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Abstract

Clustering partitions a data set S = fs1; : : : ; sng � <m into
groups of nearby points. Distance-based clustering methods
use optimisation criteria to de�ne the quality of a parti-
tion. Formulations using representatives (means or medians
of groups) have received much more attention than minimi-
sation of the total within group distance (TWGD). However,
this non-representative approach has attractive properties
while remaining distance-based.

While representative approaches produce partitions with
non-overlapping clusters, TWGD does not. We investigate
the restriction of TWGD to producing convex-hull disjoint
groups and show that this problem is NP-complete in the
Euclidean case as soon as m � 2. Nevertheless we provide
e�cient algorithms for solving it approximately.
Keywords: clustering, optimisation, computational geom-
etry, problem complexity, data mining in spatial databases.

1 Introduction

Clustering is a fundamental task in data analysis since it
identi�es groups in heterogeneous data. Clustering can be
seen as a concept formation or class delineation problem. At
least the �elds of statistics [44, 46], machine intelligence [5,
15, 32] and more recently knowledge discovery and data
mining (KDDM) [12, 14, 37, 47] have contributed with algo-
rithms for many clustering approaches. Hierarchical bottom-
up approaches form groups by composition or merging items
that are close together [10, 29]. However, top-down parti-
tion sees clustering as partitioning a heterogeneous data set
into smaller more homogeneous groups [2, 19, 40] and is of
particular interest for spatial data mining [12, 37, 48].

Clustering typically uses a metric (or distance) to deter-
mine the similarity between the items to be clustered. Here
we consider the clustering problem in the context of spatial
databases, those typically associated with a Geographical
Information System (GIS). In spatial settings, the clustering
almost invariably makes use of some distance that captures
the notion of proximity, as it re
ects the essence of spatial
association. We say that the clustering problem is distance
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based when a metric is used to formulate an optimisation
criterion that describes clustering as an optimisation prob-
lem. For example, the criterion may consist of minimising
the total dissimilarity in the groups. This criterion has been
called Grouping [45], Total Within Group Distance [40], the
Full-Exchange [42] and the Interaction [35]. Here we will
refer to this criterion as the Total Within Group Distance
(TWGD), since this seems the best description of the mea-
sure.

De�nition 1.1 Let X = fx1; x2; : : : ; xng be a set of n ob-
jects and let d : X �X ! <+ [ f0g be a metric. Clustering
into p groups by the Total Within Group Distance (TWGD)
consists of solving the following distance-based clustering op-
timisation.

Minimise TWGD(P ) =

pX

k=1

X

i<j ^ xi ;xj2Xk

wiwjd(xi; xj)g;

(1)
where P = X1j : : : jXp is a partition of X and wi is a weight
for the relevance of xi but may have other speci�c interpre-
tations.

Intuitively, this criterion not only minimises the dissimilar-
ity between items in a group, but also uses all interactions
between items in a group to assess group cohesiveness (and
thus, uses all the available information). Also, implicitly, it
maximises the distance between groups, because the terms
d(xi; xj) not included in the sum are those where the items
belong to di�erent groups. Therefore, it minimises coupling.

However, the TWGD problem is NP-complete (in its
graph-theoretic decision formulation [4] and in the Euclidean
formulation [27]). Although most other distance-based clus-
tering problems are also NP-complete [4, 22, 28], they are
more commonly solved approximately in clustering applica-
tions. We believe this is due to several factors.

1. The TWGD problem, when formulated as an integer
programming problem, is very di�cult to solve opti-
mally by approaches like integer-relaxation and branch
and bound [42]. The most popular formulation as a
integer-programming problem has n2p variables and
n + p constraints [33, 35, 42]. Reformulations of the
problem may not work well with the relaxation [42]
or may rapidly increase the number of constraints.
Therefore, only instances were n is small can be at-
tacked with this approach.

2. For each group Xk, (k = 1; : : : ; p), the objective func-
tion involves �(n2k) terms (where nk = jXkj, is the



Convex group clustering of large geo-referenced data sets 2

size of group Xk). Thus, approximation methods like
hill-climbing, simulated annealing, genetic algorithms
and so on, face costly function evaluations.

