
 
 

 

  
Abstract— A population based real-time optimization method 

for tuning dynamic position control parameters of robot 
manipulators has been proposed. Conventionally, the positional 
control is achieved by inverse dynamics feedforward and PID 
feedback controllers. The proposed method allows to tune the PID 
controller parameters using population based optimization 
methods to minimize the error while tracking a repeated desired 
trajectory on real-time. The stability of the system is granted by 
switching the inappropriate settings to a stable default using a 
real-time cost evaluation function. 

The proposed tuning method is tested on a two-joint planar 
manipulator with Cross-Entropy optimization, and on a planar 
inverted pendulum both with Cross Entropy, and Differential 
Evolutionary search methods. The test results indicated that the 
proposed method improves the settling time and reduces the 
position error over the repeated paths for both population based 
evolutionary optimization. 

Index Terms — adaptive control, PID tuning, real-time CE 
optimization, real-time evolutionary optimization, real-time DE 
optimization.  

I. INTRODUCTION 
Robot manipulators are commonly employed  in repetitive 
tasks in the industry for the reduction of production costs, 
enhancement of precision, quality and productivity while 
having greater flexibility than other specialized machines as 
well as in hazardous environmental conditions such as in 
radioactive, toxic zones or where a risk of explosion exists, or 
spatial and submarine applications. The short-term projections 
show that assembly tasks will continue to be the main 
applications of robot manipulators [1]. 
 Robot manipulators are mainly positioning devices with 
multiple degrees-of-freedom (DoF). Dynamic position control 
of robot manipulators is a well known problem in control 
engineering due to the multi-input-multi-output nonlinear 
behaviour of their equation of motion. There are a large number 
of excellent survey books and articles on the control of the 
manipulators [1]-[5]. In a typical position control problem, the 
plant is characterized by the dynamic equation of motion of the 
manipulator, which describes the motion of the joint 
displacements corresponding to the applied joint torques. The 
controller is designed to generate appropriate joint torques to 
track a desired task space trajectory, or equivalently to track the 
corresponding desired joint space trajectory. The conversion of 
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trajectories from the task space to the joint space requires 
kinematic modeling of the robot manipulator. The equation of 
motion is obtained by one of the methods such as 
Newton-Euler, Lagrangian, and their backward and forward 
recursive applications.  

The decentralized PD and PID control are the conventional  
methods for position control of the manipulator joint 
displacement. PD control can achieve global asymptotic 
stability in positioning the end-point in the absence of gravity. 
The integral action of the PID control further compansates any 
positional offset due to gravitational forces [5]. Several 
methods were proposed in literature to obtain suitable 
propotional, integral and derivative controller gain settings: Kp, 
Ki and Kd.  In absence of friction, the gains may be selected 
using a Lyapunov function candidate and LaSalle’s Invariance 
Principle [5]. Adaptive PID settings were also proposed for 
obtaining proper local gain settings based on plant 
identification and pole placement techniques [6].  

Population-based metaheuristics is one of the important 
branches of the metaheuristic methods to search solutions of 
difficult optimization problems. Even though metaheuristic 
methods have drawbacks such as sensitivity to parameters and 
lack of strong proof of convergence, they are still preferred for 
several reasons: They do not require special conditions for the 
proprieties of the objective function and constraints, they are 
suitable for both continuous and combinatorial problems, and 
they are suitable as well to multiobjective optimization 
applications. Population-based methods exhibit further 
advantages compared to the neighborhood metaheuristics. 
They are less sensitive to misbehaving paths of certain 
individual solutions, and they increase the probability of 
attaining the global optimum by employing information on the 
surface of an objective function [7]. 

Population-based algorithms are difficult to apply to 
real-time optimization of robotic control problems, because of 
the difficulty to keep the trajectory in tolerance for all tested 
population members. For a reinforcement learning application 
Lin restricted the population only to stable parameters using a 
Lyapunov function [8]. This study proposes a simpler solution 
by real-time monitoring the tracking error. The stability 
problem is tackled by switching the unstable control parameters 
to a stable parameter set if the continuously monitored error 
score exceeds a tolerable threshold. The proposed method is 
demonstrated on two population based search algorithms: the 
Differential Evolution and the Cross-Entropy methods.   
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Cross-Entropy (CE) Method is a statistical population based 
information theoretic method of inference about an unknown 
probability density from a prior estimate of the density and new 
expected values [9], [10]. CE Method was further developed as 
a combinatorial optimization tool to obtain the optimal 
solutions for rare-event problems and optimization of the scalar 
functions [10], [11]. It is one of the optimization methods with 
the proven convergence to the optimal parameters similar to 
Monte-Carlo and the Simulated  Annealing methods. 

