocking variants of the
FreeBSD calls, but provided also blocking variants to the
application interface. This works as follows: if a FreeBSD
function would normally block the caller, it returns the
error code EWOULDBLOCK when called as non-blocking
variant. In this case the cHost module does not send a
return message, but stores a pointer to the original request
message. If the kernel would wake up the caller, the list of
‘sleeping messages’is searched instead. If the corresponding
message is found, it is sent again (as self message) to the
cHost module. This ensures that all necessary actions are
taken and that changes in the internal state of the kernel are
considered. But this time the function call will definitely
not return an EWOULDBLOCK and it can be completed as
usual.

3.3 Timers

Timers were another problem. The FreeBSD stack needs
several different timers per host (e.g., if_slowtimo,
arptimer, in_rtqtimo, tcp_slowtimo, ip
_slowtimo) and per TCP connection (e.g.,
tcp_timer_rexmt, tcp_timer_persist, tcp
_timer_keep, tcp_timer_2msl, tcp_timer
_delack). In order to reduce the number of timers,
we used only single timers were appropriate, e.g., the
ip_slowtimo timer simply deletes fragments that were
not reassembled within a defined time period.

The time basis is the simulation environment, so the
(virtual) clock must reside in the OMNeT++ part. FreeBSD
uses a ‘tick’ as time unit which is 10 ms, and the kernel
global variable ticks is incremented every 10 ms by a timer
interrupt routine. In order to prevent a lot of OMNeT++
messages, we did not choose to emulate the timer interrupt
by OMNeT++ messages. Instead we redirected access to
the ticks variable to a function gettick_toomnet(),
which returns the number of hundredth of a second since
the simulation ran. The OMNeT++ function simtime()
returns the simulation time for this purpose, but it is a floating
point value (double) and must be converted accordingly into
the integer value. To prevent that all hosts increment their
ticks at the same instant, a startup value is added to
each cHost module, which can be set individually for each
host.

Timers are set by specifying a time period as number
of ticks. Therefore, we provided functions on both sides,
to allow a timer management that is usable by the FreeBSD
kernel. Basically, a timer is realized as self message in OM-
NeT++ that calls corresponding FreeBSD functions when
it is received by the cHost module.
3.4 Convenience Functions

In order simplify the simulation configuration an automatic
routing is provided by the OMNeT++ class cRoute. It uses
an OMNeT++ internal mechanism to calculate the shortest
paths between the hosts. Routers can be easily provided by
switching the variable bsd_ipforwarding of a cHost
module to 1.

For debugging purposes TCP traces are also provided.
They can be enabled by setting the OMNeT++ simulation
parameter showtraffic for the cHostmodule. Figure 4
shows an example output from the test scenario in Figure 3.

Figure 3: Snapshot of OMNeT++ GUI Showing a Simple
Test Scenario

4 EVALUATION

The evaluation of the taken approach had two different goals.
First, it was of particular interest to evaluate the memory
and CPU consumption of the cHost modules to estimate
the scalability of the model. Second, it was important to
roughly verify the behavior of the TCP implementation to
exclude any implementation mistakes.

All tests for the evaluation were performed on a Xeon
dual processor system running at 2.2 GHz with 4 GiB RAM
(1 GiB= 1024 MiB, 1 MiB=1024 KiB, 1 Kib= 1024 bytes).

4.1 Scalability

We ran tests with 10, 100 and 1000 hosts (plus additional
20 hosts that act as routers) and up to two simultaneous
connections per host. The average memory consumption
per host was determined to be around 20 KiB. Additional



Bless and Doll
->Test1.hostA[0] 2.000000 ARP (ARPHeader) REQUEST: 66:06:0c:b6:30:58 00:00:00:00:00:00 192.168.0.1 192.168.0.4
->Test1.hostA[0] 2.040140 TCP (TCPHeader) [3014554104...3014554104) (0)@0 win 57344 <SYN> MSS 1460 WSF 0 TS 200 0
->Test1.hostA[0] 2.200873 TCP (TCPHeader) [3014554105...3014554105) (0)@1491920413 win 57920 <ACK> TS 220 246
->Test1.hostA[0] 2.200928 TCP (TCPHeader) [3014554105...3014555105) (1000)@1491920413 win 57920 <ACK,PUSH> TS 220 246
->Test1.hostA[0] 2.325622 TCP (TCPHeader) [3014555105...3014555553) (448)@1491921414 win 57920 <ACK> TS 232 258
->Test1.hostA[0] 2.448015 TCP (TCPHeader) [3014555553...3014557001) (1448)@1491921414 win 57920 <ACK> TS 244 271
->Test1.hostA[0] 2.449277 TCP (TCPHeader) [3014557001...3014558449) (1448)@1491921414 win 57920 <ACK> TS 244 271

Figure 4: Example Debugging Output from a Simple Test Scenario
memory of 150–170 KiB is required per (bi-directional) TCP
connection, which is mainly caused by the socket buffers.

Run times of the simulation experiments are shown in
Table 2. Every simulation ran for a simulated time of 60
minutes. As one can see, initializing the 1000 hosts costs
already a little bit more than a minute. To simulate 1000
hosts with a total of 2000 simultaneous connections for 1
hour simulated time, it took nearly 14 minutes of runtime.
In this case, the simulation was four times faster than the
same scenario in real time. We identified that most of the
run time is required to process timer messages. OMNeT++
uses a heap to store messages in its future event set, so this
can be considered as optimal. Nevertheless each message
requires memory and must be inserted and removed from
the heap. It is obvious that we will try to remove this
bottleneck in the future.