3. Fast approximation algorithms are available for other
distance-based clustering approaches. With the emer-
gence of KDDM, where very large data sets are anal-
ysed, the computational complexity of the clustering
algorithms is certainly crucial.

Because of this last point, the K-Means algorithm (of basic
isodata) [10] is used extensively in KDDM. K-Means is an
heuristic to approximately solve the following distance-based
clustering optimisation.

Minimise

Euclid
2(P ) =

pX

k=1

X

i<j ^ ~xi;~xj2Xk

wiwjdE(~xi; ~xj)
2

Wk

;(2)

where
(a) P = X1j : : : jXk is a partition of X = f~x1; ~x2; : : : ; ~xng �
<m (i.e. X is a set of n m-dimensional data points),
(b) the weight wu may re
ect relevance of ~xu, and the dis-
tance dE(~xu; ~xv) is the Euclidean distance (i.e. dEu(~x; ~y) =

(
Pm

j=1
jxj � yjj2)1=2), and

(c) Wk =
P

xi2Xk
wi =
P

Xk
wi.

The computational e�ciency of K-Means is O(tmpn)
time, where t is the number of hill-climbing iterations over
the entire data set, m is the dimension, p is the number of
clusters, and n is the number of objects. For KDDM appli-
cations, t;m; p < < n resulting in O(n) time. Moreover, K-
Means is very easy to implement. This contrasts favourably
with hierarchical clustering algorithms whose computational
complexity is in O(n2) [36], or with the recent O(n log n)-
algorithms [29].

This paper will present an approach to e�ciently �nd
approximate solutions to the TWGD when data items are
referenced in one and two dimensions (the casem � 2). This
has applications in GIS, the unidimensional case is used for
the construction of choroplethic maps [6] while the bidimen-
sional case has applications in analysis of the spread in zone
patterns [35].

The rest of the paper is organised as follows. Section 2
presents terminology from several communities regrading
di�erent formulations of distance-based clustering problems.
It is here that we present the non-overlaping restricted ver-
sion of the TWGD problem. Section 3 demonstrates that
the Euclidean version of the TWGD problem restricted to
non-overlapping convex-hulls remains NP-complete. Sec-
tion 4 discusses how to approximately solve the TWGD

when restricted to disjoint convex hulls. Final remarks are
presented in Section 5.

Notation: We will tend to abbreviate
P

x2X
f(x) by sim-

ply writing
P

X
f(x) when it is clear the sum is over all

elements x in set X.

2 The contiguous restriction

Unidimensional distance-based clustering problems (the case
m = 1) are `easy' in the sense that they are solved optimally
by polynomial algorithms [30]. In this section we contrast
how distance-based clustering changes as we progress to two
dimensions.

It is now appropriate to rewrite the problem in Equa-
tion (2). Consider Euclid2(~x;X) =

P
~x2X

dE(~x;X)2, where

X is a �xed set of points in <m. It is not hard to see (equat-
ing the gradient 5Euclid2(~x;X) to zero and solving for ~x)
that Euclid2(~x;X) is minimised when ~x is the centre of

mass of X. That is, ~̂x =
P

~xi2X
~xi=kXk. Moreover, alge-

braic manipulation shows that

Euclid
2(~̂x;X) =

1

2kXk
X

~xi2X

X

~xj2X

dE(~xi; ~xj)
2
:

Thus, the problem in Equation (2) is equivalent to

Minimise Euclid
2(P ) =

nX

i=1

widE(~xi; rep[~xi; C])
2
; (3)

where
(a) the solution C = f~c1; : : : ;~ckg is a set of p representative
points in <m, and
(b) rep[~xi; C] is the closest point in C to ~xi.

In this formulation, the partition into clusters is de�ned
by assigning each ~xi to its representative rep[~xi; C]. Those
data items assigned to the same representative are in the
same cluster. Thus, the p representatives encode the par-
tition of the data and each representative is the centre of
mass of its cluster.