Evolutionary Algorithms (EAs) are nature inspired 
population based optimization methods for both continuous 
variable, and combinatorial problems. The Differential 
Evolution is a population based search method developed from 
Genetic Algorithms (GAs), which provide evolution of the best 
solution by survival of the fittest. GAs are search algorithms 
inspired of natural selection and genetics to search better 
solutions in a solution space. A simple genetic algorithm is 
typically composed of three operators: reproduction, crossover 
and mutation [12]. The beginning of the Differential Evolution 
(DE) algorithm was Genetic Annealing developed by K. Price 
[13], [14].  Unlike to the GAs, DE employs only a simple and 
fast linear operator, differential mutation, which uses the 
differences between individuals instead of crossover and 
mutation operators [7], [13]. In continuous domain multimodal 
problems, DE finds the global best faster than GAs [7], [15]. 
This success resides in the manner of the trial individual 
creation.  

This article is organized as follows: Section II presents the 
kinematics, dynamic modeling and control of a robot 
manipulator. Section III and IV introduces the Cross-Entropy 
and the Differential Evolution methods for optimization of the 
controller gains. Section V describes the proposed real-time 
population based optimization algorithm with its goal. Section 
VI and VII contains the experimental details and the results of 
the proposed parameter switching on a two-link planar 
manipulator, and on an inverted pendulum system. Section VIII 
concludes the article. 

II. KINEMATICS DYNAMIC AND CONTROL 
The forward kinematics relation maps the joint space 

position q  to the end-effector pose  

 p = f0(q)   (1) 
using homogenous link-frame coordinate transformation 
matrices. Denavit-Hartenberg (D-H) convention provides the 
D-H transformation matrix Ak that maps a coordinate at kth 
frame to the (k−1)st frame [15]. In D-H convention, the frame 
axis k−1z  is assigned along the axis of rotation of the kth link. If 
the joint is translational, k−1z is assigned along the movement 
axis of the kth link. θk is the joint rotation from k−1x to kx. The 
common normal from k−1z to kz is called ak. The distance from 
ak−1 to ak is denoted by dk. The twist angle from k−1z to kz is 
called αk. The transformation function from kth to (k−1)st 
frame is obtained by a chain of rotations and translations 
 k−1Ak=Rot(zk−1, θk)Transn−1(ak, 0, dk) Rot(xk−1, αk) 
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The Lagrangian provides a systematic method to obtain the 
equation of motion of a multi-degree-of-freedom open chain 
mechanism. The Lagrangian function L is defined by  
L = K − P,  where K is the kinetic energy, and P is the potential 
energy of the analyzed system. The partial derivatives of L 
provide a simple means of calculation for the joint force and 
torques. The derivatives of the D-H transformation matrices  Ai 
can be  expressed by 
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translational joints. This property provides a convenient form 
for the derivatives of the link transformation matrices 0Ti with 
respect to the jth generalized-joint displacement variables qj and  
qk [15]. 
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 Linear or revolute, the kinetic energy of a mass dmi located 
at the position irdm  and moving with the i-th coordinate frame 
is 
 d ki = 12 d mi 0viT

  0vi ,  (6)  
where 0vi denotes the velocity of mass mi. The total kinetic 
energy of the link requires the integration of d ki over the 
complete mass of the i-th link.  

 ki = ∫mi dki = 12Trace[(Σi
p=1 Σi

 r=1Uip Jpi  UirT q̇r q̇p )],  (7) 
where Jpi=∫mi 

irdm
 irdmTdmi  is the pseudo-inertia matrix of the 

thi  link.  The potential energy of ith link due to the 
gravitational field is expressed using the mass mi, the center of 
mass icm and the gravitational acceleration vector ga . 
 

 pi = − mi gaT  0Ti  icm .  (8) 
 
Finally, the Lagrangian of the complete system is obtained 
 L = K−P  
  = 12 Σn

i=1 Σi
k=1 Σi

r=1 Trace(Uik Jpi UirT ) q̇r q̇p  

  − Σn
 i=1 mi gaT  0Ti icm  (9) 

and its derivatives give the generalized joint-force at the joint-j.  
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τj = Σn
 i=j Σn

 k=1 Trace (Uik Jpi  UijT ) q̇̇ k 
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  + Σn
 k=1 Σn

 r=1 Trace (Uikr Jpi  UijT ) q ˙k q ˙r 

 − Σn
 i=j mi ga

T Uij 
icm  . (11) 

Further, (11) can be organized to Uicker-Kahn form. 

 τi =Σn
 i=j Dij q̇̇ j +Σn

 i=j Σn
 k=1 Cijk q ˙j q ˙k + gi.  (12) 

where  
 Dij =Σn

 i=j Trace(Uik Jpi  UijT) ;  
 Cijk =Σn

 r=1Trace(Uikr Jpi  UijT),  
and  
 gj = − Σn

 i=j mi gaT Uij icm ,  (13) 
are the inertial, coriolis, and gravitational terms of the equation 
of motion. The equation is also written in a matrix form [5] 

τ  = D(q) q̇̇  + C(q, q̇ ) q̇ + g(q)  .  (14) 
 

A constant field dc-motor converts the total control action  
by an almost linear relation of rotor current irotor to the joint 
torque τ = ki · irotor . Accordingly, without loss of generality, 
the torque coefficient ki is assumed ki=1 so that the joint 
torques are determined directly by the control action [1].  

