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ABSTRACT 
 
      Scan-conversion of Archimedes' spiral (a straight line in polar coordinates) is investigated. 

It is shown that an exact algorithm requires transcendental functions and, thus, cannot have a fast and 
exact integer implementation. Piecewise polynomial approximations are discussed and a simple algorithm 
based on piecewise circular approximation is derived. Variations of the algorithms allow to scan convert 
other types of spirals. 
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1. INTRODUCTION 
 
Due to the success of raster displays, scan 
conversion algorithms are fundamental in computer 
graphics. Especially the scan conversion of lines has 
been drawing attention since the sixties [Brese65] 
and seems to be still an interesting topic [Steph00, 
Steph01]. 
The underlying principle of Bresenham's line 
drawing algorithm -- the midpoint technique -- 
extends to conics [Pitte67, VanAk84] and higher 
order polynomials using partial forward differencing 
(e.g.  [Foley90]). 
 
More complicated curve primitives, however, have 
been less considered as objects for direct scan 
conversion. Most of these curves could only be scan 
converted using general purpose graphing 
techniques. Graphing is still an active research field  
[Tuppe01] and, naturally, generality comes at the 
price of speed.  
 
This work concentrates on scan converting 
Archimedes' spiral.  In polar coordinates this spiral is 
a line: 
 

bmr +⋅= ϕϕ )(                                (1) 
 

This spiral has proved to be an effective primitive in 
information visualization [Weber01]. It effectively 
uses the available screen real estate and allows data 
comparison among subsequent data elements as well 
as among elements with the same phase. The latter 
comparison highlights cyclic patterns in the data. A 
smooth animation through different cycle lengths 
facilitates the human visual system for the detection 
of such patterns. Yet, to display the animation, 
spirals have to be drawn quickly and smoothly. 
 
In the following, some straightforward approaches 
for drawing spirals on raster displays are discussed 
and their suitability with respect to the characteristics 
accuracy, drift, and speed is evaluated. We conclude 
that among these approaches only piecewise 
elliptical and circular approximations deserve 
attention.  
However, piecewise elliptical approximation is 
shown to have systematic derivative error and 
varying approximation quality depending on the 
spiral’s slope m.  
 
We, then, present a simple and fast approximation 
algorithm based on circular arcs. This algorithm is 
discussed in detail and its relative performance is 
analyzed.  
 
The presented algorithm has several notable features. 



 

 

• The arcs are quarter-circles corresponding 
with the coordinate system’s quadrants, 
which avoid initialization problems for the 
circle scan conversion. 

 
• It allows a pure integer implementation (for 

sufficient spiral parameters) so that no drift 
occurs. 

 
• It has bounded error, where the error bound 

decreases with increasing winding number. 
 

• It generates smooth 1G  curves and the 
approximation converges against the exact 
spiral. 

 
The algorithm might be altered to generate spirals 
other than Archimedes'. 
 
 
2. DIRECT SCAN CONVERSION 
 
A general approach for scan converting curves is the 
midpoint algorithm [Pitte67, VanAk84].  The idea is 
to represent the curve in an implicit form as  
 

0),( =yxF                                        (2) 
 
so that F  could  be used to decide whether a point is 
above or below the line. F is applied to midpoints 
between two candidate pixels and depending on the 
below/above information one of the candidate pixels 
is chosen.  
 
However, the curve has to be split into regions, 
which meet at points where the partial derivatives of 
F are equal. In these regions the x or y component is 
increased by one, while the other component is 
increased (or not increased) depending on the 
below/above information (decision variable) e.g. 

0)5.0,1( =++ yxF .  
During the scanning, function evaluation is avoided 
by using finite partial differences. These finite partial 
differences are typically also used to find the end 
respectively start points of the regions. This 
approach is now applied to the spiral. 
 
Inserting (1) in the distance equation 222 ryx =+  
and considering that ϕ  is expressed as 

)arctan( xy=ϕ , the substitution leads to the 
following expression in Cartesian coordinates for a 
linear spiral: 
 

222 ))arctan((),( bxymyxyxF +⋅−+=         (3) 
 
The necessary partial differences are 
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Note that the partial differences (whether finite or 
not) contain the arctan function. This has two 
implications: 
 

• The computation is not significantly 
simplified by a forward differencing 
approach as the evaluation of the arctan 
still dominates the computation. 

 
• Error cannot be avoided, as the arctan 

function is transcendental for some 
arguments. Thus, the algorithm is almost 
prone to drift. 

 
While a certain drift is unavoidable, the 
trigonometric function could be replaced with 
polynomial series expansion. This polynomial would 
allow an effective implementation of the forward 
differencing approach. 
 
The inverse tangent function can be expanded to the 
following power series: 
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This expansion needs to be inserted in (3) and (4) to 
yield polynomial expressions for F. By varying the 
number of terms, this expansion allows to trade 
accuracy for complexity. We have analyzed this 
approach experimentally.  
 
First, the implementation of forward differencing for 
high degree polynomials is cumbersome and error-
prone. More importantly, even when using many 
terms, the error accumulates quickly so that the 
overall scan conversion fails. Incremental algorithms 
seem to strongly depend on near-exact arithmetic. 
 
Because of these reasons we believe there is no 
suitable incremental algorithm for scan converting 
spirals. 
 



 

 

 
3. PIECEWISE INTERPOLATION 
 
A piecewise approximation is usually built by 
exactly computing several points of the curve and 
then interpolating these points with primitives that 
are easy to scan-convert. The simplest primitive for 
interpolation is a line segment; more complex 
alternatives are circular arcs, then elliptical arcs, 
general conics, and so on. 
 
