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Abstract 

The conventional n-gram language model exploits only the immediate context of 
historical words without exploring long-distance semantic information. In this 
paper, we present a new information source extracted from latent semantic analysis 
(LSA) and adopt the maximum entropy (ME) principle to integrate it into an 
n-gram language model. With the ME approach, each information source serves as 
a set of constraints, which should be satisfied to estimate a hybrid statistical 
language model with maximum randomness. For comparative study, we also carry 
out knowledge integration via linear interpolation (LI). In the experiments on the 
TDT2 Chinese corpus, we find that the ME language model that combines the 
features of trigram and semantic information achieves a 17.9% perplexity reduction 
compared to the conventional trigram language model, and it outperforms the LI 
language model. Furthermore, in evaluation on a Mandarin speech recognition task, 
the ME and LI language models reduce the character error rate by 16.9% and 8.5%, 
respectively, over the bigram language model. 

Keywords: Language Modeling, Latent Semantic Analysis, Maximum Entropy, 
Speech Recognition 

1. Introduction 

Language modeling plays an important role in automatic speech recognition (ASR). Given a 
speech signal O , the most likely word sequence Ŵ  is obtained by maximizing a posteriori 
probability )( OWp , or, equivalently, the product of acoustic likelihood )( WOp  and prior 
probability of word sequence ( )p W : 

           ˆ arg max ( ) arg max ( ) ( )
W W

W p W O p O W p W= = .                  (1) 
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This prior probability corresponds to the language model that is useful in characterizing 
regularities in natural language. Also, this language model has been widely employed in 
optical character recognition, machine translation, document classification, information 
retrieval [Ponte and Croft 1998], and many other applications. In the literature, there were 
several approaches have been taken to extract different linguistic regularities in natural 
language. The structural language model [Chelba and Jelinek 2000] extracted the relevant 
syntactic regularities based on predefined grammar rules. Also, the large-span language model 
[Bellegarda 2000] was feasible for exploring the document-level semantic regularities. 
Nevertheless, the conventional n-gram model was effective at capturing local lexical 
regularities. In this paper, we focus on developing a novel latent semantic n-gram language 
model for continuous Mandarin speech recognition. 

When considering an n-gram model, the probability of a word sequence W  is written as 
a product of probabilities of individual words conditioned on their preceding n-1 words 

1
1 2 1 1 1

1 1
( ) ( , , , ) ( ,..., ) ( )

T T i
T i i n i i i n

i i
p W p w w w p w w w p w w −

− + − − +
= =

= ≅ =∏ ∏" ,        (2) 

where 1
1

i
i nw −
− +  represents historical words for word iw , and the n-gram parameter 

1
1( )i

i i np w w −
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Here, 1( )i
i nc w − +  is the number of occurrences of word sequence 1

i
i nw − +  in the training data. 

Since the n-gram language model is limited by the span of window size n, it is difficult to 
characterize long-distance semantic information in n-gram probabilities. To deal with the issue 
of insufficient long-distance word dependencies, several methods have been developed by 
incorporating semantic or syntactic regularities in order to achieve long-distance language 
modeling. 

One simple combination approach is performed using the linear interpolation of different 
information sources. With this approach, each information source is characterized by a 
separate model. Various information sources are combined using weighted averaging, which 
minimizes overall perplexity without considering the strengths and weaknesses of the sources 
in particular contexts. In other words, the weights were optimized globally instead of locally. 
The hybrid model obtained in this way cannot guarantee the optimal use of different 
information sources [Rosenfeld 1996]. Another important approach is based on Jaynes’ 
maximum entropy (ME) principle [Jaynes 1957]. This approach includes a procedure for 
setting up probability distributions on the basis of partial knowledge. Different from linear 
interpolation, this approach determines probability models with the largest randomness and 
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simultaneously captures all information provided by various knowledge sources. The ME 
framework was first applied to language modeling in [Della Pietra et al. 1992]. In the 
following, we survey several language model algorithms where the idea of information 
combination is adopted. 

