

Abstract— A population based real-time optimization method

for tuning dynamic position control parameters of robot
manipulators has been proposed. Conventionally, the positional
control is achieved by inverse dynamics feedforward and PID
feedback controllers. The proposed method allows to tune the PID
controller parameters using population based optimization
methods to minimize the error while tracking a repeated desired
trajectory on real-time. The stability of the system is granted by
switching the inappropriate settings to a stable default using a
real-time cost evaluation function.

The proposed tuning method is tested on a two-joint planar
manipulator with Cross-Entropy optimization, and on a planar
inverted pendulum both with Cross Entropy, and Differential
Evolutionary search methods. The test results indicated that the
proposed method improves the settling time and reduces the
position error over the repeated paths for both population based
evolutionary optimization.

Index Terms — adaptive control, PID tuning, real-time CE
optimization, real-time evolutionary optimization, real-time DE
optimization.

I. INTRODUCTION
Robot manipulators are commonly employed in repetitive
tasks in the industry for the reduction of production costs,
enhancement of precision, quality and productivity while
having greater flexibility than other specialized machines as
well as in hazardous environmental conditions such as in
radioactive, toxic zones or where a risk of explosion exists, or
spatial and submarine applications. The short-term projections
show that assembly tasks will continue to be the main
applications of robot manipulators [1].
 Robot manipulators are mainly positioning devices with
multiple degrees-of-freedom (DoF). Dynamic position control
of robot manipulators is a well known problem in control
engineering due to the multi-input-multi-output nonlinear
behaviour of their equation of motion. There are a large number
of excellent survey books and articles on the control of the
manipulators [1]-[5]. In a typical position control problem, the
plant is characterized by the dynamic equation of motion of the
manipulator, which describes the motion of the joint
displacements corresponding to the applied joint torques. The
controller is designed to generate appropriate joint torques to
track a desired task space trajectory, or equivalently to track the
corresponding desired joint space trajectory. The conversion of

Dr. Mehmet Bodur is with the Computer Engineering Department at Eastern
Mediterranean University, G.Magusa, TRNC, Mersin-10 Turkey. (e-mail:
mehmet @ ieee . org).

trajectories from the task space to the joint space requires
kinematic modeling of the robot manipulator. The equation of
motion is obtained by one of the methods such as
Newton-Euler, Lagrangian, and their backward and forward
recursive applications.

The decentralized PD and PID control are the conventional
methods for position control of the manipulator joint
displacement. PD control can achieve global asymptotic
stability in positioning the end-point in the absence of gravity.
The integral action of the PID control further compansates any
positional offset due to gravitational forces [5]. Several
methods were proposed in literature to obtain suitable
propotional, integral and derivative controller gain settings: Kp,
Ki and Kd. In absence of friction, the gains may be selected
using a Lyapunov function candidate and LaSalle’s Invariance
Principle [5]. Adaptive PID settings were also proposed for
obtaining proper local gain settings based on plant
identification and pole placement techniques [6].

Population-based metaheuristics is one of the important
branches of the metaheuristic methods to search solutions of
difficult optimization problems. Even though metaheuristic
methods have drawbacks such as sensitivity to parameters and
lack of strong proof of convergence, they are still preferred for
several reasons: They do not require special conditions for the
proprieties of the objective function and constraints, they are
suitable for both continuous and combinatorial problems, and
they are suitable as well to multiobjective optimization
applications. Population-based methods exhibit further
advantages compared to the neighborhood metaheuristics.
They are less sensitive to misbehaving paths of certain
individual solutions, and they increase the probability of
attaining the global optimum by employing information on the
surface of an objective function [7].

Population-based algorithms are difficult to apply to
real-time optimization of robotic control problems, because of
the difficulty to keep the trajectory in tolerance for all tested
population members. For a reinforcement learning application
Lin restricted the population only to stable parameters using a
Lyapunov function [8]. This study proposes a simpler solution
by real-time monitoring the tracking error. The stability
problem is tackled by switching the unstable control parameters
to a stable parameter set if the continuously monitored error
score exceeds a tolerable threshold. The proposed method is
demonstrated on two population based search algorithms: the
Differential Evolution and the Cross-Entropy methods.

Real-Time Population Based Optimization for
Adaptive Motion Control of Robot Manipulators

Mehmet Bodur, Member, IEEE

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

Cross-Entropy (CE) Method is a statistical population based
information theoretic method of inference about an unknown
probability density from a prior estimate of the density and new
expected values [9], [10]. CE Method was further developed as
a combinatorial optimization tool to obtain the optimal
solutions for rare-event problems and optimization of the scalar
functions [10], [11]. It is one of the optimization methods with
the proven convergence to the optimal parameters similar to
Monte-Carlo and the Simulated Annealing methods.

Evolutionary Algorithms (EAs) are nature inspired
population based optimization methods for both continuous
variable, and combinatorial problems. The Differential
Evolution is a population based search method developed from
Genetic Algorithms (GAs), which provide evolution of the best
solution by survival of the fittest. GAs are search algorithms
inspired of natural selection and genetics to search better
solutions in a solution space. A simple genetic algorithm is
typically composed of three operators: reproduction, crossover
and mutation [12]. The beginning of the Differential Evolution
(DE) algorithm was Genetic Annealing developed by K. Price
[13], [14]. Unlike to the GAs, DE employs only a simple and
fast linear operator, differential mutation, which uses the
differences between individuals instead of crossover and
mutation operators [7], [13]. In continuous domain multimodal
problems, DE finds the global best faster than GAs [7], [15].
This success resides in the manner of the trial individual
creation.

This article is organized as follows: Section II presents the
kinematics, dynamic modeling and control of a robot
manipulator. Section III and IV introduces the Cross-Entropy
and the Differential Evolution methods for optimization of the
controller gains. Section V describes the proposed real-time
population based optimization algorithm with its goal. Section
VI and VII contains the experimental details and the results of
the proposed parameter switching on a two-link planar
manipulator, and on an inverted pendulum system. Section VIII
concludes the article.