Table 2: Run Times in Seconds for 1 Hour of Simulated
Time
Simult. Connections 0 1 2
Hosts

10 0.467 2.199 4.196
100 3.361 30.575 59.638
1000 64.233 434.724 823.019

4.2 TCP Validation

We also performed tests in order to check that all TCP
features work as expected. The number of tests was small,
because we did not modify the TCP code of FreeBSD, so we
did not have to test all potential error cases and TCP’s reaction
to them. The major motivation for using an implementation
of a real operating system was to particularly avoid massive
and thorough validation tests. Nevertheless, we shortly
checked that mechanisms like delayed acknowledgments,
slow start, congestion control, fast retransmission, and fast
recovery as well as the new reno variant of TCP worked
as expected. The short validation tests revealed indeed a
bug that was introduced by a wrong timer offset calculation
within cHost .

5 CONCLUSIONS AND FUTURE WORK

In this paper we described an integration of a real TCP/IP
stack (FreeBSD) into the discrete event simulation envi-
ronment OMNeT++. The main objective was to provide a
validated TCP implementation for OMNeT++. The imple-
mentation provides a host module that carries a complete
TCP/IP stack in it. Host modules can be used as routers, too,
by simply activating the forwarding functions of FreeBSD.
For convenience of simulation users the implementation pro-
vides an automatic IP addressing of modules and calculation
of routing tables, too.

It was shown by a careful evaluation that the approach
is scalable and works correctly. The approach has also the
advantage to let one use the same code within the simulation
environment as well as within a real implementation. Finally,
there may be other discrete event simulators that could use
the same approach.

In comparison to emulation approaches like User-Mode
Linux (User Mode Linux Community 2004) or vBET
(Jiang and Xu 2003) we believe that our approach is more
scalable for network simulations, because it has not the full
functionality of a complete operating system.

Currently, we are porting FreeBSD 4.9 and the KAME
extensions to OMNeT++ in order to have a full-featured
IPv6 and MobileIPv6 implementation. A perl script that
uses a syntactical analysis to perform the replacement of
(ambiguously named) variables in the BSD source code
would be a great help here and is a topic for further research.
This would also allow to quickly update the FreeBSD part
for bug fixes.

Furthermore, we are investigating solutions to avoid
using OMNeT++ messages for host timers. A potential
solution could be the use of a dedicated timer module
which manages timers on basis of ticks and which is able to
perform direct callbacks into the FreeBSD code. We plan
to release the TCP/IP stack to the public. Furthermore, in
order to allow the use of routing daemons for simulating
routing protocols, we want to port the necessary system call
interface functions.

ACKNOWLEDGMENTS

We would like to thank Jérôme Freilinger who performed
all the programming and evaluations.

REFERENCES

Bless, R. 2002, January. Using Realistic Inter-
net Topology Data for Large Scale Network
Simulations in OMNeT++. In 2nd Interna-



Bless and Doll
tional OMNeT++ Workshop. Available online
via <http://doc.tm.uka.de/2002/> file
omnet_ws_2002-1.pdf [accessed August 20,
2004]. Technical University Berlin, Germany.

FreeBSD 2004, April. The FreeBSD Project. Available on-
line via <http://www.freebsd.org/> [accessed
August 20, 2004].

Information Science Institute (ISI) 2004, April. The
Network Simulator ns-2. Available online via
<http://www.isi.edu/nsnam/ns/> [accessed
August 20, 2004].

Jiang, X., and D. Xu. 2003, August. vBET: a VM-Based Em-
ulation Testbed. In Proceedings of the ACM SIGCOMM
2003 Workshops, 95–104. ACM.

User Mode Linux Community 2004, April. User
Mode Linux Community Site. Available online via
<http://usermodelinux.org/> [accessed Au-
gust 20, 2004].

Varga, A. 2004, April. OMNeT++ Community Site. Avail-
able online via <http://www.omnetpp.org/>
[accessed August 20, 2004].

AUTHOR BIOGRAPHIES

ROLAND BLESS is a senior research assistant at the
University of Karlsruhe, Institute of Telematics. He studied
Informatics at the University of Karlsruhe and got his Ph.D.
degree Dr.-Ing. in February 2002. His research interests
are Quality-of-Service, QoS management, Differentiated
Services, Multicast, Mobility and QoS Signaling. He is
actively participating in IETF Working Groups and brought
parts of his work into the IETF standardization process.
Dr. Bless is also member of IEEE and the German GI.

MARK DOLL is a research assistant at the University of
Karlsruhe, Institute of Telematics. He studied Physics at the
University of Braunschweig and joined the University of
Karlsruhe in 2001. He is a Ph.D. student and has research
interests in signaling and management of resource allocations
for the Differentiated Services framework, especially in the
case of multicast scenarios.

http://doc.tm.uka.de/2002/omnet_ws_2002-1.pdf
http://www.freebsd.org/
http://www.isi.edu/nsnam/ns/
http://usermodelinux.org/
http://www.omnetpp.org/

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1556
	02: 1557
	03: 1558
	04: 1559
	05: 1560
	06: 1561