In [Kuhn and de Mori 1992], the cache language model was proposed to merge domain 
information by boosting the probabilities of words in the previously-observed history. In 
[Zhou and Lua 1999], n-gram models were integrated with the mutual information (MI) of 
trigger words. The MI-Trigram model achieved a significant reduction in perplexity. In 
[Rosenfeld 1996], the information source provided by trigger pairs was incorporated into an 
n-gram model under the ME framework. Long-distance information was successfully applied 
in language modeling. This new model achieved a 27% reduction in perplexity and a 10% 
reduction in the word error rate. Although trigger pairs are feasible for characterizing 
long-distance word associations, this approach only considers the frequently co-occurring 
word pairs in the training data. Some important semantic information with low frequency of 
occurrence is lost. To compensate for this weakness, the information of entire historical 
contexts should be discovered. Since the words used in different topics are inherently different 
in probability distribution, topic-dependent language models have been developed accordingly. 
In [Clarkson and Robinson 1997], the topic language model was built based on a mixture 
model framework, where topic labels were assigned. Wu and Khudanpur [2002] proposed an 
ME model by integrating n-gram, syntactic and topic information. Topic information was 
extracted from unsupervised clustering in the original document space. A word error rate 
reduction of 3.3% was obtained using the combined language model. In [Florian and 
Yarowsky 1999], a delicate tree framework was developed to represent the topic structure in 
text articles. Different levels of information were integrated by performing linear interpolation 
hierarchically. In this paper, we propose a new semantic information source using latent 
semantic analysis (LSA) [Deerwester et al. 1990; Berry et al. 1995], which is used for 
reducing the disambiguity caused by polysemy and synonymy [Deerwester et al. 1990]. Also, 
the relations of semantic topics and target words are incorporated with n-gram models under 
the ME framework. We illustrate the performance of the new ME model by investigating 
perplexity in language modeling and the character-error rate in continuous Mandarin speech 
recognition. The paper is organized as follows. In the next section, we introduce an overview 
of the ME principle and its relations to other methods. In Section 3, the integration of semantic 
information and n-gram model via linear interpolation and maximum entropy is presented. 
Section 4 describes the experimental results. The evaluation of perplexity and character-error 
rate versus different factors is conducted. The final conclusions drawn from this study are 
discussed in Section 5. 
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2. Maximum Entropy Principle 

2.1 ME Language Modeling 
The underlying idea of the ME principle [Jaynes 1957] is to subtly model what we know, and 
assume nothing about what we do not know. Accordingly, we choose a model that satisfies all 
the information we have and that makes the model distribution as uniform as possible. Using 
the ME model, we can combine different knowledge sources for language modeling [Berger et 
al. 1996]. Each knowledge source provides a set of constraints, which must be satisfied to find 
a unique ME solution. These constraints are typically expressed as marginal distributions. 
Given features 1, , Nf f" , which specify the properties extracted from observed data, the 
expectation of if  with respect to empirical distribution ( , )p h w�  of history h and word w is 
calculated by 

,
( ) ( , ) ( , )i i

h w
p f p h w f h w= ∑� � ,                         (4) 

where ( )if ⋅  is a binary-valued feature function. Also, using conditional probabilities in 
language modeling, we yield the expectation with respect to the target conditional distribution 

( )p w h  by 

            
,

( ) ( ) ( ) ( , )i i
h w

p f p h p w h f h w= ∑ � .                       (5) 

Because the target distribution is required to contain all the information provided by these 
features, we specify these constraints 

           ( ) ( ),      for 1, ,  i ip f p f i N= =� " .                      (6) 

Under these constraints, we maximize the conditional entropy or uniformity of distribution 
( )p w h . Lagrange optimization is adopted to solve this constrained optimization problem. For 

each feature if , we introduce a Lagrange multiplier iλ . The Lagrangian function ),( λpΛ  
is extended by 