II. KINEMATICS DYNAMIC AND CONTROL
The forward kinematics relation maps the joint space

position q to the end-effector pose

 p = f0(q) (1)
using homogenous link-frame coordinate transformation
matrices. Denavit-Hartenberg (D-H) convention provides the
D-H transformation matrix Ak that maps a coordinate at kth
frame to the (k−1)st frame [15]. In D-H convention, the frame
axis k−1z is assigned along the axis of rotation of the kth link. If
the joint is translational, k−1z is assigned along the movement
axis of the kth link. θk is the joint rotation from k−1x to kx. The
common normal from k−1z to kz is called ak. The distance from
ak−1 to ak is denoted by dk. The twist angle from k−1z to kz is
called αk. The transformation function from kth to (k−1)st
frame is obtained by a chain of rotations and translations
 k−1Ak=Rot(zk−1, θk)Transn−1(ak, 0, dk) Rot(xk−1, αk)

 k−1Ak =
cos sin cos sin sin a cos
sin cos cos cos sin a sin

0 sin cos
0 0 0 1

k k k k k k k

k k k k k k k

k k kd

θ θ α θ α θ
θ θ α θ α θ

α α

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2)

The Lagrangian provides a systematic method to obtain the
equation of motion of a multi-degree-of-freedom open chain
mechanism. The Lagrangian function L is defined by
L = K − P, where K is the kinetic energy, and P is the potential
energy of the analyzed system. The partial derivatives of L
provide a simple means of calculation for the joint force and
torques. The derivatives of the D-H transformation matrices Ai
can be expressed by

 i

i

A
q

∂
∂

= Qi Ai , (3)

where Qi =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

0000
0000
0001
0010

 for revolute, and Qi =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 for

translational joints. This property provides a convenient form
for the derivatives of the link transformation matrices 0Ti with
respect to the jth generalized-joint displacement variables qj and
qk [15].

Uij =
0

i

j

T
q

∂
∂

 = 1 2(... ...)j i

j

A A A A
q

∂
∂

 = A1A2 ... QjAj ... Ai ; j ≤ i . (4)
and

Uijk =
0

i

j k

T
q q
∂

∂ ∂
 = 1 2(... ...)j i

j k

A A A A
q q

∂
∂ ∂

 = A1A2 ... QjAj ... QkAk ... Ai ; j ≤ i, k ≤ i . (5)
 Linear or revolute, the kinetic energy of a mass dmi located
at the position irdm and moving with the i-th coordinate frame
is
 d ki = 12 d mi 0viT

 0vi , (6)
where 0vi denotes the velocity of mass mi. The total kinetic
energy of the link requires the integration of d ki over the
complete mass of the i-th link.

 ki = ∫mi dki = 12Trace[(Σi
p=1 Σi

 r=1Uip Jpi UirT q̇r q̇p)], (7)
where Jpi=∫mi

irdm
 irdmTdmi is the pseudo-inertia matrix of the

thi link. The potential energy of ith link due to the
gravitational field is expressed using the mass mi, the center of
mass icm and the gravitational acceleration vector ga .

 pi = − mi gaT 0Ti icm . (8)

Finally, the Lagrangian of the complete system is obtained
 L = K−P
 = 12 Σn

i=1 Σi
k=1 Σi

r=1 Trace(Uik Jpi UirT) q̇r q̇p

 − Σn
 i=1 mi gaT 0Ti icm (9)

and its derivatives give the generalized joint-force at the joint-j.

τj =
dt
d

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

jq
L −

jq
L

∂
∂ , (10)

τj = Σn
 i=j Σn

 k=1 Trace (Uik Jpi UijT) q̇̇ k

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

 + Σn
 k=1 Σn

 r=1 Trace (Uikr Jpi UijT) q ˙k q ˙r

 − Σn
 i=j mi ga

T Uij
icm . (11)

Further, (11) can be organized to Uicker-Kahn form.

 τi =Σn
 i=j Dij q̇̇ j +Σn

 i=j Σn
 k=1 Cijk q ˙j q ˙k + gi. (12)

where
 Dij =Σn

 i=j Trace(Uik Jpi UijT) ;
 Cijk =Σn

 r=1Trace(Uikr Jpi UijT),
and
 gj = − Σn

 i=j mi gaT Uij icm , (13)
are the inertial, coriolis, and gravitational terms of the equation
of motion. The equation is also written in a matrix form [5]

τ = D(q) q̇̇ + C(q, q̇) q̇ + g(q) . (14)

A constant field dc-motor converts the total control action
by an almost linear relation of rotor current irotor to the joint
torque τ = ki · irotor . Accordingly, without loss of generality,
the torque coefficient ki is assumed ki=1 so that the joint
torques are determined directly by the control action [1].

A fully actuated rigid manipulator has an independent
control input for each degree-of-freedom, which simplifies its
decentralized control. Robots with flexible links or joints have
control problems and which may require singular perturbation
and two-time-scale control techniques [5], [6].

The equation of motion is highly nonlinear to apply
independent PID control directly to each joint motion. The
usual method is to apply the expected joint torques for the
desired trajectory by a feedforward control, and correct any
deviation from the trajectory by the feedback loop of the PID
control. The feedforward control action τc is obtained by the
sum of the anticipated gravitational and inertial terms, so that
all coriolis forces remains as a disturbance to the feedback loop

τc =Dc(qd) q̇̇ d +gc(qd) , (15)
where Dc and gc are the inertial coefficients and gravitational
torques of the anticipated equation of motion; qd is the desired
trajectory in joint space. The discrepancy of the anticipated
equation of motion from the actual dynamics of the manipulator
is expected to contribute to the disturbance torques, and thus a
feedback control loop is inevitable for the stability of the
control action.

The difference of the desired position qd(t) and the measured
position qf (t) is called the displacement error e(t) of the control
system. A proportional gain provides main correction of the
error, an integral gain provides correction of the offset, and a
derivative gain provides faster response of the controlled
system.

