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Subcellular localization performs an important role in genome analysis as a key functional 
characteristic of proteins. Therefore, an automatic, reliable and efficient prediction system for protein 
subcellular localization is needed for large-scale genome analysis. This paper describes a new 
residue-couple model using a support vector machine to predict the subcellular localization of 
proteins. This new approach provides better predictions than existing methods. The total prediction 
accuracies on Reinhardt and Hubbard’s dataset reach 92.0% for prokaryotic protein sequences and 
86.9% for eukaryotic protein sequences with 5-fold cross validation. For a new dataset with 8304 
proteins located in 8 subcellular locations, the total accuracy achieves 88.9%. The model shows 
robust against N-terminal errors in the sequences. A web server is developed based on the method 
which was used to predict some new proteins. 

1 Introduction 

High throughput genome sequencing projects are producing an enormous amount of raw 
sequence data. All this raw sequence data begs for methods that are able to catalog and 
synthesize the information into biological knowledge. Genome function annotation 
including the assignment of a function for a potential gene in the raw sequence is now 
the hot topic in molecular biology. Subcellular localization is a key functional 
characteristic of potential gene products such as proteins. However, experimental 
subcelluar localization analysis is time-consuming and can not be performed on genome 
scale proteins. With the rapidly increasing number of sequences in databases, an 
accurate, reliable and efficient system is needed to automate the prediction of protein 
subcellular locations. 
 
Three primary types of methods have been used to predict the protein subcellular 
location in the previous published papers. One is based on the existence of sorting signals 
in N-terminal sequences (Nakai, 2000) including signal peptides, mitochondrial targeting 
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peptides and chloroplast transit peptides (Nielsen et al, 1997, 1999). Emanuelsson et al. 
proposed an integrated prediction system using an artificial neural network based on 
individual sorting signal predictions. This system could be use to find cleavage sites in 
sorting signals and simulate the real sorting process to a certain extent. Nevertheless, the 
prediction accuracy of the methods based on sorting signals is highly dependent on the 
quality of the protein N-terminal sequence assignment. Unfortunately, it is usually 
unreliable to annotate the N-terminal using known gene identification methods 
(Frishman, 1999). As a result, the prediction accuracy and reliability decrease when 
signals are missing or are only partially included. 
 
The second type of methods is mainly based on the amino acid composition of protein 
sequences in different subcellular locations. This approach was first suggested by 
Nakashima & Nishikwa. They found that the intracellular and the extracellular proteins 
could be accurately discriminated only by amino acid composition. Different statistical 
methods and machine learning methods have been used to improve prediction accuracy. 
Cedano et al. (1997) adopted a statistical method with Mahalanobis distance for 
prediction. Reinhardt and Hubbard (1998) predicted subcellular locations with neural 
networks and reached accuracy levels of 66% for eukaryotic sequences and 81% for 
prokaryotic sequences. Chou et al. (1999) proposed a covariant discriminant algorithm 
using the same prokaryotic dataset as Reinhardt et al. and achieved a total accuracy of 
87%. Hua & Sun (2001) constructed a prediction system using a support vector machine 
(SVM), a new machine learning method based on the statistical learning theory, using the 
same prokaryotic and eukaryotic datasets. The prediction accuracy of Hua and Sun’s 
method was as high as 91.4% for prokaryotic proteins and 79.4% for eukaryotic proteins. 
However, in those models, the protein sequences were decomposed into animo acid 
compositions, which results in a great mount of information loss. To overcome this fault, 
several methods were introduced to combine the information of the amino acid 
composition with the information related to other biological data. Nakai et al. constructed 
an expert system based on sorting signals and amino acid composition (Nakai et al, 1992, 
1997). Chou (2001) and Feng and Zhang (2001) added the hydrophobicity index of 
residue pairs into the prediction system and used the Bayes Discriminate Function as a 
prediction tool. Yuan (1999) used the Markov model, which considered the information 
not only from amino acid composition but also from sequence-order.  
 