1
( , ) ( ) ( ) ( )

N
i i i

i
p H p p f p fλ λ

=
Λ = + −⎡ ⎤⎣ ⎦∑ � ,                   (7) 

with conditional entropy defined by 

,
( ) ( ) ( ) log ( )

h w
H p p h p w h p w h= − ∑ � .                    (8) 
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Finally, the target distribution ( )p w h  is estimated as a log-linear model distribution 

1

1( ) exp ( , )
( )

N
i i

i
p w h f h w

Z hλ
λ

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ,                     (9) 

where ( )Z hλ  is a normalization term in the form of  

1
( ) exp ( , )

N
i i

w i
Z h f h wλ λ

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ,                     (10) 

determined by the constraint ( ) 1w p w h =∑ . The General Iterative Scaling (GIS) algorithm or 
Improved Iterative Scaling (IIS) algorithm [Darroch and Ratcliff 1972; Berger et al. 1996; 
Della Pietra et al. 1997] can be used to find the Lagrange parameters λ . The IIS algorithm is 
briefly described as follows. 

 

Input:  Feature functions 1 2, , , Nf f f"  and empirical distribution ( , )p h w�  

Output: Optimal Lagrange multiplier iλ̂  

1. Start with 0iλ =  for all 1, 2, ,i N= " . 

2. For each 1, 2, ,i N= " : 

a.  Let iλ∆  be the solution to 

,
( ) ( ) ( , ) exp( ( , )) ( )i i i

h w
p h p w h f h w F h w p fλ∆ =∑ � � , 

where 
1

( , ) ( , )
N

i
i

F h w f h w
=

= ∑ . 

b. Update the value of iλ  according to iii λλλ ∆+= .  

3. Go to step 2 if any iλ  has not converged. 

 

With the parameters }ˆ{ iλ , we can calculate the ME language model by using Eqs. (9) and 
(10). 

2.2 Relation between ML and ME Modeling 
It is interesting to note the relation between maximum likelihood (ML) and ME language 
models. The purpose of ML estimation is to find a generative model with the maximum 
likelihood of training data. Generally, the log-likelihood function is adopted in the form of 

( , )

,,
( ) log ( | ) ( , ) log ( | )p h w

h wh w
L p p w h p h w p w h= = ∑∏ � � .                 (11) 
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Under the same assumption that the target distribution ( )p w h  is log-linear, as shown in Eqs.  
(9) and (10), the log-likelihood function is extended to 

1
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i i

i
Nh w

i i
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By taking the derivative of the log-likelihood function with respect to iλ  and setting it at 
zero, we can obtain the same constraints in Eq. (6) by using the following derivations: 
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In other words, the ME model is equivalent to an ML model with a log-linear model. In Table 
1, we compare various properties using ML and ME criteria. Under the assumption of 
log-linear distribution, the optimal parameter MLλ  is estimated according to the ML 
criterion. The corresponding ML model 

MLλp  is obtained through an unconstrained 
optimization procedure. On the other hand, ME performs the constrained optimization. The 
ME constraint allows us to determine the combined model 

MLλp  with the highest entropy. 
Interestingly, these two estimation methods achieve the same result. 

Table 1. Relation between ML and ME language models 

Objective function )( λpL  )( pH  

Criterion Maximum Likelihood Maximum Entropy 

Type of search Unconstrained optimization Constrained optimization 

Search space real valuesλ ∈  p satisfied with constraints 

Solution MLλ  MEp  

MEML
pp =λ  
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2.3 Minimum Discrimination Information and Latent ME 
The ME principle is a special case of minimum discrimination information (MDI) that has 
been successfully applied to language model adaptation [Federico 1999]. Let ( , )bp h w  be the 
background model trained from a large corpus of general domain, and ( , )ap h w  represents 
the adapted model estimated from an adaptation corpus of new domain. In the MDI adaptation, 
the language model is adapted by minimizing the distance between the background model and 
the adapted model. The non-symmetric Kullback-Leibler distance (KLD) 