A fully actuated rigid manipulator has an independent 
control input for each degree-of-freedom, which simplifies its 
decentralized control. Robots with flexible links or joints have 
control problems and which may require singular perturbation 
and two-time-scale control techniques [5], [6]. 

The equation of motion is highly nonlinear to apply 
independent PID control directly to each joint motion. The 
usual method is to apply the expected joint torques for the 
desired trajectory by a feedforward control, and correct any 
deviation from the trajectory by the feedback loop of the PID 
control. The feedforward control action τc is obtained by the 
sum of the anticipated gravitational and inertial terms, so that 
all coriolis forces remains as a disturbance to the feedback loop 

τc =Dc(qd) q̇̇ d +gc(qd) ,  (15) 
where Dc and gc are the inertial coefficients and gravitational 
torques of the anticipated equation of motion; qd is the desired 
trajectory in joint space. The discrepancy of the anticipated 
equation of motion from the actual dynamics of the manipulator 
is expected to contribute to the disturbance torques, and thus a 
feedback control loop is inevitable for the stability of the 
control action. 

The difference of the desired position qd(t) and the measured 
position qf (t) is called the displacement error e(t) of the control 
system. A proportional gain provides main correction of the 
error, an integral gain provides correction of the offset, and a 
derivative gain provides faster response of the controlled 
system.  

0
( ) ( ) ( )

t

f P I Dt
K e t K e t dt K e tτ = + +∫  (16)  

Assuming that the anticipated feedforward control law can 
be predicted by the mechanical properties of the manipulator, 
the PID parameters remain to be determined for the optimum 
tracking of the specified joint space trajectory. The following 
two sections contain the cross entropy and differential 
evolution methods, which are employed to find the optimum 

PID gains. In the optimization of the PID gains, The closed 
loop control system is considered as a stochastic system with 
the controller parameters. 

 

 
Fig. 1. Position Control System. 

III. CROSS ENTROPY METHOD 
Cross Entropy method is a population based optimization 

algorithm that utilize the scores of the trial runs optimal in the 
information rhetoric meaning.  

Let X be the set of real valued states, and let the scores S be a 
real function on X. CE-method targets to find the minimum of S 
over X, and the corresponding states x*∈X satisfying the 
minimum  

 * *( ) min ( )x XS x S xγ ∈= = ,   (17) 
by employing importance sampling and minimizing the cross 
entropy between the samples of a family of succeeding 
probability mass function f(-, vk).  A naive random search can 
find an expected value for x* and determine γ* with probability 
1, if some of the scores S(x) for the random states x can satisfy 
the minimum. However, methods like Crude Monte-Carlo 
requires considerable computational effort because it uses 
homogeneously distributed random states in searching x*. CE 
method provides a methodology for creating a sequence of 
vectors x0, x1 ... and levels γ0, γ1, ... such that γ0, γ1, ... 
converges to γ* and x0, x1 , ... converges to x*.  

Define a collection of functions { H( - ; γ ) } on Χ, via  

( ){ ( ) }( ; ) iS xH x I γγ >= = 
1,  if  ( )
0,  if ( )

S x
S x

γ
γ

≤⎧
⎨ >⎩

 . (18) 

for each threshold γ ∈ R, and x ∈ X. Let f(-; v) be a family of 
probability mass function (pmf) on X, parameterized by a real 
valued vector v ∈ R. Consider the probability measure under 
which the state x satisfies the threshold γ 

lv (γ)  = Pv ( S(X) ≥ γ )  

 = Σx H( x; γ ) f(-; v) = Ev H( X; γ ) , (19) 
where Ev denotes the corresponding expectation operator. It 
converts the optimization problem to an associated stochastic 
rare event problem. Using the Importance Sampling (IS) 
simulation, the unbiased estimator of  l  with the random sets of 
states x(1), ...  taken from different independent pmf f(x, v) and 
g(x)  is 

l̂  =   1N ΣN 
i=1  I{S(x(i) ) >γ  } W (x(i))  , (20) 

where W(x) = f(x, v)/g(x) is the likelihood ratio. Searching the 
optimal importance sampling density g*(x) is problematic, 
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since determination of g*(x) requires l  to be known. Instead, 
the optimum tilting parameter v* of a pmf  f(x, v) reduces the 
problem to scalar case. 