However, it is important to note that the proximity of ~xi
to ~xj is the square of the Euclidean distance. The statistics
community refers to the problem in Equation (2) (equiv-
alently Equation (3)) as the within groups sum of squares
problem [40]. In particular, for geographical data, it is
very important to note this aspect [35]. This squared ver-
sion is known as the gravity problem [17] (or as the cen-
troid problem [18]) in facility location literature because
Euclid

2(~x;X) is minimised by the centre of gravity. How-
ever, if the problem involves the direct Euclidean distance
as in

Minimise Euclid(P ) =

nX

i=1

widE(~xi; rep[~xi; C]); (4)

then it receives the name of the Webber problem [17] (or the
minimum distance problem [31]). This non-squared Euclid
problem has no simple algebraic solution [17] and, even in
the case p = 1, no algorithm can �nd the exact solution [31].

The di�erence between the Webber problem and Euclid2

can be simply appreciated in the case m = 1. It is not hard
to see that the value that minimises E(~x;X) =

P
X
dE(~xi; ~x)

is the median (a point in X), while the centre of gravity

~̂x =
P

X
xi=kXk (which may not be in the data set) min-

imises E2(~x;X) =
P

~xi2X
dE(~xi; ~x)

2.

Nevertheless, problems like Equation (3) and Equation (4)
minimise a sum; thus, their generic name is p-median prob-
lems without much regard to weather the cost of ~xi~xj is the
squared Euclidean distance, just the Euclidean distance or
any other of the Minkowski distances d� (i.e. d�(~x; ~y) =

(
Pm

j=1
jxj � yjj�)1=�). At least this is the case in the com-

putational geometry community and the theoretical com-
puter science community [1, and references] (perhaps after
Megiddo [30] or after Kariv and Hakimi [25] or perhaps
by analogy to the case m = 1). The computational ge-
ometry community reserves the name p-centres problem for
when

P
is replaced by max in Equation (3). This is be-

cause we are minimising the radius of a circle to be copied
p times and centred at the p representatives to cover the
n points in the data set. There is a p-median problem
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amongst the operations research community [24, 41] for the
problem in Equation (2) when representatives are restricted
to be data points (this is referred to as the facility loca-
tion problem by theoreticians [1]). In clustering for spatial
data, medians that are data points have been referred to as
medoids [11, 12, 37, 26]. In the case m = 1, the problems are
typically solved by di�erent variants of dynamic program-
ming in O(n2p) time [6, 30, and references]. For example,
when m = 1, the problem in Equation (2) is solvable in
O(n2p) time.

The dynamic programming strategy dates back to 1958,
when Fisher observed the so-called contiguous partition re-
striction [16]. This simply states that, in the optimal solu-
tion, the groups do not overlap each other. We say that a
partition P = X1j : : : jXp is CH-disjoint if the convex hull
CV (Xi) of Xi does not intersect the convex hull CV (Xj) of
any other cluster Xj (i 6= j). This CH-disjoint property
resulted in many polynomial algorithms for many distance-
based clustering approaches in the case m = 1 [6].

It is easy to imagine that the restriction to CH-disjoint
partitions does not change the p-median problem in the case
m = 1. Namely, if a solution to the unidimensional p-median
problem (or the problem in Equation (2)) is assumed to be
optimum and two clusters overlap, then we can swap two
data points (chosen with some care) between two overlap-
ping clusters and obtain an improved solution. Thus, in the
real line, solving p-median (or the problem in Equation (2))
with the added contiguous partition restriction is equivalent
to its original unrestricted problems. But, the restriction
provides the clue to solve these problems by dynamic pro-
gramming in polynomial time.

At some point there was some debate over how to ex-
tend this approach to higher dimensions. The so-called
string property [45] was revised to a property emphasising
the notion of representative present in the problem in Equa-
tion (2) [40]. At the time, the direct generalisation was
conjectured; namely, \... for a partition to be optimal, the
convex hulls of the subsets must be non-overlapping" [40].
This was apparently proved by Bock [3], but it is not hard to
prove (because the Voronoi regions of representatives in an
optimal solution must contain the points of their respective
clusters).

Apparently, attention drifted away from the TWGD prob-
lem as the NP-hardness results emerged for the graphical
and geometric (Euclidean and even bidimensional, i.e. m =
2) versions of representative clustering problems [4, 22, 27,
28, 30, 39]. Work concentrated on suitable approximation
algorithms for them [8, 41]. Others concentrated on special
cases where polynomial algorithms can be found (for exam-
ple, the case p = 2 [23]). More recently, theoretical results
have concentrated on polynomial approximation schemes for
the representative-based clustering approaches [1, and ref-
erences].