0
() () ()

t

f P I Dt
K e t K e t dt K e tτ = + +∫ (16)

Assuming that the anticipated feedforward control law can
be predicted by the mechanical properties of the manipulator,
the PID parameters remain to be determined for the optimum
tracking of the specified joint space trajectory. The following
two sections contain the cross entropy and differential
evolution methods, which are employed to find the optimum

PID gains. In the optimization of the PID gains, The closed
loop control system is considered as a stochastic system with
the controller parameters.

Fig. 1. Position Control System.

III. CROSS ENTROPY METHOD
Cross Entropy method is a population based optimization

algorithm that utilize the scores of the trial runs optimal in the
information rhetoric meaning.

Let X be the set of real valued states, and let the scores S be a
real function on X. CE-method targets to find the minimum of S
over X, and the corresponding states x*∈X satisfying the
minimum

 * *() min ()x XS x S xγ ∈= = , (17)
by employing importance sampling and minimizing the cross
entropy between the samples of a family of succeeding
probability mass function f(-, vk). A naive random search can
find an expected value for x* and determine γ* with probability
1, if some of the scores S(x) for the random states x can satisfy
the minimum. However, methods like Crude Monte-Carlo
requires considerable computational effort because it uses
homogeneously distributed random states in searching x*. CE
method provides a methodology for creating a sequence of
vectors x0, x1 ... and levels γ0, γ1, ... such that γ0, γ1, ...
converges to γ* and x0, x1 , ... converges to x*.

Define a collection of functions { H(- ; γ) } on Χ, via

(){ () }(;) iS xH x I γγ >= =
1, if ()
0, if ()

S x
S x

γ
γ

≤⎧
⎨ >⎩

 . (18)

for each threshold γ ∈ R, and x ∈ X. Let f(-; v) be a family of
probability mass function (pmf) on X, parameterized by a real
valued vector v ∈ R. Consider the probability measure under
which the state x satisfies the threshold γ

lv (γ) = Pv (S(X) ≥ γ)

 = Σx H(x; γ) f(-; v) = Ev H(X; γ) , (19)
where Ev denotes the corresponding expectation operator. It
converts the optimization problem to an associated stochastic
rare event problem. Using the Importance Sampling (IS)
simulation, the unbiased estimator of l with the random sets of
states x(1), ... taken from different independent pmf f(x, v) and
g(x) is

l̂ = 1N ΣN
i=1 I{S(x(i)) >γ } W (x(i)) , (20)

where W(x) = f(x, v)/g(x) is the likelihood ratio. Searching the
optimal importance sampling density g*(x) is problematic,

Equation
of Motion

Shaft
Encoder

Σ

qf

qd

joint torque controller

Feedback PID
Control

e
τ

Feedforward
Control

Σ

τc

τf
+

−

+

+

Population Based
Optimization Algorithm

Performance
Requirements

e
KP, KI, KD

q
 ∫.dt

q

manipulator

 ∫.dt

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

since determination of g*(x) requires l to be known. Instead,
the optimum tilting parameter v* of a pmf f(x, v) reduces the
problem to scalar case.

The tilting parameter v can be estimated by minimizing
Kullback-Leibler “distance” (also called cross entropy)
between the two densities f(x) and g(x)

CE(f, g)= ()() ln
()

f xf x dx
g x∫ . (21)

After reducing the problem to tilt parameter v, the cross-
entropy between f (x, v) and the optimal distribution f(x, v) is
described by

CE(v,v*) := { } { }
*

() () (,)
ln

(,)
S x S xI I f x

E
c c f x

γ γ υ

υ
≥ ≥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, (18)

where c = { }() ()S xI f x dxγ≥∫ . The optimal solution *υ is

obtained by solving *υ from minv CEN(υ) , where

CEN(v) =Ev1= 1
N ΣN

i=1 I{S(x(i)) > γ } W (x(i),υ , *υ) . (22)

For example, if all γ is equal to γ*, in that case lv (γ)=f(x*; γ),
which typically would be a very small number. lv (γ*) is
estimated by Importance Sampling with vk=υ

*υ = argmax
v ¯

ΣN
i=1 Ev H(x ; γ) ln f (x ; υ) , (23)

and using x(i), which are generated from pmf f (x ; υ) by
 argmax

v ¯
ΣN

 i=1 H(x(i) ; γ) ln f (x(i) ; υ) . (24)

However, the estimator of *υ is only valid when H(x(i) ; γ) =1
for enough samples.

The CE-algorithm consist of the two phases: 1) Generate
random samples using f(-;vk), and calculate the estimate of the
objective function; 2) Update f(-;vk) based on the data
collected in the first phase via the CE method. The main CE
Algorithm is

1) Initialize k=0, and choose initial parameter vector v0=v.
2) Generate a sample of states x(1), ..., x(M) according to the

pmf f(-;vk) .
3) Calculate the scores S(x(i)) for all i, and order them from

the biggest to the smallest: s1, ≥ ... ≥ sN . Define γk = s[ρN] ,
where [ρN] is the integer part of ρN, so that γk > γ, set γk = γ,
this yields a reliable estimate by ensuring the target event is
temporarily made less rare for the next step if the target is not
reached by at least a fraction of the samples.

4) For j=1, ..., 5, let

vk+1,j=
()

()

()()
1 { () }

()
1 { () }

(; ,)

(; ,)

i
k

i
k

M ii
k ji S x

M i
ki S x

I W x x

I W x

γ

γ

υ υ

υ υ
= >

= >

∑
∑

. (25)

5) Increment k and repeat steps 2, to 5, until the parameter
vector has converged. Let *υ denote the final parameter vector.

6) Generate a sample x(1), ..., x(N) according to the pmf
f(-; vk) and estimate l via the IS estimate

 l̂ = 1N ΣN
i=1 H (x(i)) W (x(i) ; v , *υ) . (26)

Step (6) is not necessary in optimization of the scalar cost

functions, since the goal is to minimize the cost rather than
calculation of the probability of a rare event.