( , )
( ( , ), ( , )) ( , ) log

( , )
a

a b a
w b

p h w
D p h w p h w p h w

p h w
= ∑                 (14) 

is used for distance measuring. Obviously, when the background model is a uniform 
distribution, the MDI adaptation is equivalent to the ME estimation. More recently, the ME 
principle was extended to latent ME (LME) mixture modeling, where the latent variables 
representing underlying topics were merged [Wang et al. 2004]. To find the LME solution, the 
modified GIS algorithm, called expectation maximization iterative scaling (EM-IS), was used. 
The authors also applied the LME principle to incorporate probabilistic latent semantic 
analysis [Hofmann 1999] into n-gram modeling by serving the semantic information as the 
latent variables [Wang et al. 2003]. In this study, we use the semantic information as explicit 
features for ME language modeling. Latent semantic analysis (LSA) is adopted to build 
semantic topics. 

3. Integration of Semantic Information and N-Gram Models 

Modeling long-distance information is crucial for language modeling. In [Chien and Chen 
2004; Chien et al. 2004], we successfully incorporated long-distance association patterns and 
latent semantic knowledge in language models. In [Wu and Khudanpur 2002], the integration 
of statistical n-gram and topic unigram using the ME approach was presented. Clustering of 
document vectors in the original document space was performed to extract topic information. 
However, the original document space was generally sparse and filled with noises caused by 
polysemy and synonymy [Deerwester et al. 1990]. To explore robust and representative topic 
characteristics, here we introduce a new knowledge source to extract long-distance semantic 
information for n-gram modeling. Our idea is to adopt the LSA approach and extract semantic 
topic information from the reduced LSA space. The proposed procedure of ME semantic topic 
modeling is illustrated in Figure 1. Because the occurrence of a word is highly related to the 
topic of current discourse, we apply LSA to build representative semantic topics. The 
subspace of semantic topics is constructed via k-means clustering of document vectors 
generated from the LSA model. Furthermore, we combine semantic topics and conventional 
n-grams under the ME framework [Chueh et al. 2004]. 
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      Figure 1. Implementation procedure for ME semantic topic modeling 

3.1 Construction of Semantic Topics 
Latent semantic analysis (LSA) is popular in the areas of information retrieval [Berry et al. 
1995] and semantic inference [Bellegarda 2000]. Using LSA, we can extract latent structures 
embedded in words across documents. LSA is feasible for exploiting these structures. The first 
stage of LSA is to construct an M D×  word-by-document matrix A . Here, M  and D  
represent the vocabulary size and the number of documents in the training corpus, respectively. 
The expression for the ( , )i j  entry of matrix A  is [Bellegarda 2000] 

,
, (1 ) i j

i j i
j

c
a

n
ε= − ,                            (15) 

where jic ,  is the number of times word iw  appears in document jd , jn  is the total 
number of words in jd , and iε  is the normalized entropy of iw , computed by 

, ,

1

1 log
log

D i j i j
i

j i i

c c
D t t

ε
=

= − ∑ ,                       (16) 

where it  is the total number of times term iw  appears in the training corpus. In the second 
stage, we project words and documents into a lower dimensional space by performing singular 
value decomposition (SVD) for matrix A  