3 TWGD restricted to CH-disjoint partitions is NP-
hard

TWGD is very di�erent from representative approaches like
p-median and p-centres. Although Equation (2) looks like a
weighted version of Equation (1), even in the Euclidean case
the solution for TWGD may be a partition whose clusters
are not CH-disjoint. For example, even for the casem = 1,
there are point sets where no optimal solution may be CH-
disjoint. Consider x1 = �10, x2 = 10, x3 = �1, x4 = 0
and x5 = 1. The optimal TWGD solution is X1 = fx1; x2g
and X2 = fx3; x4; x5g with TWGD=24 (any other partition
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Figure 1: A variable component (circuit) with 3 � 6 = 18
points and its two optimal CH-disjoint partitions of 6
groups.

puts together any two points of X2 with a point of X1 and
will incur in a cost of at least 29).

Thus, the TWGD problem and its restriction to CH-
disjoint partitions are not equivalent. Since now we know
that the graph version (even for p = 2 [4]) and the Euclidean
version [27] of the TWGD are NP-complete, the equivalence
would have shown that the TWGD problem restricted to
CH-disjoint partitions is NP-complete. Since the restric-
tion to CH-disjoint partitions results in a di�erent prob-
lem, perhaps we can hope for polynomial algorithms. We
now show that the hope is the same as the hope for �nding
polynomial algorithms for NP -complete problems.

Theorem 3.1 The TWGD Euclidean problem restricted to
CH-disjoint partitions in NP-complete.

Proof: The instance we consider provides a set S with n
points in the plane and integers p and B. The decision
question is if there exists a CH-disjoint partition of S into
p parts whose TWGD value is less than B.

The proof is a component design [20] proof that reduces
3-satis�ability to the CH-disjoint-restricted TWGD prob-
lem. In fact, the proof is similar to other proofs for Euclidean
clustering problems [30]. An instance of 3-SAT is converted
into an instance of the CH-disjoint-restricted TWGD de-
cision problem, thus the set S and the constants p and B are
built as we go along. We �rst de�ne a component for each
variable. These components (the Boolean variable compo-
nents) will be called circuits for reasons that will be obvious
soon. The variable component is optimally solved in only
two ways that correspond to the assignment of true or false
to the Boolean variable. These two ways can be thought as
travelling the circuit clockwise or counterclockwise (Fig. 1).

A second type of component is a clause component to
ensure each clause is satis�ed. The circuit for a variable
visits each of the clause components in which the variable
(or its negation) appears. Moreover, it arrives at the clause
component in one of two ways. These two ways represent if
it is the variable or if it is its negation what appears in that
particular clause. In this way, the assignment of Boolean
values to variables (and their negations) is consistent.

Finally, a third type of component is needed. This is just
because of the embedding of the instance in the Euclidean
plane. These components ensure that they can be placed
wherever needed to make two circuits cross without a�ecting
the meaning (orientation) of the circuits. Thus, we will call
them crossing components.

Fig. 1 shows a circuit (or variable) component and the
two ways in which it can be optimally clustered into CH-
disjoint partitions. The circuit Ci = hsi0; si1; : : : ; si3pi =

si0i for variable ui is made of 3pi points (pi an integer).
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Figure 2: A clause component (point) with 3 circuit corners
and the two ways a corner incorporates the clause.
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Figure 3: The component to allow circuits to cross.

Points along the circuit are spaced 1 or b > 1 by the rule:
d(sij; s

i
j+1) = 1 if j mod 3 = 0 and d(sij; s

i
j+1) = d other-

wise. The circuit makes orthogonal turns at points where
the previous and next point in the circuit are at distance
b. Clusters have a cost of 2(1 + d) because the number of
groups requested is pi and each cluster has 3 consecutive
points in the circuit. Thus pi is accumulated into p.