IV. DIFFERENTIAL EVOLUTIONARY OPTIMIZATION
 For a given problem described by a parameter space X and an
objective function S(x) defined on this space, an initial
population of randomly selected individuals { x(i) | i=1,...,M } is
constructed and each individual is evaluated according to the
objective function. The objective function S(x(i)) value for an
individual x(i) is referred to its fitness and it is a relative
measure of functional performance specifying how well the
individual satisfies the optimization criteria. In Genetic
Algorithms, this population is evolved over a number of
generations, by a process based on three genetic operators:
reproduction, crossover, and mutation. Reproduction is a
process in which individuals are selected to a mating pool
depending on their fitness. A higher probability of generating
offspring in the next generation is assured by assigning a higher
mating probability to that individual with a higher fitness
value. This imitates the natural selection, in which the fittest
tend to survive and reproduce, thus propagate their genetic
material to future generations.

Differential evolution uses a special kind of mutation as the
main search mechanism where a greedy selection approach is
employed to direct the search toward the promising regions of
the search space. The fundamental difference between GAs and
DE is that GAs rely on crossover, while DE uses mutations of
the differences of the parameter vectors as the primary search
mechanism.

Fig. 3. The Differential Evolution template

DE search strategies are classified in four groups [7]. This
application used the rand3 search strategy, where the new
individuals are generated from the combination of mutually
distinct three random individuals within the population.
Differential mutation expands the search space by adding the
weighted difference of two randomly chosen vectors to a third
one. That is, in k th generation of an M-vector population, for a
given solution x(i, k) (i =1, … , M , and k=1, … , Gmax), three
vectors x(r1, k), x(r2, k) , x(r3, k) are uniformly randomly selected
from the population such that the indices i, r1, r2 and r3 are
mutually distinct. A donor vector is formed adding the
weighted difference F × (x(r2, k) − x(r3, k)) to x(r1, k)

() () () (), 1 1, 2, 3, ()i k r k r k r kv x F x x+ = + ⋅ − (27)
where F∈(0,2] is called the mutation constant. The number of
donor vectors generated this way is equal to the population size
[13]. Other variations of the mutation are also proposed in
literature [21]. Mutation is followed by a non-uniform
recombination procedure in which a trial vector z(i,k+1) is
generated as

1. Generate initial population
2. Evaluate population
3. Repeat

Select Parents for Reproduction
Differential Mutation
Evaluate new population
Substitute old population

Until (Termination Conditions are satisfied).

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

(, 1)

(, 1)
(,)

if rand or irand(1,)

otherwise

i k
ji k

j i k
j

x CR j N
z

x

+
+

⎧ < =⎪= ⎨
⎪⎩

 (28)

where CR is the crossover rate; rand generates a random
number in [0,1); irand(p,q) generates an integer number in the
interval,
[p, q]; and zj (j∈{1, ... , N}) denotes the jth entry of the trial
parameter vector z. Finally, the greedy selection procedure
determines the ith offspring as

(, 1) (, 1) (,)

(, 1)
(,)

if () ()

otherwise

i k i k i k
i k

i k

z S x S x
x

x

+ +
+

⎧ <⎪=⎨
⎪⎩

. (29)

This strategy allows both generation of trial vectors z(i,k+1)
and update of x(i, k+1) in the same pass of the loop without a loss
of the major notion of Differential Evolution [7].

V. OPTIMIZATION CRITERIA AND TEST METHOD
The optimization of motion control parameters of a

manipulator using reinforcement, genetic, or other population
methods comes across important problems in testing the
generated parameter sets. These methods are mostly applied on
simulations, because the randomly generated unrestricted
population may contain unstable controller settings, which may
cause failure, and even breakdown of the robot system. The
problem can be solved by testing stability properties of the
parameters before applying them to the dynamic control
system, restricting the search space to a narrow region that
guarantees the stability of the system [8].

This paper proposes a simpler, and a more flexible method
for the application of population based optimization methods.
The proposed method assumes that 1) a real-time tracking error
measure J(t, p, pd(t)) and a cost threshold J* of the system is
available, 2) a stable control parameter set xs exists, that
guarantees the stability along the trajectory for a deviation in
the tolerable boundaries of the threshold J*. The population
based algorithm generates a population of controller parameter
sets, {x(1,k), ..., x(M,k)}. The evaluation module sets the control
parameters of the PID controllers KPID = x(i,k); i=1,...,M, and
evaluates the real time cost of x(i,k) along a test period. If the
cost function J(t, p(t, x(i,k)), pd(t)) remains less than J* along
the complete test period, a cost score s(i) is calculated from the
cost criteria S(x(i), pd), which may include any absolute,
derivative, integral and quadratic terms of tracking error.
Whenever the real-time cost function J(t) exceeds a
prespecified critical value J*, KPID is switched to the stable
control parameter set, KPID = xs, to reduce the tracking error,
and prepare the system for the next test period. In this case, a
high cost score is returned for that tested unsuccessful
parameter set. The following two examples of real-time search
algorithms demonstrate the proposed method on CE and DE
search algorithms.