The third approach is to do a similarity search on the sequence, extract a text from 
homologs and use a classifier on the text features. Nair and Rost (2002) analyzed the 
relation between sequence similarity and identity in subcellular localization and construct 
the webserver LOCkey. 
 

This paper presents a novel approach combining the residue-couple model and the SVM 
for subcellular localization prediction. Residue-couples contain information of the amino 
acid composition and the order of the amino acids in the protein sequences. The 
information is important for subcellular localization. These residue-couples were used to 
train the SVM classifiers. By using a 5-fold cross validation test, the overall prediction 
accuracies reach 86.9% for eukaryotic proteins and 92.1% for prokaryotic proteins. The 
results show that the prediction accuracy is significantly improved with the novel 
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approach. To test the prediction on a real protein, a putative gene sequence was selected 
from GeneBank. The prediction results are consistent with experimental data. 

 

2  Method and database 

2.1  Database 

The database generated by Reinhardt and Hubbard (1998), a commonly used subcellular 
localization dataset, was first used to test our new model. The sequences in this database 
were extracted from SWISSPORT 33.0 and the subcellubar location of each protein has 
been annotated. The set of sequences was filtered, keeping only those which appeared to 
be complete and those which appeared to have reliable location annotations. 
Transmembrane proteins were excluded because some reliable prediction methods for 
these proteins are already in existence (Rost et al 1996). Plant sequences were also 
removed to ensure a sufficient difference of the composition. The finally filtered dataset 
included 997 prokaryotic proteins (688 cytoplasm, 107 extracellular and 202 periplasmic 
proteins) and 2427 eukaryotic proteins (684 cytoplasm, 325 extracellular, 321 
mitochondrial, and 1097 nuclear proteins). 
 
A new much larger dataset, SL8304, was also constructed to further test the algorithm. 
The new database included 8304 eukaryotic proteins in 8 subcellular locations with 1019 
chloroplast proteins, 2387 cytoskeleton proteins, 595 extracellular proteins, 211 Golgi 
proteins, 133 lysosomal proteins, 644 mitochondrial proteins, 3199 nuclear proteins and 
116 peroxisomal proteins. All the proteins in this dataset were selected from 
SWISSPORT release 41 using the same selection rule as Reinhardt and Hubbard’s 
dataset.  
 

2.2  Classifier and support vector machine 

The support vector machine (SVM) is a new machine learning method, which has been 
used for many kinds of pattern recognition problems. The principle of the SVM method 
is to transform the samples into a high dimension Hilbert space and seek a separating 
hyperplane in this space. The separating hyperplane, which is called the optimal 
separating hyperplane (OSH), is chosen in such a way as to maximize its distance from 
the closest training samples. As a supervised machine learning technology, SVM is well 
founded theoretically on Statistical Learning Theory. The SVM usually outperforms 
other traditional machine learning technologies, including the neural network and the k-
nearest neighbor classifier. In recent years, SVM have been also used in bioinformatics. 
Hua & Sun (2001) first applied SVM to predict protein secondary structure and protein 
subcellular localization. More detailed descriptions of the SVM method can be found in 
Vapnik’s publications (Vapnik, 1995, 1998). 
 
There are several parameters in the SVM, including the kernel function and the 
regularization parameter C. The inner product in the feature space is called a kernel 
function. The present study adopted the widely used radial basis function (RBF): 
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The basic SVM algorithm is designed for binary classification problems only. 
Nevertheless, there are several methods to extend the SVM for classifying multi-class 
proteins. This paper used the “one-against-one” strategy. For a k-classification problem, 
the “one-against-one” strategy constructs k*(k-1) classifiers with each one trained with 
the data from two different classes. The final decision is based on a voting strategy, i.e., 
the test sample is classified into the class chosen by the most binary classifiers. The 
software toolbox used to implement the SVM in this paper was LIBSVM by Chih-Chung 
Chang and Chih-Jen Lin. The software toolbox can be downloaded from: 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 

 

2.3  Residue-Couple model 

The traditional subcellular location prediction model is primarily based on the amino acid 
composition model. However the amino acid composition model alone ignores a certain 
amount of information of the protein sequence. Unfortunately, the information about the 
sequence order effect can not be easily incorporated into a pattern recognition model for 
prediction because of the huge number of possible sequence order patterns (Chou, 2001). 
However, inspired by Chou’s quasi-sequence-order model and Yuan’s Markov chain 
model, we developed a new model utilizing the sequence order effect indirectly.  
 