Clause components are very simple, they correspond to
just one point; see Fig. 2. Because we are reducing 3-SAT,
we know that at most 3 circuits arrive at a clause. A circuit
arriving at a clause Ej places one of its corners at distance b
from sEj . No more clusters are allowed (p is not increased),
thus the point sEj for the clause component must be in-
cluded in a cluster of at least one of the 3 circuits. Moreover,
each circuit can incorporate the clause point in an expensive
and an inexpensive way. The bound B will be set so that at
least one of the 3 circuits includes sEj in an inexpensive way.
The inexpensive or expensive way of connecting a circuit is
chosen according to whether the variable or its negation ap-
pears in the clause. It is not hard to see that because at
most 3 circuits arrive at a clause, all combinations of expen-
sive and inexpensive arrangements for the 3 circuits can be
con�gured (perhaps with some circuit crossings, but this is
solved by the next component).

Crossing components are also very simple. They replace
a point in each of the crossing circuits by a cross as illus-
trated in Fig. 3. The cross has length b in one dimension
and length b + d in the orthogonal dimension with d � 0:5.
The crossing components are allowed to be covered with
one cluster and the bound B allows for only a triangle in

the cross to be covered at cost of b+ b+d+
p
b2 + (b+ d)2.

These crossing components are inserted between consec-
utive segments of distance b in a circuit. Fig. 4 illustrates the
crossing of two circuits. This �gure illustrates the role of the
small constant d in adjusting the circuits to allow them to
comply with the requirement that corners have only points
that are distance b from its predecessor and successor in
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Figure 4: Crossing two circuits.

the circuit. This also illustrates that circuits may need to
be padded with more points in order to travel further away
(shown in Fig. 4 with 2). However, for a circuit with 3pi
points only pi clusters will be allowed.

It remains to be shown that the optimal TWGD cluster-
ing that is CH-disjoint must preserve the direction of the
circuit through crossings. We show that the grouping shown
in Fig. 3 (c), while apparently producing a smaller TWGD

value for the crossing component, is actually suboptimal. In
reference to Fig. 3 (c), the circuit passing horizontally would
replace two groups of cost 2(b+1) each for one group of cost
4b and one group of cost 1. However, the circuit passing ver-
tically would replace a group of cost 2(b+ 1) by a group of
cost 4b+2 (because the one group would be extended by an
item at least b apart). Thus, the new cost of Fig. 3 (c) is

8b+4 while the cost of Fig. 3 (b) is 6b+2+d+
p
b2 + (b+ d)2

and because d � 0:5 it is not hard to show that this cost is
no more that (6 +

p
2)b+ 3, as required.

The rest of the proof follows standard proofs of NP-
completeness. 2

4 Algorithms for approximating optimalCH-disjoint par-
titions

In spatial clustering, there are many situations where the
desired clusters are expected to be convex. In fact, distance-
based clustering approaches that de�ne the groups by rep-
resentatives and assign data point to the nearest representa-
tive construct clusters that are convex. Clusters are in direct
correspondence with the Voronoi regions of the Voronoi di-
agram of the representatives. Thus, solving approximately
the TWGD clustering problem restricted to CH-disjoint
partitions is interesting.

Although we just have shown that the problem com-
plexity for the CH-disjoint restriction remains NP-hard,
we believe that the restriction to CH-disjoint partitions
can produce approximation algorithms that are at least as
e�cient as previous attempts in solving the unrestricted
TWGD clustering problem. We illustrate this point now.
We adapt well studied local search hill-climbers known as
interchange heuristics [8, 24, 34, 43] to TWGD restricted
to CH-disjoint partitions. These heuristics are typically
used for the p-medians problem (solving Equation (2) with
the added restriction that the representative be data points)
and recently they have been used for the general TWGD

problem [33].
Similar adaptations will carry over to alternative meth-

ods such as genetic algorithms [13, and references] and sim-
ulated annealing [34], as these methods have extended the
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local search hill-climbers. Due to their ability to escape from
and improve over local optima, simulated annealing and ge-
netic algorithms open the possibility of better approxima-
tion; however, the computation time required is longer than
that of hill-climbers. A critical factor in the e�ciency of all
these algorithms is the computational e�ort for evaluating
the change in the TWGD value for a new partition resulting
from a previous partition.