Real-time CE Algorithm to search controller parameters:
1) At initialization, specify a stable controller parameter set

xs, a real-time cost function J(t, p(t,x), pd(t)), a cost threshold

J*, and a cost score function S(x, pd(t)), where pd is the
periodic desired trajectory, and p(t,x) is the actual trajectory
obtained with the control parameter vector x. Initialize the
generation count k=0, and the convergence count j=1, and
choose initial vk = xs. Specify initial γk and elite ratio ρ ∈(0, 1)
so that “the ratio of stable parameter vectors to all parameter
vectors” is higher than ρ. Τhis ensures reliable estimates of the
target. Select the coefficients 0 <α ≤ 1 and 0 < β ≤ 1 to update
vk+1 and γk+1 smoothly. Pick a suitable population size M, and
termination condition on number of generations Gmax.
 2) Generate a population of states {x(1), ..., x(M)} according
to the pmf f(γk;vk) . For each x(i), at the beginning of a
trajectory period pd (.) switch the controller settings to x(i) , and
during the period, evaluate J(t, p(t, x(i)), pd). Whenever J(t)
exceeds J* switch the controller settings to xs , so that system
stays stable, and the trajectory deviation remains within
tolerable limits. At the end of the trajectory period, calculate
the cost score of the sample, s(i)= S(x(i), pd).
 3) Order the scores from the biggest to the smallest, i.e.,
s1, ≥ ... ≥ sN . Use γk = s[ρN] , where [ρN] is the integer part of
ρN, to select the elite subset of population. Estimate v’k+1 , and
γ’k+1 from the mean and standard deviation of the parameters in
the elite subset. Update

vk+1 = α v’k+1 + (1–α)vk,
βm = β - β (1− 1 k) qs , and
γk+1 = βm γ'k+1,j + (1− β m) γk . (30)

If vk+1 converges to vk , increment j=j+1; else reset j=0.
 4) Repeat the steps (2) and (3) until j=5, (i.e., the last 5
iterations converge to the target x*) or the generation count k
exceeds Gmax. At the end of each looping, update the default
parameter set xs by the lowest scoring x(i,k) of that generation.

Real-time DE Algorithm to search controller parameters:

 1) Specify a stable controller parameter set xs, a real-time
cost function J(t, p(t,x), pd(t)), a cost threshold J*, and a cost
score function S(x, pd(t)). Initialize the generation count k=0,
choose a population size M, maximum number of generations
Gmax, and differentiation weight F. Generate an initial
population {x(1,0), ..., x(M,0)} with a mutation probability MP.
Evaluate the scores s(i,0) = S(x(i,0), pd) for the desired path pd.

2) For each individual x(i,k) of the k-th generation, form a
test individual z(i,k+1) according to (27) and (28). At the start
of the period of pd switch the controller settings to z(i,k+1).
During this period evaluate J(t, p(t, z(i,k+1)), pd). Any time J(t)
exceeds J* switch the PID settings to xs to stabilize the system.
Calculate the cost score of the test sample, s’(i, k+1) = S(z(i, k+1),
pd). If s’(i, k+1) < s(i, k) select z(i, k+1) for x(i, k+1) as given in
(29).
 3) Repeat step (2) until generation count k exceeds Gmax. At
each looping, update the default parameter set xs by the lowest
scoring x(i,k) of that generation.

The population based search methods provide a higher
degree of flexibility in specifying the cost function compared to
many other controller parameter optimization techniques which

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

are based on plant identification or state estimation techniques.
For example, in the following simple demonstration, the
cartesian absolute path deviation (e(t)= |p(t)−pd(.)|) is used
instead of using the conventional trajectory tracking error
(e(t)= q(t)−qd(t)) in joint space.

VI. SIMPLE 2-LINK (2R) DEMONSTRATION
Consider the two link manipulator with two revolute joints

shown in Fig. 1. The length of the links L1 and L2 are
respectively b1, and b2. The masses m1 and m2 are
homogenously distributed along the links L1 and L2.
Coordinate frames 0T, 1T and 2T are assigned for the base, L1,
and L2 by applying D-H convention as shown in Fig-1. The
symbolic equation of motion for this planar manipulator is
derived in symbolic toolbox of MATLAB using Lagrangian
formulation

τ1 = (1
3 m1b12 + 13m2b12 +m2 b1 b2 C2 +m2b12) q..1

 +(1
3 m1b12−m1b1b2− 12 m1b12 C2+m1b22 +m1b1b2 C2) q..2

 − m2b1b2 S2 q.1q.2 − 12 m2b1b2 S2 q.2 2
 + 12 ga (b1m1C1 + b2m2C12 +2 b1m2C1) , (24)
τ2 = +(1

3m1b12−m1b1b2 − 12 m1b12C2+m1b22+m1b1b2C2)q..1
 + 13 m2b22 q..2 + 12 m2 b1b2 S2 q.1 2 + 12 ga m2 b2C12 , (25)

where Ci, and Si, denote cos(qi) and sin(qi); Cij, and Sij, denote
cos(qi + qj) and sin(qi + qj). In the simulation, the equation of
motion is integrated for m1 = 5 kg, m2 = 3 kg, b1 = 0.5 m and
b2 = 0.4 m, reducing the simulation model to

τ s,1 = (199
 150 + 35 C2) q..1 + (13

60 + 38 C2) q..2

 − 35 S2 q
.
1q.2− 310 S2 q.2 2 + 12 ga (11

2 C1 +
6
5 C12)

τ s,2 = (13
60 + 38 C2) q..1 + _4

25 q
..

2 + 310 S2 q.2 2 + 35 ga C12. (26)

Fig. 2. Parameters of the simulated manipulator with 2-revolute joints.

All joint and actuator friction forces are assumed to be zero
to prevent their stabilizing effect on the closed loop stability of
the system. The feedforward control force τc is calculated only
from the inertial and gravitational terms of a similar model
(τc= Dc(qd) q̇˙d +gc(qd)) but with a higher load mass
m2=3.5kg.
 τ c,1 (q) = (887

 600 + 710C2) q..1+(13
60 + 38 C2) q..2d +1

2 ga (6C1+
7
5C12)

 τ c,2 (q) = (13
60 + 38 C2) q..1 + 710 ga C12 . (27)

The test path is selected on a line segment in cartesian
workspace starting from the point (0x, 0y) = (0.2, 0) to the point
(0.7, 0.5) through the via-point (0.4, 0.2). The test trajectory is
calculated for ∆t = 1 ms intervals using parabolic blend with
linear segments trajectory generation method with via points
[11] under the constraints: maximum linear velocity= 1m/s, and
linear acceleration 1 m/s2. The points of the desired trajectory
are shown in Fig. 2 for every 50 ms periods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2.5

-2

-1.5

-1

-0.5

 (a) (b) (c)

Fig. 3. Plots of the desired trajectory
(a) x vs. y (in meters), (b) q1 vs. q2 (in radians),
(c) the movement of the links in x-y plane.