The tilting parameter v can be estimated by minimizing 
Kullback-Leibler “distance” (also called cross entropy) 
between the two densities f(x) and g(x)  

CE(f, g)= ( )( ) ln
( )

f xf x dx
g x∫ .  (21) 

After reducing the problem to tilt parameter v, the cross- 
entropy  between  f (x, v)  and  the optimal distribution f(x, v) is 
described by 

CE(v,v*) := { } { }
*

( ) ( ) ( , )
ln

( , )
S x S xI I f x

E
c c f x

γ γ υ

υ
≥ ≥

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, (18) 

where c = { }( ) ( )S xI f x dxγ≥∫ . The optimal solution *υ  is 

obtained by solving *υ   from   minv  CEN(υ ) , where  

CEN(v) =Ev1= 1
N ΣN 

i=1  I{S(x(i) ) > γ  } W (x(i),υ , *υ ) . (22) 

For example, if all γ is equal to γ*, in that case lv (γ)=f(x*; γ), 
which typically would be a very small number. lv (γ* ) is 
estimated by Importance Sampling with  vk=υ   

*υ  = argmax 
v ¯

ΣN
i=1  Ev H(x ; γ ) ln f (x ; υ ) , (23) 

and using x(i), which are generated from pmf  f (x ; υ  ) by 
 argmax 

v ¯
ΣN

 i=1  H(x(i) ; γ ) ln f (x(i) ; υ ) . (24) 

However, the estimator of *υ  is only valid when H(x(i) ; γ) =1 
for enough samples. 

The CE-algorithm consist of the two phases: 1) Generate 
random samples using f(-;vk), and calculate the estimate of the 
objective function; 2)  Update f(-;vk) based on the data 
collected in the first phase via the CE method. The main CE 
Algorithm is  

1) Initialize k=0, and choose initial parameter vector v0=v. 
2) Generate a sample of states x(1), ..., x(M) according to the 

pmf  f(-;vk) . 
3)  Calculate the scores S( x(i) ) for all i, and order them from 

the biggest to the smallest: s1, ≥ ... ≥ sN .  Define γk = s[ρN] , 
where [ρN] is the integer part of ρN,  so that γk > γ, set γk = γ, 
this yields a reliable estimate by ensuring the target event is 
temporarily made less rare for the next step if the target is not 
reached by at least a fraction of the samples. 

4) For j=1, ..., 5, let  

vk+1,j=
( )

( )

( )( )
1 { ( ) }

( )
1 { ( ) }

( ; , )

( ; , )

i
k

i
k

M ii
k ji S x

M i
ki S x

I W x x

I W x

γ

γ

υ υ

υ υ
= >

= >

∑
∑

. (25) 

5) Increment k and repeat steps 2, to 5, until the parameter 
vector has converged. Let *υ denote the final parameter vector. 

6) Generate a sample x(1), ..., x(N) according to the pmf   
f(-; vk) and estimate l  via the IS estimate 

 l̂  =   1N ΣN 
i=1 H (x(i)) W (x(i) ; v , *υ ) .  (26) 

Step (6) is not necessary in optimization of the scalar cost 

functions, since the goal is to minimize the cost rather than 
calculation of the probability of a rare event. 

IV. DIFFERENTIAL EVOLUTIONARY OPTIMIZATION  
 For a given problem described by a parameter space X and an 
objective function S(x) defined on this space, an initial 
population of randomly selected individuals { x(i) | i=1,...,M } is 
constructed and each individual is evaluated according to the 
objective function. The objective function S(x(i)) value for an 
individual x(i) is referred to its fitness and it is a relative 
measure of functional performance specifying how well the 
individual satisfies the optimization criteria. In Genetic 
Algorithms, this population is evolved over a number of 
generations, by a process based on three genetic operators: 
reproduction, crossover, and mutation. Reproduction is a 
process in which individuals are selected to a mating pool 
depending on their fitness. A higher probability of generating 
offspring in the next generation is assured by assigning a higher 
mating probability to that  individual with a higher fitness 
value. This imitates the natural selection, in which the fittest 
tend to survive and reproduce, thus propagate their genetic 
material to future generations.    

Differential evolution uses a special kind of mutation as the 
main search mechanism where a greedy selection approach is 
employed to direct the search toward the promising regions of 
the search space. The fundamental difference between GAs and 
DE is that GAs rely on crossover, while DE uses mutations of 
the differences of the parameter vectors as the primary search 
mechanism.  

 

 
Fig. 3. The Differential Evolution template  

 

DE search strategies are classified in four groups [7]. This 
application used the rand3 search strategy, where the new 
individuals are generated from the combination of mutually 
distinct three random individuals within the population.  
Differential mutation expands the search space by adding the 
weighted difference of two randomly chosen vectors to a third 
one. That is, in k th generation of an M-vector population,  for a 
given solution x(i, k) ( i =1, … , M , and k=1, … , Gmax), three 
vectors x(r1, k), x(r2, k) ,  x(r3, k) are uniformly randomly selected 
from the population such that the indices i,  r1,  r2 and r3 are 
mutually distinct. A donor vector is formed adding the 
weighted difference F × ( x(r2, k) − x(r3, k) ) to x(r1, k)  

( ) ( ) ( ) ( ), 1 1, 2, 3,  ( )i k r k r k r kv x F x x+ = + ⋅ −  (27) 
where F∈(0,2] is called the mutation constant. The number of 
donor vectors generated this way is equal to the population size 
[13]. Other variations of the mutation are also proposed in 
literature [21]. Mutation is followed by a non-uniform 
recombination procedure in which a trial vector z(i,k+1) is 
generated as 