The hill-climbing nature of the local search heuristics is
clearly revealed if we structure the search space of TWGD

as a graph. The nodes of this graph are all partitions P =
X1j : : : jXp representing a choice of p groups. The edges of
the graph are de�ned as follows: two nodes P and P 0 are
adjacent if and only if they di�er in only the assignment of
one data point. Namely, a partition of X can be considered
a function of X onto a set of p colours. Two partitions are
adjacent if they di�er in only the colour of one data point.

The interchange heuristics start at a randomly-chosen
solution P 0 (that is, a random node in the graph), and ex-
plore the graph by moving from the current node to one of
its neighbours. Letting P t be the current node at time step
t, the heuristic examines a set N(P t) of neighbouring nodes
of P t, and considers the best alternative to P t in this neigh-
bourhood: the node M(P t+1) = minP2N(P t) TWGD(P ).

Provided that the new node P t+1 is an improvement over
the old (that is, if M(P t+1) < M(P t)), P t+1 becomes the
current node for time step t+1. When no better solution is
found in the neighbourhood N(P t), the search halts.

The interchange hill-climbers proposed to date de�ne the
neighbourhood set N(P t) in varying ways. In �nding a local
optimum of high quality, an original heuristic proposed in
1968 by Teitz and Bart [43] has proven the most e�ective.
We will refer to this heuristic as TaB.

Its adaptation to solving TWGD works as follows [33].
When searching for a pro�table interchange, it considers the
data points in turn, according to a �xed circular ordering
(~x1; ~x2; : : : ; ~xn) of the data. Whenever the turn belonging
to a data point ~xi comes up, it is considered for chang-
ing its group (changing its colour to any of the other p� 1
colours). The most advantageous interchange P j of these

p � 1 alternatives is determined. If P j is better than P t,
then P j becomes the new current solution P t+1; otherwise,
P t+1 = P t. In either case, the turn then passes to the next
data point in the circular list, ~xi+1 (or ~x1 if i = n). If a full
cycle through the data set yields no improvement, a local
optimum has been reached, and the search halts.

Rather than computing TWGD on the p� 1 neighbours
of P t (which potentially requires �(pn2) time, what is com-
puted is TWGD(P t) � TWGD(P ) (for P 2 N(P t)). The
time required to compute this di�erence is O(n) operations.
Therefore, the time required to test replacing the colour of
~xi is O(pn) time. In most situations, p can be viewed as
a small constant, and thus the test can be considered to
take linear time. Since the heuristic halts with a complete
scan of the data set and empirical evidence suggest that the
total number passes to the list is constant, this heuristic re-
quires �(n2) time in total. The TaB heuristic forbids the
reconsideration of ~xi for inclusion until all data points have
been considered as well. The heuristic can, therefore, be
regarded as a local variant of tabu search [21]. TaB's care-
ful design balances the need to explore a variety of possible
interchanges against the `greedy' desire to improve the so-
lution as quickly as possible. The TaB heuristic has been
remarkably successful in its application to facility location
problems [34, 41], as well as the clustering of large sets of
low-dimensional spatial data [12].

Given the above description it is not hard to adapt TaB
to TWGD restricted to CH-disjoint partitions. The nodes
of the search graph are all partitions into p groups that have
disjoint convex hulls. Two nodes are adjacent if they di�er
in the colour of only one data point. We again order the
data points in a circular list, evaluating each ~xi in turn for
a change of group. If a change of group for ~xi results in
a CH-disjoint partition with a lower TWGD value, we
adopt the change of colour that reduces TWGD the most.
In any case, the turn passes to the successor of ~xi in the
circular list. A complete scan of the circular list with no
improvement forces the search to stop.

We now provide some details on how this can be im-
plemented for m = 2. Although we have said that empty
groups are not accepted, the initial solution can be p � 1
empty groups and a group with all elements. This is rapidly
adjusted to p � 1 points of the convex hull of X in single-
ton groups and a group with the remaining data points, or
something better. Alternatively, in O(n log n) preprocessing
the convex hull of X can be found and then p � 1 points
on the hull assigned to singleton groups. Also, initialisation
with a guessed solution is possible, for example, one derived
from the Delaunay Triangulation of the points [11].