The model denotes a protein sequence as a series of letters:  

         ……  7654321 RRRRRRR LR
where  represents the amino acid in location llR ),...,2,1( Ll = . The “residue-couple” 
is defined as follows: 
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where =1 if the amino acid in location n is i and the one in location n+k 

is j; otherwise H =0 (Figure 1). The values of i and j range from 1 to 20, 

representing the 20 different amino acids (briefly denoted as A, C, D, E, F, G, H, I, J, K, 
L, M, N, P, Q, R, S, T, V, W, Y). 
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,i jX  ( i j, = 1,2,…,20) is called the 1st-rank residue-
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couple that represents the frequency with which a mode of continuous residue pairs is 
observed in a protein sequence. 2

,i jX  is called the 2nd-rank residue-couple that 

represents the frequency with which the coupled mode ( ) is observed in a protein 

sequence (“_” represents any type of amino acid ). 

, _,i

,i j

j
kX  is called the kth-rank residue-

couple that represents the frequency with which the coupled mode ( ) is 
observed in a protein sequence, and so forth. There are, therefore, 20

, _, _,i j
×20=400 residue-

couples in each rank (Figure 1). 

x

 

   
 

Figure 1: A schematic drawing to show the residue-couple with different rank: (a) the 1st-
rank: the coupling mode between all the two consecutive residues. (b) the 2nd-rank: the 
coupling mode between two residues with only one amino acid between them. (c) the 3th-
rank: the coupling mode between two residues with right two amino acid between them. 

   
For each protein sequence, all the residue-couples were combined into a vector , that is, 
the first 400 components of x  were the 400 1st-rank residue-couples and the following 
400 components are the 400 2nd-rank residue-couples, and so forth. Therefore, the final 
vector has a dimension of 400×m. The value of m is called the “coupling-degree”, 
representing the total rank of residue-couples. This model contains the information for 
both the amino acid composition and the order effect of the protein sequence. Each 
protein sequence was analyzed in this way to obtain a set of 400×m dimension vectors 
(each vector corresponds to one vector). The set of vectors was used as the input vectors 
to the support vector machine for training and prediction (Figure 2). 
    
2.4 Cross-validation and model selection 
The current work used a 5-fold cross validation for testing because of our limited 
computational power. In the k-fold cross validation, the entire sample set was randomly 
divided into k equally sized subsets. One subset at a time was used as the test set and the 
other k-1 subsets were used to train the SVM. The final prediction results were generated 
by combining the results of each subset in turn.  



6 

 
Figure 2: The prediction process of our method. The input vector of SVM is a number of 400×m 
dimension vectors. 

 
2.5 Prediction result assessments 
The total prediction accuracy, the accuracy in each location and the Matthew’s 
Correlation Coefficient (MCC) were used to assess the prediction result. 
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where ip  is the number of correctly predicted sequences in location i, n  is the number 

of correctly predicted sequences not in location i, u  is the number of under-predicted 

sequences, and o  is the number of over-predicted sequences. 

i

i
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3  Results 

3.1  Prediction Accuracy 

Table 1: The prediction accuracy of the current method for eukaryotic proteins with 
different input vectors coupling-degrees. The results were based on the 5-fold cross-
validation test. Table 1 shows that the total accuracy reached 86.9%. when the coupling-
degree was equal to 6 and the kernel parameter γ  was 20. The accuracies in different 
subcellular locations are also listed in Table 1. 