 The real-time cost function was chosen to be
 J(t, p(t), pd(t)) = ||p(t), pd(t)||
where p(t) and pd(t) are the actual and desired end-point
trajectory in the cartesian space, and ||a, b|| denotes the
cartesian distance between the points a and b.
 The goal of the algorithm was to search smallest scoring PID
parameter set KPID = (K1P, K1I, K1D K2P, K2I, K2D) starting with
a default stable parameter set

 xs = (5000, 200, 80, 5000, 200, 80) ,
without an intolerable tracking error cost.

The cost threshold was set to J*= 0.002 m, and the cost score
function S(w, pd(.)) was evaluated by the maximum of J(t)
over one trajectory period. The population size was taken N=
60; elite population ratio was taken ρ=0.05; smooth update
coefficients were α = 0.9, β = 0.9, and qs=5. In generating
populations, the initial standard deviation of the gaussian pdf
was set to γ0 = 0.5 xs. The convergence plot of cartesian
tracking displacement error for Gmax=50 generations is shown
in Fig. 4.
 Fig.5 demonstrates typical tracking cases observed during
the optimization of KPID. The tracking error of the manipulator
for with KPID=xs is seen in Fig. 5.a. The effect of switching
KPID from an unstable setting x(12,7) = (3132, 268, 50, 2121,
221, 98) to xs=(5000, 200, 80, 5000, 200, 80) is seen in Fig. 5.b.
The trajectory plots in Fig.5.c was obtained with the best scored
parameter vector of 50 generations, x(4,37)= (13032, 452, 136,
5391, 46, 161).

Fig. 4. Convergence plot of the best-score for two-link manipulator.

0 0.1 0.2 0.3 0.4 0.5 0.60

0.1

0.2

0.3
0.4

0.5

0.7

y

x

b1

b2

0x

0y

1x

1y

 q1

2x
2y

End-point location, p
 q2

m2

m1

0 10 20 30 40 500.0012

0.0014

0.0016

0.0018

0.0020
best score

CE-iteration

q1

q2y

x

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

Fig. 5 a. Tracking performance of manipulator with

initial stable control parameter set ws.

`
Fig. 5 b. An unstable parameter set causes excessive cartesian error

at t=0.42, and control is switched back to xs.

Fig. 5 c. The best parameter set reduced the cartesian error to 50%,

but bounded oscillatory action of torques were observed
because of the high proportional gain.

The CE-optimization provided almost 50% reduction of
cartesian displacement error. At the wide open configuration of
the manipulator the optimized controller settings produce an
oscillatory action of actuator torques. But the oscillatory
torques has a very minor effect on the tracking error. This
oscillatory behavior may be prevented by assigning an
additional cost on the derivative of the controller output.

VII. PID SETTINGS OF AN INVERTED PENDULUM
The inverted pendulum is a well analyzed classical control

problem [1], [18]. The objective is to track a desired cart
trajectory with a small deviation ex by applying an external
force f on the cart along x-axis while keeping the pendulum
stable in vertical position. The mechanical parameters of the
system are introduced in Fig.6.

Fig. 6. Inverted Pendulum System.

The equation of motion of the cart and pole inverted
pendulum system is expressed by

2

c p p q

p q p

m m m bC x
qm bC J m b

+⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 +
0
c p q

p

C m b q S x
C q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+
0

0p a q

f
m b g S
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, (31)

where Cq and Sq are cos(q) and sin(q), ga is the acceleration
due to gravity, mc is the mass of cart, mp is the mass of the pole,
b is the half length of the pole, Cc is the friction coefficient of
cart, Cp is the friction of the pole, J is the mass moment inertial
of the pole, and f is the force applied to the cart [18]. The pole
mass distributed homogeneously along the pole is J= 1/3 mpb2.

Fig. 7. Block diagram of inverted pendulum system

for parameter optimization

Two PID controllers were cascaded to reduce the tracking
errors ex = x – xd, and eq = q − qd, asymptotically to zero as
shown in Fig 7. The goal of the exercise is to search the lowest
costing PID parameters KPID = [KxP, KxI, KxD, KqP, KqI, KqD].
For this cascaded PID control scheme, an oscillatory behavior
was expected since no predictive or inverse dynamic
feedforward action employed.

In the tests, a cart and pole system is simulated with the
half-length of the pole b was taken 0.5m, the cart mass mc=1
kg, and pole mass mp =1 kg. The pole inertia Jp =16/3
corresponds to the homogenously distributed mass along the
length of the pole. The desired cart trajectory was specified by a
square function switching between –0.05m and 0.05m at every
25s, completing its period in 50s. The friction coefficients on

mc f

x 0

mass
mp

q
2b

0 0.5 1 1.5 2 2.5
-20

0
20
40
60 error along x and joint-1 KP=13032 5391 KI=452 46 KD=136 161

time (s)

: (pd-ps)x10000
: (qd-qs)x10000
: Torque (N.m)

0 0.5 1 1.5 2 2.5
-40
-20

0
20
40 error along y and joint-2

: (pd-ps)x10000 : (qd-qs)x10000 : Torque (N.m)

time (s)

0 0.5 1 1.5 2 2.5
0
5

10
15 maximum deviation from the path

: cart-dev x10000 (m)
: switchback 0:off 1:on

time

0 0.5 1 1.5 2 2.5
-40
-20

0
20
40
60 error along x and joint-1 KP=5000 5000 KI=200 200 KD=80 80

time (s)

: (pd-ps)x10000
: (qd-qs)x10000
: Torque (N.m)

0 0.5 1 1.5 2 2.5
-40
-20

0
20
40 error along y and joint-2

: (pd-ps)x10000
: (qd-qs)x10000
: Torque (N.m)

time (s)