Examining a colour swap for a point ~xi can be performed
in O(n) time. In fact, only those ~xi that are in the convex-
hull of their current group need to be examined. Otherwise,
they can be skipped immediately, since no new colour will
result in a CH-disjoint partition. This test will require
O(p log n) time in the worst case since intersection of con-
vex polygons can be tested in logarithmic time. A colour
swap of ~xi implies a di�erence in TWGD values that can
be computed in O(n) time. As in the general TWGD case,
~xi total distance to the points in its new group and ~xi to-
tal distance to the points in its old group are the only terms
participating in determining the di�erence in TWGD value.
These are at most O(n) terms.

Finally, data structures for dynamically maintaining the
p convex hulls (with respect to insertions and deletions) are
possible. Overmars and van Leewen structures will su�ce
since they require O(log2 n) time per operation [38].

Alternatively, the restricted CH-disjoint TWGD prob-
lem that we have presented here may be amendable to poly-
nomial approximation schemes [1]. These randomised algo-
rithms produce, with very high probability, a solution that
is within a constant factor c from the optimum. For exam-
ple, for the p-medians problem as in Equation (2) (where the
points in the set C are anywhere in space butm = 2) there is
an approximation scheme that for any c > 0 produces a so-
lution C with costM(C) at most 1+1=c times the optimum

in O(nO(c+1)) time [1]. While for c = 2 this result seems less
e�ective than the success observed in practice by interchange
hill-climbing heuristics, it does o�er guarantees on the qual-
ity of the solution. These approximation schemes are based
on techniques that apply to problems where (a) the objec-
tive function is a sum of edge lengths and (b) some form or
variant of a patching lemma holds. Clearly, (a) holds for the
TWGD problem and also for its restriction to CH-disjoint
partitions. We are currently working on (b). However, we
believe that (b) will hold better for the CH-disjoint ver-
sion since the techniques are used to develop bidimensional
dynamic programming algorithms. Recall that the motiva-
tion for CH-disjoint partitions comes from the fact that,
in the case m = 1, this leads to polynomial-time dynamic
programming algorithms for clustering problems.



Convex group clustering of large geo-referenced data sets 6

5 Final Remarks

Today, the most popular method for clustering in KDDM is
K-Means [2, 14]. However, the interchange heuristic pro-
posed here for solving TWGD has all the desired properties
for KDDM. It is stoppable and resumable, with an approx-
imated solution always ready, and can work on incremen-
tal datasets. K-Means has some foundation on Maximum
Likelihood. Namely, it alternates a step that assigns means
(representative) for approximately maximising

pY

i=1

Prob(rep[si; C]jS; �;M);

with a step that assigns the parameters � (a vector of pa-
rameters) of a mixture model M so as to maximises

Prob(�jrep[si; C]; S;M):

In fact, its popularity may be attributed to its simplicity for
implementation and that it takes linear time. However, not
much else favours this algorithm.

1. From an optimisation point of view, it often converges
to a local optimum of poor quality.

2. It is very sensitive to the presence of noise and outliers,
as well as to the initial random clustering.

3. The method is statistically biased (this has favoured
the emergence of other statistical methods such as `ex-
pectation maximization' [7]) and statistically incon-
sistent (this has favoured the emergence of Bayesian
and Minimum Message Length methods[9]). However,
these alternative methods require the user to de�ne a
probabilistic model of the classes and their high sensi-
tivity to the initial random solution has prompted re-
searchers to incorporate initialisation mechanisms [14].

KDDM is exploratory and may involve exploration of al-
ternative models. The application at hand determines much
of the modelling the analyst may �nd suitable. TWGD of-
fers an alternative distance-based clustering criterion that
does not need representatives. Representatives are com-
monly adopted as prototypes of the data points of their
cluster. However, it is possible that this may have no valid
interpretation; for example, the average of the coordinates
of a group of schools may indicate that the representative
school lies in the middle of a lake. Thus, it is necessary to
have a toolkit of clustering methods and approaches. In par-
ticular, the TWGD seems informative along other criteria
in analysing geographically referenced data [33].

The result presented here �lls in a space on the com-
plexity of Euclidean clusters problem whose parts must be
CH-disjoint. We also have shown that it can be solved
approximately by e�cient algorithms. We look forward to
see renewed interest in this clustering criterion.
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