1. Generate initial population 
2. Evaluate population 
3. Repeat 

Select Parents for Reproduction 
Differential Mutation 
Evaluate new population 
Substitute old population 

Until (Termination Conditions are satisfied).
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where CR is the crossover rate; rand generates a random 
number in [0,1); irand(p,q) generates an integer number in the 
interval,  
[p, q]; and zj  ( j∈{1, ... , N}) denotes the jth entry of the trial 
parameter vector z. Finally, the greedy selection procedure 
determines the  ith offspring  as 

 
( , 1) ( , 1) ( , )
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otherwise

i k i k i k
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i k

z S x S x
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x

+ +
+
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⎪⎩

. (29) 

This strategy allows both generation of trial vectors  z(i,k+1) 
and update of x(i, k+1) in the same pass of the loop without a loss 
of the major notion of Differential Evolution [7].  

V. OPTIMIZATION CRITERIA AND  TEST METHOD 
The optimization of motion control parameters of a 

manipulator using reinforcement, genetic, or other population 
methods comes across important problems in testing the 
generated parameter sets. These methods are mostly applied on 
simulations, because the randomly generated unrestricted 
population may contain unstable controller settings, which may 
cause failure, and even breakdown of the robot system. The 
problem can be solved by testing stability properties of the 
parameters before applying them to the dynamic control 
system, restricting the search space to a narrow region that 
guarantees the stability of the system [8].  

This paper proposes a simpler, and a more flexible method 
for the application of population based optimization methods. 
The proposed method assumes that 1) a real-time tracking error 
measure J(t, p, pd(t)) and a cost threshold J* of the system is 
available, 2) a stable control parameter set xs exists, that 
guarantees the stability along the trajectory for a deviation in 
the tolerable boundaries of the threshold J*. The population 
based algorithm generates a population of controller parameter 
sets, {x(1,k), ..., x(M,k)}. The evaluation module sets the control 
parameters of the PID controllers KPID = x(i,k); i=1,...,M, and 
evaluates the real time cost of x(i,k) along a test period. If the 
cost function J(t, p(t, x(i,k)), pd(t)) remains less than J* along 
the complete test period, a cost score s(i) is calculated from the 
cost criteria S(x(i), pd), which may include any absolute, 
derivative, integral and quadratic terms of tracking error. 
Whenever the real-time cost function J(t) exceeds a 
prespecified critical value J*,  KPID is switched to the stable 
control parameter set, KPID  = xs, to reduce the tracking error, 
and prepare the system for the next test period. In this case, a 
high cost score is returned for that tested unsuccessful 
parameter set. The following two examples of real-time search 
algorithms demonstrate the proposed method on CE and DE 
search algorithms. 

 
Real-time CE Algorithm to search controller parameters: 
1)  At initialization, specify a stable controller parameter set 

xs, a real-time cost function J(t, p(t,x), pd(t) ), a cost threshold 

J*, and a cost score function S( x, pd(t)), where  pd is the 
periodic desired trajectory, and p(t,x) is the actual trajectory 
obtained with the control parameter vector x. Initialize the 
generation count k=0, and the convergence count j=1, and 
choose initial vk = xs. Specify initial γk  and elite ratio ρ ∈(0, 1) 
so that “the ratio of stable parameter vectors to all parameter 
vectors” is higher than ρ. Τhis ensures reliable estimates of the 
target. Select the coefficients 0 <α ≤ 1 and 0 < β ≤  1   to update 
vk+1  and γk+1  smoothly. Pick a suitable population size M, and 
termination condition on number of generations Gmax. 
  2)  Generate a population of states {x(1), ..., x(M)} according 
to the pmf  f(γk;vk) . For each x(i),  at the beginning of a 
trajectory period pd (.) switch the controller settings to x(i) , and 
during the period, evaluate J(t, p(t, x(i)), pd). Whenever J(t) 
exceeds J* switch the controller settings to xs , so that system 
stays stable, and the trajectory deviation remains within 
tolerable limits.  At the end of the trajectory period, calculate 
the cost score of the sample, s(i)= S(x(i), pd).  
  3) Order the scores from the biggest to the smallest, i.e.,   
s1, ≥ ... ≥ sN . Use γk = s[ρN] , where [ρN] is the integer part of 
ρN, to select the elite subset of population. Estimate v’k+1 , and 
γ’k+1 from the mean and standard deviation of the parameters in 
the elite subset. Update   

vk+1 =  α v’k+1 + (1–α)vk,        
βm = β - β (1−  1 k ) qs ,  and  
γk+1 =  βm  γ'k+1,j + (1− β m) γk .  (30) 

If vk+1 converges to vk , increment j=j+1; else reset  j=0. 
  4) Repeat the steps (2) and (3) until j=5, (i.e., the last 5 
iterations converge to the target x*) or the generation count k 
exceeds Gmax. At the end of each looping, update the default 
parameter set xs by the lowest scoring x(i,k) of that generation. 