T T
R R R R= Σ ≈ Σ =A U V U V A ,                      (17) 

where RΣ  is a reduced R R×  diagonal matrix with singular values, RU  is an M R×  
matrix whose columns are the first R  eigenvectors derived from word-by-word correlation 
matrix TAA , and RV  is a D R×  matrix whose columns are the first R  eigenvectors 
derived from the document-by-document correlation matrix TA A . The matrices U , Σ , and 
V  are original full matrices for RU , RΣ , and RV , respectively. The reduced dimension 
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has the property min( , )R M D< . After the projection, each column of T
R RΣ V  characterizes 

the location of a particular document in the reduced R-dimensional semantic space. Also, we 
can perform document clustering [Bellegarda 2000; Bellegarda et al. 1996] in the common 
semantic space. Each cluster consists of related documents in the semantic space. In general, 
each cluster in the semantic space reflects a particular semantic topic, which is helpful for 
integration in language modeling. During document clustering, the similarity of documents 
and topics in the common semantic space is determined by a cosine measure 

sim( , ) cos( , )
| || |

T T
j R R kT T

j k R j R k T T
R j R k

= =
d U U t

d t U d U t
U d U t

,               (18) 

where jd , kt  are the vectors constructed by document j and document cluster k, 
respectively. T

R jU d and T
R kU t  are the projected vectors in the semantic space. By assigning 

topics to different documents, we can estimate the topic-dependent unigram ( )i kp w t  and 
incorporate this information into the n-gram model. In what follows, we present two 
approaches for integrating the LSA information into the semantic language model, namely the 
linear interpolation approach and the maximum entropy approach. 

3.2 Integration via Linear Interpolation 
Linear interpolation (LI) [Rosenfeld 1996] is a simple approach to combining information 
sources from n-grams and semantic topics. To find the LI n-gram model, we first construct a 
pseudo document-vector from a particular historical context h . Using the projected document 
vector, we apply the nearest neighbor rule to detect the closest semantic topic kt  
corresponding to history h . Given n-gram model n ( )p w h  and topic-dependent unigram 
model ( )kp w t , the hybrid LI language model is computed by 

( ) ( ) ( )kp w h k p w h k p w= +LI n n t t ,                  (19) 

where the interpolation coefficients have the properties n t0 , 1k k< ≤  and n t 1k k+ = . 
Without the loss of generalization, an n-gram model and a topic-dependent model are 
integrated using fixed weights. Also, the expectation-maximization (EM) algorithm [Dempster 
et al. 1977] can be applied to dynamically determine the value of these weights by minimizing 
the overall perplexity. 

3.3 Integration via Maximum Entropy 
More importantly, we present a new ME language model combining information sources of 
n-grams and semantic topics. N-grams and semantic topics serve as constraints for the ME 
estimation. As shown in Table 2, two information sources partition the event space so as to 
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obtain feature functions. Here, the trigram model is considered. Let iw  denote the current 
word to be predicted by its historical words. The columns and rows represent different 
constraints that are due to trigrams and semantic topics, respectively. The event space is 
partitioned into events En  and Et  for different cases of n-grams and semantic topics, 
respectively. It comes out of the probability of the joint event ( , )p E En t  to be estimated. 

Table 2. Event space partitioned according to trigrams and semantic topics 

iww =  1 n1ends in ( )h w E  1 2 n2 ends in , ( )h w w E 2 3 n3ends in , ( )h w w E  …  

1 t1( )h E∈ t  n1 t1( , )p E E  n2 t1( , )p E E  n3 t1( , )p E E  …  

2 t2( )h E∈ t  n1 t2( , )p E E  n2 t2( , )p E E  n3 t2( , )p E E  …  

#  #  #  #  …  

Accordingly, the feature function for each column or n-gram event is given by 

        1 2n 1  if  ends  in ,  and 
( , )

0 otherwise
i i i

i
h w w w w

f h w − − =⎧
= ⎨
⎩

.                (20) 

In addition, the feature function for each row or semantic topic event has the form 

                 t 1 if  and 
( , )

0 otherwise
k i

i
h w w

f h w
∈ =⎧

= ⎨
⎩

t
.                     (21) 

We can build constraints corresponding to the trigrams and semantic topics as follows: 

 

Trigram:  

n n
2 1( ) ( ) ( , ) ( , ) ( , ) ( , , )i i i i i

h,w h,w
p h p w h f h w p h w f h w p w w w− −= =∑ ∑� � � .           (22) 