              Coupling-degree 
  1 2 3 4 5 6 7 8 

Total Acc (%) 80.4 85.5 86.5 85.9 86.5 86.9 86.7 86.6 
Cyto 79.5 84.2 85.0 84.5 86.0 85.8 85.7 86.4 
Extra 79.7 80.0 84.3 81.0 85.0 85.9 83.4 82.8 
Mito 54.2 60.8 64.5 58.9 63.9 65.4 63.0 62.0 

 
Acc 

Nuclear 88.7 95.1 94.6 96.1 93.9 94.2 95.3 95.0 
       γ  100 100 50 50 20 20 20 20 

 
Table 2: The accuracies of the method for prokaryotic proteins with different input 
vectors coupling-degrees. Only five different coupling-degrees are shown in the table 
since the result changed little with increasing coupling-degree. 

Coupling-degree 
  1 2 3 4 5 
Total Acc 90.7 91.3 91.2 91.5 92.0 

Cyto 99.1 98.4 98.1 99.0 99.0 
Peri 70.1 76.6 78.5 73.8 77.6 

 
Acc 

Extr
a 

72.8 74.8 74.8 75.3 75.7 

γ  100 100 100 100 100 
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3.2  Prediction result and comparison with other methods 

Table 3: The comparisons of different prediction method for the eukaryotic sequences. 
The result of neural network model and residue-couple model are given by cross 
validation. The Markov model and SVM result were given by the jackknife.  

ANN Markov 
model 

Amino acid 
composition 

+SVM 

Residue-
couple 
model 
+SVM 

 
Location 

 

Acc 
 ( %) 

Acc      MCC 
 (%)  

Acc      MCC 
 (%)     

Acc    MCC 
 (%)   

Cyto 55 78.1 0.60 76.9 0.64 85.8 0.77 
Extra 75 62.2 0.63 80.0 0.78 85.6 0.89 
Mito 61 69.2 0.53 56.7 0.58 65.4 0.72 
Nuclear 72 74.1 0.68 87.4 0.75 94.2 0.85 
Total Acc 66 73.0 -- 79.4 -- 86.9 -- 

 
Table 4 : The comparisons of different methods for the prokaryotic sequences. The result 
of neural network model and residue-couple model are given by cross validation. The 
Markov model and SVM result were given by the jackknife (leave one out cross 
validation). 

ANN 
Covariant 

discriminan
t 

Markov 
model 

Amino acid 
composition 

+SVM 

Residue-
couple 
model 
+SVM 

 
Location 

 

Acc 
(%) 

Acc 
(%)  

Acc  MCC 
(%)   

Acc     MCC 
(%)  

Acc        
MCC 
(%) 

Cyto 80 91.6 93.
6 

0.83 97.
5 

0.86 99.0 0.89 

Extra 77 80.4 77.
6 

0.77 75.
7 

0.77 77.6 0.79 

Peri 85 72.7 79.
7 

0.69 78.
7 

0.78 75.7 0.78 

Total Acc 81 86.5 89.
1 

-- 91.
4 

-- 92.0 -- 

 
The prediction result from this method was also compared with that of other subcellular 
localization methods. For eukaryotic sequences, the residue-couple model is compared 
with the neural network method (Reinhardt & Hubbard, 1998), the Markov model (Yuan, 
1999) and Hua and Sun’s simple SVM method (Hua & Sun, 2001) in Table 5. The 
results showed that the total accuracy of the residue-couple model was 20.9% higher than 
that of the neural network method and 7.5% higher than that of the SVM method. For 
cytoplasm and nuclear sequences, the prediction accuracies were 30.8% and 22% higher 
than the neural network method and 8.9% and 6.8% higher than the SVM method. The 
prediction accuracy of this model was obviously higher than that of Hua & Sun’s SVM 
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method, even though it used the same support vector machine classification algorithm. 
This clearly reflects that residue-couple model was able to mine more useful information 
from the protein sequences than the amino acid composition model, especially for 
cytoplasm and mitochondrial sequences (8.9% and 8.7 higher than Hua and Sun’s work). 
 