 
Real-time DE Algorithm to search controller parameters: 

  1) Specify a stable controller parameter set xs, a real-time 
cost function J(t, p(t,x), pd(t) ), a cost threshold J*, and a cost 
score function S(x, pd(t)). Initialize the generation count k=0, 
choose a population size M, maximum number of generations 
Gmax, and differentiation weight F. Generate an initial 
population {x(1,0), ..., x(M,0)} with a mutation probability MP. 
Evaluate the scores s(i,0) = S(x(i,0), pd) for the desired path pd. 

2)  For each individual x(i,k) of the k-th generation, form a 
test individual z(i,k+1) according to (27) and  (28).  At the start 
of the period of pd switch the controller settings to z(i,k+1). 
During this period evaluate J(t, p(t, z(i,k+1)), pd). Any time J(t) 
exceeds J* switch the PID settings to xs to stabilize the system. 
Calculate the cost score of the test sample, s’(i, k+1) = S(z(i, k+1), 
pd).  If  s’(i, k+1) < s(i, k) select z(i, k+1)  for x(i, k+1) as given in 
(29).  
 3) Repeat step (2) until generation count k exceeds Gmax. At 
each looping, update the default parameter set xs by the lowest 
scoring x(i,k) of that generation. 
 

The population based search methods provide a higher 
degree of flexibility in specifying the cost function compared to 
many other controller parameter optimization techniques which 
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are based on plant identification or state estimation techniques. 
For example, in the following simple demonstration, the 
cartesian absolute path deviation ( e(t)= |p(t)−pd(.)| )  is used 
instead of using the conventional trajectory tracking error  
(e(t)= q(t)−qd(t) ) in joint space.  

VI. SIMPLE 2-LINK (2R) DEMONSTRATION 
Consider the two link manipulator with two revolute joints 

shown in Fig. 1. The length of the links L1 and L2 are 
respectively b1, and b2. The masses m1 and m2 are 
homogenously distributed along the links L1 and L2. 
Coordinate frames 0T, 1T and 2T are assigned for the base, L1, 
and L2 by applying D-H convention as shown in Fig-1. The 
symbolic equation of motion for this planar manipulator is 
derived in symbolic toolbox of MATLAB using Lagrangian 
formulation 

τ1 = (1
3 m1b12 + 13m2b12 +m2 b1 b2 C2 +m2b12) q..1  

  +( 1
3 m1b12−m1b1b2− 12 m1b12 C2+m1b22 +m1b1b2 C2) q..2 

 − m2b1b2 S2 q.1q.2 −  12 m2b1b2 S2 q.2 2  
  + 12 ga (b1m1C1 + b2m2C12 +2 b1m2C1) , (24) 
τ2 = +(1

3m1b12−m1b1b2 −  12 m1b12C2+m1b22+m1b1b2C2)q..1 
 + 13 m2b22 q..2 + 12 m2 b1b2 S2 q.1 2 + 12 ga m2 b2C12 ,  (25) 
 

where Ci, and Si, denote cos(qi) and sin(qi);  Cij, and Sij, denote  
cos(qi + qj) and sin(qi + qj).  In the simulation, the equation of 
motion is integrated for m1 = 5 kg, m2 = 3 kg, b1 = 0.5 m and  
b2 = 0.4 m, reducing the simulation model to 

τ s,1 = (199
 150 + 35 C2) q..1 + (13

60 + 38 C2) q..2  

  − 35 S2 q
.
1q.2−  310 S2 q.2 2 + 12 ga ( 11

2 C1 +  
6
5 C12) 

τ s,2 = (13
60 + 38 C2) q..1 +  _4

25 q
..

2 +  310 S2 q.2 2 + 35 ga C12. (26) 
 

  
Fig. 2. Parameters of the simulated manipulator with 2-revolute joints. 

 
 

All joint and actuator friction forces are assumed to be zero 
to prevent their stabilizing effect on the closed loop stability of 
the system. The feedforward control force τc is calculated only 
from the inertial and gravitational terms of a similar model  
(τc= Dc(qd) q̇˙d +gc(qd) )  but with a higher load mass 
m2=3.5kg.  
 τ c,1 (q) = (887

 600 +  710C2) q..1+(13
60 + 38 C2) q..2d +1

2 ga (6C1+ 
7
5C12) 

 

 τ c,2 (q) = (13
60 + 38 C2) q..1 +  710 ga C12 . (27) 

 

The test path is selected on a line segment in cartesian 
workspace starting from the point (0x, 0y) = (0.2, 0) to the point 
(0.7, 0.5) through the via-point (0.4, 0.2).  The test trajectory is 
calculated for ∆t = 1 ms intervals using parabolic blend with 
linear segments trajectory generation method with via points 
[11] under the constraints: maximum linear velocity= 1m/s, and 
linear acceleration 1 m/s2.  The points of the desired trajectory 
are shown in Fig. 2 for every 50 ms periods. 
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  (a)           (b) (c) 
 

Fig. 3. Plots of the desired trajectory 
(a) x vs. y (in meters), (b) q1 vs. q2 (in radians),  
(c) the movement of the links in x-y plane. 