Semantic topics: 

t t( ) ( ) ( , ) ( , ) ( , ) ( , )i i k i
h,w h,w

p h p w h f h w p h w f h w p h w= = ∈∑ ∑ t� � � .            (23) 

Under these constraints, we apply the IIS procedure described in Section 2.1 to estimate 
feature parameters n

iλ  and t
iλ , used for combining information sources from trigrams and 

semantic topics, respectively. Finally, the solution provided by the ME semantic language 
modeling ME ( )p w h  is computed by substituting n

iλ  and t
iλ  into Eqs. (9) and (10). We 

will compare the performance of LI language model LI ( )p w h  and ME language model 

ME ( )p w h  in the following experiments. 
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4. Experimental Results 

In this study, we evaluate the proposed ME language model by measuring the model 
perplexity and the character-error rate in continuous speech recognition. The conventional 
n-gram language model is used as the baseline, while the ME language model proposed by Wu 
and Khudanpur [2002] is also employed for comparison. In addition, we also compare the 
maximum-entropy-based (ME) hybrid language model with the linear-interpolation-based (LI) 
hybrid language model. In the experiments, the training corpus for language modeling was 
composed of 5,500 Chinese articles (1,746,978 words in total) of the TDT2 Corpus, which 
were collected from the XinHua News Agency [Cieri et al. 1999] from January to June in 
1998. The TDT2 corpus contained the recordings of broadcasted news audio developed for the 
tasks of cross-lingual cross-media Topic Detection and Tracking (TDT) and speech 
recognition. The audio files were recorded in single channel at 16 KHz in 16-bit linear 
SPHERE files. We used a dictionary of 32,909 words provided by Academic Sinica, Taiwan. 
18,539 words in this dictionary occurred at least once in the training corpus. When carrying 
out the LSA procedure, we built a 32,909 5,500×  word by document matrix A  from the 
training data. We used MATLAB to implement SVD and k-means operations and, accordingly, 
performed document clustering and determined semantic topic vectors. The topic-dependent 
unigram was interpolated with the general unigram for model smoothing. The dimensionality 
of the LSA model was reduced to 100R = . We performed the IIS algorithm with 30 
iterations. All language models were smoothed using Jelinek-Mercer smoothing [Jelinek and 
Mercer 1980], which is calculated based on the interpolation of estimated distribution and 
lower order n-grams. 

4.1 Convergence of the IIS Algorithm 
First of all, we examine the convergence property of the IIS algorithm. Figure 2 shows the 
log-likelihood of the training data using the ME language model versus different IIS iterations. 
In this evaluation, the number of semantic topics was set at 30. The ME model that combines 
the features of trigram and semantic topic information was considered. Typically, the 
log-likelihood increases consistently with the IIS iterations. The IIS procedure for the ME 
integration converged after five or six iterations. 