Both the residue-couple model and the Markov model used sequence order information 
for the predictions. The total accuracy of the residue-couple model was 13.9% higher 
than that of the Markov model. The accuracy for extra-cellular and nuclear proteins was 
23.7% and 20.1% higher than those of the Markov model method, although the accuracy 
for mitochondrial proteins was 3.8% lower (nevertheless, the MCC of the residue-couple 
model for mitochondrial was 0.72, much higher than that of the Markov model). 
Although both methods were based on residue order information, the powerful 
classification capability of SVM allowed the new method to achieve greater accuracies. 
 
The MCC results for the different methods are also listed in Table 3. The MCC of each 
subcellular location using the residue-couple model was higher than all the other models, 
as shown in Table 3. 
 
For the prokaryotic sequences, the results are compared in Table 4. The total accuracy of 
the residue-couple model was about 11% higher than that of the neural network method 
and 5.5% higher than that of the covariant discriminant algorithm. The accuracy for 
cytoplasm sequences reached 99%, although the total accuracy had no significant 
improvement compared with Hua & Sun’s method. 
 
For the new data with 8304 proteins and 8 subcellular locations, the total accuracy 
achieved 88.9%. The accuracy and the MCC for each subcellular location are listed in 
Table 5.  
 
Table 5: The prediction result of our new dataset with 8304 proteins and 8 subcellular 
locations. The results are based on 5-fold cross validation. We used the RBF kernel with 
parameters: γ =21 and C=500.  

 chlop cyto extra golgi lyso mito nuclear perox 
Acc (%) 91.4 90.1 82.4 68.7 91.0 72.2 93.4 74.1 
MCC 0.92 0.83 0.85 0.82 0.94 0.78 0.86 0.83 

 
 
3.3  Robustness against errors in the N-terminal sequence 
The residue-couple model was also much more robust against errors in the protein 
terminal sequence than methods based on sorting signals. To show this, the samples were 
randomly divided into 5 equally sized subsets. One subset at a time was used as the 
testing set while the other 4 subsets were used to train the SVM. N-terminal segments  
with lengths of 10, 20, 30 and 40 amino acids were removed from the protein sequences 
in the testing set while keeping the full sequences of the proteins in the training set. 
Therefore, the SVM classifiers were trained on full sequences and tested on sequences 
with several missing N-terminal segments. The final prediction results were generated by 
combining the results of each subset in turn. The results for eukaryotic sequences and for 
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prokaryotic sequences listed in Table 6 and Table 7 show that the total accuracy 
decreased only 3.2% for eukaryotic sequences and 1.1% for prokaryotic sequences even 
though 40 residues in the N-terminal were removed.  
 
Table 6: performance comparisons for the eukaryotic protein sequences with one 
segment of N-terminal sequences removed. Complete: Prediction with complete 
sequences; CUT-10: Prediction for the rest part of sequences when 10 N-terminal amino 
acids were excluded; CUT-20, CUT-30, CUT-40 have similar meanings. 

Accuracy (%) MCC  

Total Cyto Extr
a Mito Nuc

l 

 

Cyto Extr
a Mito Nuc

l 
Complet

e 
86.9 85.8 85.9 65.4 97.2 0.77 0.89 0.72 0.85 

CUT-10 85.
2 

85.2 81.5 59.
8 

93.6 0.75 0.87 0.68 0.83 

CUT-20 84.0 84.
8 

80.0 54.
5 

93.3 0.73 0.86 0.63 0.82 

CUT-30 83.1 83.5 80.0 50.5 93.4 0.72 0.85 0.60 0.82 
CUT-40 82.5 82.9 78.8 48.6 93.2 

 

0.71 0.83 0.59 0.82 
 
Table 7: performance comparisons for the prokaryotic protein sequences with one 
segment of N-terminal sequences removed. Complete: Prediction with complete 
sequences; CUT-10: Prediction for the rest part of sequences when 10 N-terminal amino 
acids were excluded; CUT-20, CUT-30, CUT-40 have similar meanings. 