0 0.5 1 1.5 2 2.5
0

10
20
30 maximum deviation from the path

: cart-dev x10000 (m)
: switchback 0:off 1:on

time

10
0 : Torque (N.m)

0 0.5 1 1.5 2 2.5
-50

0
50

error along x and joint-1 KP=3132 2121 KI=268 221 KD=50 98

time (s)

: (pd-ps)x10000
: (qd-qs)x10000

0 0.5 1 1.5 2 2.5
-50

0

50 error along y and joint-2
: (pd-ps)x10000 : (qd-qs)x10000 : Torque (N.m)

time (s)

0 0.5 1 1.5 2 2.5
0

20
40
60 maximum deviation from the path

: cart-dev x10000 (m)
: switchback 0:off 1:on

time

Equation
of Motion

Shaft
Encoder

Σ
xd

cascaded controllers

PID
ex x, qf

Σ
qd

qf

+
− −

+

Population Based Search Algorithm
Performance
Requirements

eq

KqP, KqI, KqD

PID

KxP, KxI, KxD

xf

x
q

inverted pendulum system

 ∫.dt ∫.dt

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

the cart Cc, and on the pole Cp were taken 0.01. With these
coefficients the free motion amplitude of the pole diminish
almost 50 percent in 50s period. The gravitational acceleration
was taken ga= 9.8 m/s2. Equation of motion was integrated over
∆t=5ms time steps using trapezoidal method. The initial
parameter set

xs = [KxP, KxI, KxD, KqP, KqI, KqD]
 = [0.05 0.001 0.01 300 0.001 50]

managed stabilization of the system marginally with large
oscillatory movements. The default parameter set was updated
after every generation assigning the best scoring x(i,k) to the
default stable parameter set xs .

The cost function was specified using the quadratic
displacement errors ex2 = (x−xd)2, eq2=(q-qd)2, and their
integrals:
 J(t, p(t, x(i)), pd)
 =10 ex2 + 8 eq2 + ∫ex2dt +0.6 ∫eq2dt . (32)
In (32), the proportional gains on quadratic errors provide
real-time cost action, while the integrals of quadratic errors
accumulating the error for an end-score at the end of the cycle.
At every generation k, for each member x(i, k) of the kth
population, the PID controller settings were set to the control
parameters x(i, k) at the beginning of the desired trajectory
cycle, for 50s, and corresponding score s(i) was evaluated using
S(x(i)) = J(tf, p(tf, x(i)), pd) (32) at the end of the trajectory
cycle. Control parameters were switched to the stable
parameter set xs at the threshold of J (t, p(t, x), pd) > J* = 0.1 .

a) Adaptation by Real-time Cross Entropy Search Method
 The initial standard deviation of the gaussian pdf of the CE
search was selected γk = 0.5 xs; maximum generations and
population size were selected Gmax=50 and M = 30; elite
population ratio was ρ = 0.1, smooth update coefficients were
selected to be α = 0.9, β = 0.9 , and qs = 5.

Fig.8 shows the convergence-rate of real-time CE search for
three identical cases, with exactly the same initial parameter
sets. The best scored parameter set of all runs reduced the
tracking error score more than 50 percent.

The plot of x and q for the initial stable parameter set is
shown in Fig. 9.a. A typical control parameter switching due to
unstable character of the tested parameter set x(i) is given in
Fig. 9.b, and the initial and final performance of the cart and
pole system is compared in Fig. 9.c.

Fig. 8 Convergence-rate plots for three CE search runs

with exactly the same initial parameters.

Fig. 9.a The initial stable parameter set xs is oscillatory,
but it satisfies the tracking error tolerance J*.

Fig. 9.b During the test of an unstable controller parameter set
PID parameters were switched to xs at t =2.8s.

Fig 9.c Trajectory with the best scoring PID setting after 50 generations.
On the first graph the trajectory (a) belongs to the initial PID settings xs,

inserted to the graph to compare initial and best-scored cases.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 10 20 30 40 50
CE-iteration

best-score

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

Cycle =0
 PID-gain= 0.0500 0.0010 0.0100 300.0000 0.0010 50.0000

so
lid

 :
x

do

tte
d:

 x
-re

f

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

so
lid

: q

do
tte

d:
 f

 /1
00

0

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1
 End-score= 0.039811 Cycle= 0

time (s)

so
lid

 :
x-

re
f

da
sh

-d
ot

: s
co

re

do
tte

d:
 s

w
itc

h/
10

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

Cycle =1471
 PID-gain= 0.0357 0.0003 0.0312 45.7955 0.0013 4.9168

so
lid

 :
x

do

tte
d:

 x
-re

f

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

so
lid

: q

do
tte

d:
 f

 /1
00

0

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1
 End-score= 0.01957 Cycle= 1471

time (s)

so
lid

 :
x-

re
f

da
sh

-d
ot

: s
co

re

do
tte

d:
 s

w
itc

h/
10

a

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

Cycle =191
 PID-gain= 0.0542 0.0012 0.0242 218.4103 0.0008 3.1737

so
lid

 :
x

do

tte
d:

 x
-re

f

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

so
lid

: q

do
tte

d:
 f

 /1
00

0

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2
 End-score= 0.029355 Cycle= 191 / 151

time (s)

so
lid

 :
x-

re
f

da
sh

-d
ot

: s
co

re

do
tte

d:
 s

w
itc

h/
10

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

b) Adaptation by Real-Time Differential Evolution Method
 Similar to the CE search cases, the population size and the
maximum number of generations for the DE search are set to
M=30 and Gmax=50. The differentiation coefficient, the
crossover rate, and the mutation probability are set to F= 0.9,
CR=0.3 and pm=0.25. The initial stable PID parameter vector xs
of real-time DE search, the real-time cost function, the score
function, and the real time cost threshold value are all chosen
the same as used in CE case.