4.2 Evaluation of Perplexity 
One popular evaluation metric for language models for speech recognition is the perplexity of 
test data. Perplexity can be interpreted as the average number of branches in the text. The 
higher the perplexity, the more branches the speech recognition system should consider. 
Generally speaking, a language model with lower perplexity implies less confusion in 
recognition and achieves higher speech-recognition accuracy. To evaluate the perplexity, we 
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selected an additional 734 Chinese documents from the XinHua News Agency, which 
consisted of 244,573 words, as the test data. First, we evaluated the effect of the length of 
history h  for topic identification. The perplexities of LI and ME models are shown in 
Figures 3 and 4, respectively. Here, C represents the number of document clusters or semantic 
topics. In the LI implementation, for each length of history h , the interpolation weight with 
the lowest perplexity was empirically selected. It is obvious that the proposed ME language 
model outperforms Wu’s ME language model [Wu and Khudanpur 2002] and the ME 
language model outperforms the LI language model. Furthermore, a larger C produces lower 
perplexity and the case that considering 50 historical words obtains the lowest perplexity. 
Accordingly, we fixed the length of h  at 50 in the subsequent experiments. Table 3 details 
the perplexities for bigram and semantic language models based on LI and ME. We found that 
the perplexity was reduced from 451.4 (for the baseline bigram) to 444.7 by using Wu’s 
method and to 441 by using the proposed method when the combination was based on linear 
interpolation (LI) and the topic number was 30. With the maximum entropy (ME) estimation, 
the perplexity was further reduced to 399 and 393.7 by using Wu’s method and the proposed 
method, respectively. No matter whether Wu’s method or the proposed method was used, the 
ME language model consistently outperformed the LI language model with different numbers 
of semantic topics. We also evaluated these models based on the trigram features. The results 
are summarized in Table 4. We can see that, by integrating latent semantic information into 
the trigram model, the perplexity is reduced from 376.6 (for the baseline trigram) to 345.3 by 
using the LI model and to 309.3 by using the ME model, for the case of C=100. The 
experimental results again demonstrate that the performance improves with the number of 
semantic topics and that the proposed method consistently outperforms Wu’s method, though 
the improvement is not very significant. 
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Figure 2. Log-Likelihood of training data versus the number of IIS iterations 
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Figure 3. Perplexity of the LI model versus the length of history 
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Figure 4. Perplexity of the ME model versus the length of history 



 

 

50                                                    Chuang-Hua Chueh et al. 

 

Table 3. Comparison of perplexity for bigram, LI and ME semantic language models 

Wu's method Proposed method 
  Bigram 

LI ME LI ME 

C=30 444.7 399 441 393.7 

C=50 442.9 402 438 394.8 

C=100 

451.4 

437 397.2 435.7 401.2 

Table 4. Comparison of perplexity for trigram, LI and ME semantic language models 

Wu's method Proposed method 
  Trigram 

LI ME LI ME 

C=30 355.1 317.1 349.7 311.9 

C=50 353.3 315.9 347.1 310.4 

C=100 

376.6 

347.1 309.9 345.3 309.3 

4.3 Evaluation of Speech Recognition 
In addition to perplexity, we evaluated the proposed language models for a continuous 
Mandarin speech recognition task. Character-error rates are reported for comparison. The 
initial speaker-independent, hidden Markov models (HMM’s) were trained by the benchmark 
Mandarin speech corpus TCC300 [Chien and Huang 2003], which was recorded in office 
environments using close-talking microphones. We followed the construction of 
context-dependent sub-syllable HMM’s for Mandarin speech presented in [Chien and Huang 
2003]. Each Mandarin syllable was modeled by right context-dependent states where each 
state had, at most, 32 mixture components. Each feature vector consisted of twelve 
Mel-frequency cepstral coefficients, one log energy, and their first derivatives. The maximum 
a posteriori (MAP) adaptation [Gauvian and Lee 1994] was performed on the initial HMM’s 
using 83 training sentences (about 10 minutes long), from Voice of America (VOA) news, in 
the TDT2 corpus for corrective training. The additional 49 sentences selected from VOA news 
were used for speech recognition evaluation. This test set contained 1,852 syllables, with a 
total length of 6.6 minutes. To reduce the complexity of the tree copy search in decoding a test 
sentence, we assumed each test sentence corresponded to a single topic, which was assigned 
according to the nearest neighbor rule. Due to the above complexity, in this study we only 
implemented the language model by combining bigram and semantic information in our 
recognizer. Figure 5 displays the character-error rate versus the number of topics. We can see 
that the character-error rate decreases in the beginning and then increases as the number of 
topics increases. Basically, more topics provide higher resolution for representing the 
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information source. However, the model with higher resolution requires larger training data 
for parameter estimation. Otherwise, the overtraining problem occurs and the performance 
degrades accordingly. The character-error rates used in Wu’s method and the proposed 
method are summarized in Table 5. In the case of C=50, the proposed LI model can achieve an 
error-rate reduction of 8.5% compared to the bigram model, while the proposed ME model 
attains a 16.9% error-rate reduction. The proposed method in general achieves lower error 
rates compared to Wu’s method. 
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Figure 5. Character error rate (%) versus the number of topics 