Accuracy (%) MCC  
Total Cyto Extr

a 
Peri 

 
Cyto Extr

a 
Peri 

Complet
e 

92.0 98.7 77.6 76.
7 

0.90 0.79 0.7
7 

CUT-10 92.0 98.3 79.4 77.
2 

0.89 0.81 0.7
8 

CUT-20 91.5 98.4 78.5 74.
8 

0.88 0.80 0.7
6 

CUT-30 91.4 98.7 79.4 72.
8 

0.88 0.80 0.7
5 

CUT-40 90.8 98.0 78.5 72.
8 

 

0.87 0.79 0.7
3 

 

4  Discussion and future work 

The results showed that the residue-couple model successfully predicted subcellular 
locations. Compared with other methods, the prediction accuracy of the residue-couple 
model was much more evident for eukaryotic protein sequences than for prokaryotic 
sequences. The total accuracy of the method was only 0.6% than Hua & Sun’ method 
(Table 3) for prokaryotic protein sequences. However, the accuracy was 7.5% better for 
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eukaryotic proteins (Table 6). Note that the prokaryotic proteins have been classified 
with high accuracy even using linear classifiers based on amino acid composition only 
(the total accuracy reached 89.3% with a linear kernel SVM). This result probably 
reflects that their amino acid composition, which has relative simple sequence structure 
and biological function, is the key characteristic of prokaryotic proteins. However, 
eukaryotic protein sequences seem much more complex than prokaryotic sequences and 
their amino acid composition does not contain enough information to predict protein 
location. Therefore, for eukaryotic proteins, the accuracy of existing methods based on 
amino acid composition models are with significantly lower than the residue-couple 
model, which not only considers the from the amino acid composition information, but 
also the sequence order information.  
 
Further studies, which will focus on three aspects to improve our work, are planned for 
the immediate futher,. One is to combine the residue-couple model with other 
complementary methods. Mitochondrial proteins are still not well predicted (65.4%), 
although the accuracy was higher than that of all other prediction methods (Table 3) 
except the Markov model. 19% of the mitochondrial proteins were incorrectly classified 
into the cytoplasm. A similar conclusion was also reported by Hua and Sun. This means 
that it is difficult to discriminate the proteins in cytoplasm and mitochondria based solely 
on residue-couple information. The relatively high prediction accuracy for mitochondrial 
proteins using the Markov model (69%) points to a combination of the Markov model 
and the residue-couple model as the next logical model to investigate. Future research 
will identify the proper strategies to combine these models. Combined methods based on 
sorting methods are also under consideration.  
The second aspect of future work is to incorporate other types of data into the model, 
including gene expression profiles (Murphy et al, 2000, Nakai et al, 1997) and regulatory 
pathway information. Some information fusion technologies, such as meta learning 
methods, may be used to combine information from different datasets and different types 
of formats. 
 
The third aspect is to improve the SVM classifiers, including finding ways to select 
better kernels, to speed up the prediction system, and to filter noise and outliers. Several 
papers have introduced new methods addressing the noise and outliers problems (Zhang, 
1999). Some new SVM software tools such as Herosvm (Dong et al, 2002) significantly 
speed up the process. We are also attempting to combine an active learning strategy with 
the SVM method for further improvements. 

 

5  Webserver and application  
The residue-couple model has been integrated into a webserver system so as to provide a 
subcellular localization service. The server address is:  
http://www.bioinfo.tsinghua.edu.cn/CoupleLoc 
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6  Conclusion 

A residue-couple model was developed for subcellular localization, which not only 
considered the amino acid composition information, but also the residue order 
information. The high accuracies for both prokaryotic (92.0%) and eukaryotic sequences 
(86.9%) showed that the new method performed well compared with other methods for 
subcellular location prediction. Furthermore, the method was robust agianst the errors in 
the N-terminal of sequences, and one real test with an unknown protein sequence 
comfirmed the prediction accuracy. Therefore, the residue-couple model is a more 
powerful system for subcellular location prediction which will be a useful tool for large-
scale protein function analysis. 
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