Fig.10 shows the convergence-rate of real-time DE search
for five identical cases, with exactly the same initial parameter
sets. Each best scored parameter produced by these runs
reduced the tracking error score almost 65 percent. As
expected, the initial parameter set KPID=xs gives a very similar
trajectory with the CE case shown in Fig. 9.a. The initial and
final performance of the cart and pole system is compared in
Fig. 11.

Fig. 10 Convergence-rate plots for five DE search runs

with exactly the same initial parameters.

Fig. 11 Trajectory plots comparing the tracking error of (a) initial

and the best scored PID parameters obtained by the real-time DE search.

VIII. CONCLUSION
This study proposes a real time evolutionary search method that
provides stable operation within a specified cost threshold by
switching the unstable control parameters with a prespecified
stable parameter set whenever a tracking error based cost
function exceeds a threshold. The proposed method has been
tested successfully on an open chain manipulator dynamic
control, and on the control of an inverted pendulum, where
without a feedforward or predictive control the system is stable
only in a very narrow band of PID settings.

During the tests none of these two systems has been fallen
into non controllable states. In CE method, even though some
of the oscillatory controller settings collected better scores than
similar but less oscillatory settings, the mean of the elites
always remained preferably stable. In both 2R and inverted
pendulum cases, over 50% reduction of the specified cost
function is achieved by population-based real-time search
method during the progress of its repetitive operation.

ACKNOWLEDGMENT
Special thanks go to my colleague Dr. Adnan Acan for discussing

several issues on implementation of the proposed method. Thanks to
my graduate robotic course students: Maneli Badakshan, Vassilya
Abdulova, Dilek Beyaz, Duygu Çelik for their efforts in reproduction
of the trajectory planning algorithms; M. Reza Najiminaini, and A.A.
M.Abed for their efforst in deriving the symbolic equation of motion.

REFERENCES
[1] Kelly, R. Control of robot manipulators in joint space. (Advanced textbooks

in control and signal processing)Control of Robot Manipulators in Joint
Space), Springer-Verlag London Limited 2005

[2] Paul, R.C., “Modeling, Trajectory Calculation, and Servoing of a
Computer Controlled Arm” Stanford A.I. Lab, A.I. Memo 177, Stanford,
CA, Nov.1972.

[3] Paul, R.P., Robot Manipulators: Mathematics Programming, and Control,
MIT Press. Cambridge 1982.

[4] Fu, K.S., Gonzales, R.C., Lee C.S.G., Robotics Control, Sensing, Vision,
and Intelligence, Mc.Graw-Hill International Ed. Singapore, 1988.

[5] Mark W. Spong", "Motion Control of Robot Manipulators", online
article: url:citeseer.ist.psu.edu/165889.html.

[6] Bodur M., Sezer M. E., Adaptive control of flexible multilink manipulators,
Int.J.Control, vol.58, no.3, pp 519-536, 1993.

[7] V. Feoktistov, Differential Evolution In Search of Solutions
Optimization and Its Applications Vol 5, Springer, USA, 2006

[8] Chuan-Kai Lin, Reinforcement learning adaptive fuzzy controller for
robots, Fuzzy Sets and Systems, Elsevier Vol.137, pp.339-352, 2002.

[9] Kullback S. Information theory and statistics. NY: Wiley, 1959.
[10] J. Shore and R. Johnson. Properties of cross-entropy minimization. IEEE

Trans. Information Theory, 27(4):472-482, 1981
[11] P.T. de Boer, D.P. Kroese, S. Mannor, and R.Y. Rubinstein. A tutorial on

the cross-entropy method. Annals of Operations Research, 2004
[12] D.E. Goldberg, Genetic Algorithms in search, Optimization, and Machine

Learning, Addison Wesley, Massachusetts, USA, 1989.
[13] R. Storn and K. Price, Differential evolution: a simple and efficient

adaptive scheme for global optimization over continuous spaces, Journal
of Global Optimization Vol. 11, pp. 341-359, 1997.

[14] Kenneth V. Price. Genetic annealing. Dr. Dobb’s Journal, pages 127–132,
October 1994.

[15] Bodur, M.; Acan, A.; Akyol, T. Fuzzy System Modeling with the Genetic
and Differential Evolutionary Optimization, International Conference on
Computational Intelligence for Modelling, Control and Automation,
Volume 1, pp. 432 - 438, 28-30 Nov. 2005

[16] Uicker, J. J., Denavit, J. , Hartenberg, R. S., An iterative method for the
displacement analysis of spatial mechanisms. Journal of Applied
Mechanics. 26. 309-314, 1964.

[17] S. B. Niku, Introduction to Robotics, Analysis, Systems, Applications.
Prentice Hall Inc. pp 153-165, 2001.

[18] Shozo Mori, et al., Control of unstable mechanical system, control of
pendulum, Internat. J. Control 23 (5) pp. 673–692, 1976

[19] Rubinstein, R. Y. and Kroese, D.P. (2004). The Cross-Entropy Method:A
Unified Approach to Combinatorial Optimization, Monte-Carlo
Simulation and Machine Learning. Springer-Verlag, New York.

[20] D.P. Kroese and K.-P. Hui: Applications of the Cross-Entropy Method in
Reliability, Computational Intelligence in Reliability Engineering (SCI)
40, 37–82 Springer-Verlag Berlin Heidelberg (2007).

[21] H.Y. Fan, J. Lampien, A trigonometric mutation operation to differential
evolution, J. of Global Opt., Vol. 27, pp. 105-129, 2003.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 10 20 30 40 50
Generations

best-score

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

Cycle =1436
 PID-gain= 0.0562 0.0011 0.0583 103.2069 0.0009 6.2266

so
lid

 :
x

do

tte
d:

 x
-re

f

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.02

0

0.02

so
lid

: q

do
tte

d:
 f

 /1
00

0

 time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1
 End-score= 0.01316 Cycle= 1436

time (s)

so
lid

 :
x-

re
f

da
sh

-d
ot

: s
co

re

do
tte

d:
 s

w
itc

h/
10

a

Engineering Letters, 16:1, EL_16_1_05
__

(Advance online publication: 19 February 2008)