Table 5. Comparison of character error rate (%) for bigram, LI and ME semantic 
language models 

Wu's method Proposed method 
  Bigram 

LI ME LI ME 

C=30 38.9 36.4 36.7 34.9 

C=50 38.1 36.8 37.9 34.4 

C=100 

41.4 

38.3 36.5 37.3 36.1 

To evaluate the statistical significance of performance difference between the proposed 
method and Wu’s method, we applied the matched-pairs test [Gillick and Cox 1989] to test 
the hypothesis that the number of recognition errors that occur when using the proposed 
method is close to that with Wu’s method. In the evaluation, we calculated the difference 
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between character errors induced by Wu’s method aE  and the proposed method tE  for 
each utterance. If the mean of variable t az E E= −  was zero, we accepted the conclusion that 
these two methods are not statistically different. To carry out the test, we calculated the 
sample mean zµ  and sample variance zσ  from N utterances and determined the test 
statistic ( )z z Nω µ σ= . Then, we computed the probability 2Pr( )P z ω= ≥  and 
compared P with a chosen significance level α . When P α< , this hypothesis was rejected 
or, equivalently, the improvement obtained with the proposed method was statistically 
significant. In the evaluation, we applied the respective best case of Wu’s method and the 
proposed method (i.e., ME language modeling, and C=30 for Wu’s method but C=50 for the 
proposed method) in the test and obtained a P value of 0.0214. Thus, at the 0.05α =  level of 
significance, the proposed method is better than Wu’s method. That is, the proposed LSA 
based topic extraction is desirable for discovering semantic information for language 
modeling. 

5. Conclusions 

We have presented a new language modeling approach to overcome the drawback of lacking 
long-distance dependencies in a conventional n-gram model that is due to the assumption of 
the Markov chain. We introduced a new long-distance semantic information source, called the 
semantic topic, for knowledge integration. Instead of extracting the topic information from the 
original document space, we proposed extracting semantic topics from the LSA space. In the 
constructed LSA space with reduced dimensionality, the latent relation between words and 
documents was explored. The k-means clustering technique was applied for document 
clustering. The estimated clusters were representative of semantic topics embedded in general 
text documents. Accordingly, the topic-dependent unigrams were estimated and combined 
with the conventional n-grams. When performing knowledge integration, both linear 
interpolation and maximum entropy approaches were carried out for comparison. Generally 
speaking, linear interpolation was simpler for implementation. LI combined two information 
sources through a weighting factor, which was estimated by minimizing the overall perplexity. 
This weight was optimized globally such that we could not localize the use of weights for 
different sources. To achieve an optimal combination, the ME principle was applied. Each 
information source served as a set of constrains to be satisfied for model combination. The IIS 
algorithm was adopted for constrained optimization. From the experimental results of Chinese 
document modeling and Mandarin speech recognition, we found that ME semantic language 
modeling achieved a desirable performance in terms of model perplexity and character-error 
rates. The combined model, through linear interpolation, achieved about an 8.3% perplexity 
reduction over the trigram model. The proposed semantic language model did compensate the 
insufficiency of long-distance information in a conventional n-gram model. Furthermore, the 
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ME semantic language model reduced perplexity by 17.9%. The ME approach did provide a 
delicate mechanism for model combination. Also, in the evaluation of speech recognition, the 
ME semantic language model obtained a 16.9% character-error rate reduction over the bigram 
model. The ME model was better than the LI model for speech recognition. In the future, we 
will validate the coincidence between the semantic topics discovered by the proposed method 
and the semantic topics labeled manually. We will also extend the evaluation of speech 
recognition using higher-order n-gram models over a larger collection of speech data. 
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