 
 The real-time cost function was chosen to be 
  J(t, p(t), pd(t)) = ||p(t), pd(t)||  
where p(t) and pd(t) are the actual and desired end-point 
trajectory in the cartesian space, and ||a, b|| denotes the 
cartesian distance between the points a and b.   
 The goal of the algorithm was to search smallest scoring PID 
parameter set KPID = (K1P, K1I, K1D  K2P, K2I, K2D ) starting with 
a default stable parameter set  

 xs = (5000, 200, 80, 5000, 200, 80) , 
without an intolerable tracking error cost.  

The cost threshold was set to J*= 0.002 m, and the cost score 
function S( w, pd(.)) was evaluated by the maximum of J(t) 
over one trajectory period. The population size was taken N= 
60; elite population ratio was taken ρ=0.05; smooth update 
coefficients were α = 0.9, β = 0.9, and qs=5. In generating 
populations, the initial standard deviation of the gaussian pdf  
was set to γ0 = 0.5 xs.  The convergence plot of cartesian 
tracking displacement error for Gmax=50 generations is shown 
in Fig. 4.  
 Fig.5 demonstrates typical tracking cases observed during 
the  optimization of KPID. The tracking error of the manipulator 
for with KPID=xs is seen in Fig. 5.a. The effect of switching 
KPID from an unstable setting  x(12,7) = ( 3132, 268, 50, 2121, 
221, 98) to xs=(5000, 200, 80, 5000, 200, 80) is seen in Fig. 5.b. 
The trajectory plots in Fig.5.c was obtained with the best scored 
parameter vector of 50 generations, x(4,37)= (13032, 452, 136, 
5391, 46, 161).  

 
Fig. 4. Convergence plot of the best-score for two-link manipulator. 
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Fig. 5 a. Tracking performance of manipulator with  

initial stable control parameter set ws. 
 

`  
Fig. 5 b. An unstable parameter set causes excessive cartesian error  

at t=0.42, and control is switched back to xs. 
 

 
Fig. 5 c. The best parameter set reduced the cartesian error to 50%,  

but bounded oscillatory action of torques were observed  
because of the high proportional gain. 

The CE-optimization provided almost 50% reduction of 
cartesian displacement error. At the wide open configuration of 
the manipulator the optimized controller settings produce an 
oscillatory action of actuator torques. But the oscillatory 
torques has a very minor effect on the tracking error. This 
oscillatory behavior may be prevented by assigning an 
additional cost on the derivative of the controller output. 

VII. PID SETTINGS OF AN INVERTED PENDULUM 
The inverted pendulum is a well analyzed classical control 

problem [1], [18]. The objective is to track a desired cart 
trajectory with a small deviation ex by applying an external 
force f on the cart along x-axis while keeping the pendulum 
stable in vertical position. The mechanical parameters of the 
system are introduced in Fig.6. 

 
Fig. 6. Inverted Pendulum System. 

 

The equation of motion of the cart and pole inverted 
pendulum system is expressed by 

 
2

c p p q

p q p

m m m bC x
qm bC J m b

+⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
   

  +
0
c p q

p

C m b q S x
C q

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+
0

0p a q

f
m b g S
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, (31)  

where Cq and Sq are cos(q) and sin(q), ga is the acceleration 
due to gravity, mc is the mass of cart, mp is the mass of the pole, 
b is the half length of the pole, Cc is the friction coefficient of 
cart, Cp is the friction of the pole,  J  is the mass moment inertial 
of the pole, and f  is the force applied to the cart [18].  The pole 
mass distributed homogeneously along the pole is J= 1/3 mpb2.  

 
Fig. 7. Block diagram of inverted pendulum system  

for parameter optimization  
 

Two PID controllers were cascaded to reduce the tracking 
errors ex = x – xd, and eq = q − qd, asymptotically to zero as 
shown in Fig 7. The goal of the exercise is to search the lowest 
costing PID parameters KPID = [KxP,  KxI,  KxD,  KqP,  KqI,  KqD]. 
For this cascaded PID control scheme, an oscillatory behavior 
was expected since no predictive or inverse dynamic 
feedforward action employed.   

In the tests, a cart and pole system is simulated with the 
half-length of the pole b was taken 0.5m, the cart mass mc=1 
kg, and pole mass mp =1 kg. The pole inertia Jp =16/3 
corresponds to the homogenously distributed mass along the 
length of the pole. The desired cart trajectory was specified by a 
square function switching between –0.05m and 0.05m at every 
25s, completing its period in 50s. The friction coefficients on 
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the cart Cc, and on the pole Cp were taken 0.01. With these 
coefficients the free motion amplitude of the pole diminish 
almost 50 percent in 50s period. The gravitational acceleration 
was taken ga= 9.8 m/s2. Equation of motion was integrated over 
∆t=5ms time steps  using trapezoidal method. The initial 
parameter set  

xs  = [KxP,  KxI,  KxD,  KqP,  KqI,  KqD]  
 = [0.05 0.001 0.01 300  0.001 50 ]  

managed stabilization of the system marginally with large 
oscillatory movements. The default parameter set was updated 
after every generation assigning the best scoring x(i,k) to the 
default stable parameter set xs . 

The cost function was specified using the quadratic 
displacement errors ex2 = (x−xd )2, eq2=(q-qd)2, and their 
integrals: 
  J(t, p(t, x(i)), pd) 
 =10 ex2 + 8 eq2 +  ∫ex2dt +0.6 ∫eq2dt .  (32) 
In (32), the proportional gains on quadratic errors provide 
real-time cost action, while the integrals of quadratic errors 
accumulating the error for an end-score at the end of the cycle. 
At every generation k, for each member x(i, k) of the kth 
population, the PID controller settings were set to the control 
parameters x(i, k) at the beginning of the desired trajectory 
cycle, for 50s, and corresponding score s(i) was evaluated using 
S(x(i)) = J(tf, p(tf, x(i)), pd) (32) at the end of the trajectory 
cycle. Control parameters were switched to the stable 
parameter set xs at the threshold of  J (t, p(t, x), pd) >  J* = 0.1 .  
 
a) Adaptation by Real-time Cross Entropy Search Method 
 The initial standard deviation of the gaussian pdf of the CE 
search was selected γk = 0.5 xs; maximum generations and 
population size were selected Gmax=50 and M = 30; elite 
population ratio was ρ = 0.1, smooth update coefficients were 
selected to be α =  0.9,  β = 0.9 , and  qs = 5. 

Fig.8 shows the convergence-rate of real-time CE search for 
three identical cases, with exactly the same initial parameter 
sets. The best scored parameter set of all runs reduced the 
tracking error score more than 50 percent.  

The plot of x and q for the initial stable parameter set is 
shown in Fig. 9.a. A typical control parameter switching due to 
unstable character of the tested parameter set x(i) is given in 
Fig. 9.b, and the initial and final performance of the cart and 
pole system is compared in Fig. 9.c.  

 

 
Fig. 8 Convergence-rate plots for three CE search runs  

with exactly the same initial parameters.   
 
 

 
 

Fig. 9.a  The initial stable parameter set xs is oscillatory,  
but it satisfies the tracking error tolerance J*.  

 

 
 

Fig. 9.b  During the test of an unstable controller parameter set  
PID parameters were switched to xs  at t =2.8s. 

 

 
 

Fig 9.c Trajectory with the best scoring PID setting after 50 generations. 
On the first graph the trajectory (a) belongs to the initial PID settings xs,  

inserted to the graph to compare initial and best-scored cases.  
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b) Adaptation by Real-Time Differential Evolution Method 
 Similar to the CE search cases, the population size and the 
maximum number of generations for the DE search are set to 
M=30 and Gmax=50. The differentiation coefficient, the 
crossover rate, and the mutation probability are set to F= 0.9, 
CR=0.3 and pm=0.25. The initial stable PID parameter vector xs 
of real-time DE search, the real-time cost function, the score 
function, and the real time cost threshold value are all chosen 
the same as used in CE case. 

Fig.10 shows the convergence-rate of real-time DE search 
for five identical cases, with exactly the same initial parameter 
sets. Each best scored parameter produced by these runs 
reduced the tracking error score almost 65 percent. As 
expected, the initial parameter set KPID=xs gives a very similar 
trajectory with the CE case shown in Fig. 9.a. The initial and 
final performance of the cart and pole system is compared in 
Fig. 11.  

 
Fig. 10 Convergence-rate plots for five DE search runs  

with exactly the same initial parameters.   
 

 
Fig. 11 Trajectory plots comparing the tracking error of (a) initial  

and the best scored PID parameters obtained by the real-time DE search. 

VIII. CONCLUSION 
This study proposes a real time evolutionary search method that 
provides stable operation within a specified cost threshold by 
switching the unstable control parameters with a prespecified 
stable parameter set whenever a tracking error based cost 
function exceeds a threshold. The proposed method has been 
tested successfully on an open chain manipulator dynamic 
control, and on the control of an inverted pendulum, where 
without a feedforward or predictive control the system is stable 
only in a very narrow band of PID settings. 

During the tests none of these two systems has been fallen 
into non controllable states. In CE method, even though some 
of the oscillatory controller settings collected better scores than 
similar but less oscillatory settings, the mean of the elites 
always remained preferably stable. In both 2R and inverted 
pendulum cases, over 50% reduction of the specified cost 
function is achieved by population-based real-time search 
method during the progress of its repetitive operation.  
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