This method requires to compute some points on the 
spiral. The coordinates of these points are given by 
the following form 
 

( , ) (( ) cos( ), ( ) sin( ))x y m b m bϕ ϕ ϕ ϕ= + ⋅ + ⋅         (5)          
 
Some of these points are easier to compute than 
others. Specifically, the points on the coordinate 
axes  
 
( , ) ((2 ),0)x y km bπ= + , 
( , ) (0, ((2 1) ))x y k m bπ= + +          (6) 
 
are the only points which are guaranteed to be 
integer given that m bπ +  is integer. Furthermore, 
they allow to avoid the evaluation of trigonometric 
functions. This evaluation might be avoided for 
many angles by using tables. However, this 
necessarily limits the number of points to a fixed set 
of angles modulo 4π. 
We have found that piecewise linear as well as 
piecewise circular interpolation is difficult using 
such points.  
 

• The approximation quality of linear pieces 
depends on the length of the line segments. 
Using a fixed set of angles, the length of a 
line segment (and, thus, the error) is 
unbounded.  

 
• Circular arcs could not have the origin as 

their center and it is not clear what other 
point could be used as center. Note, 
however, that using other centers and 
interpolating other points on the spiral leads 
to the algorithm proposed in this work. 

 
While linear or circular pieces (used in a naive way) 
are inadequate, elliptical arcs are an interesting 
alternative. The following algorithm provides such 
an approximation: 
Define a quarter-ellipse having the value of 

2π⋅= md  as difference between the major and 
minor semi-axis and draw it from )0,( 0 bA +  to 

),0( 0 bdA ++ . Subsequent elliptical quarters 
increase every semi-axis’ value by d  and the center 

remains constant in the origin. Thus, all elliptical 
arcs are joined yielding a continuous increment of 
the radius in the resulting spiral (see Figure 1). 
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Figure 1: Quarter ellipse spiral, iterative 
construction. 
 
 
This leads to two important consequences: 
 

• In each of the four quadrants quarter-
ellipses have a constant distance of d4  
between each period, as in Archimedes’ 
spiral.  

 
• A general major semi-axis has the value of 

dAA nn += −1 ; therefore, elliptical arcs 
meet with the same semi-axis length and the 
resulting curve is 1C . 

 
The implementation of the algorithm is quite simple 
given a method to scan convert axis aligned quarter-
ellipses. 
 
Nevertheless this approximation has two problems. 
First, approximation quality strongly depends on the 
spirals eccentricity m and, second, the approximation 
does not converge against Archimedes’ spiral. 
Especially the first quarter of the approximation 
shows most notably the difference between the two 
semi-axes. If m is large, the difference between a 
spiral quarter and an ellipse is significant. 
 
As the approximation is tangent continuous, the 
points of the spiral that cross the axes have tangents 
that result to be perpendicular to the axes. This is not 
the case for a linear spiral. Note that these horizontal 
and vertical tangents are an invariant for the 
elliptical approximation, thus it cannot converge 



 

 

against the desired values. This problem cannot be 
avoided, as all elliptical approximations with the 
origin as their center would have wrong tangents. 
On the other hand it is interesting to note that, 
varying the d  parameter in this algorithm, it could 
be possible to obtain 1C  approximations for spirals 
of the Archimedean family. 
 
 
4. QUARTER CIRCLE ALGORITHM 
 
Here we present a fairly simple algorithm with good 
accuracy and bounded error. The algorithm is 
inspired by ancient techniques to draw 
approximations to spirals [Stew95]. These 
techniques due to Fibonacci and Padovan assemble a 
set of squares or triangles and use circular arcs (see 
Figure 2). Yet, these algorithms provide 
approximations to spirals with growing eccentricity 
(i.e. exponential spirals). 
 

  
 
Figure 2: Fibonacci and Padovan spirals. 
 
 
Let’s take a closer look at Fibonacci’s algorithm. 
Obviously, the growth the base lengths the squares 
controls the growth of the spiral’s radius. If the base 
length of the squares would grow linearly, an 
approximation to Archimedes’ spiral is found. The 
following simple algorithm exploits this idea. 
 
Consider again the expression of an Archimedean 
spiral 
 

bmr +⋅= ϕϕ )(  
 
and let 4π⋅= md  define four points ),( ddci ±±=  
in the four quadrants of the coordinate system (see 
Figure 3).  
Ignoring for now the first segment of the spiral, a 
circular arc with center ),(1 ddc −=  and radius 

bdA += 21  is drawn from ),( dbd +  to 
)3,( bdd +− .  

 
Figure 3 explains how the center points ic  are 
chosen in turn, and quarter circles are drawn starting 
from the last point of the previous circular arc. 
Note that radius increases by d2  in each step, 
consequently the expression for the quarter circles 
radii is: 

ndAdAA nn ⋅+=+=+ 22 11          (7) 
 

with bdA += 21  and +∈ Nn . 
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Figure 3: Illustration of the piecewise circular 
approximation to a spiral. 
 
 
Considering the circles quarters in a quadrant the 
radii are 
 

diAA qiq ⋅+=+ 84                         (8) 
 
where Ni ∈  is the periods number and [ ]4,3,2,1∈q  
gives the first circle radius value for each of the four 
quadrants.  In the first quadrant we have 1=q , so 
that the sequence of the concentric circles´ quarters 
radii results to be ,...,,, 13951 AAAA   
 
If d  and b  are chosen to be integer, the algorithm 
can be implemented using only integer addition. The 
circular arcs require (after set up) only two additions, 
and the step from each circular arc to the next 
requires another two additions.  
 
In order to better exemplify the succession of the 
quarter radii and the position of the related centers 
points, we propose the following tables, where the 
steps are analyzed for each of the four quadrants and 
iteratively for every period, considering the 
parameter i . 
 
Step  Quarter circles 

radii 
Quarters center 
points 

(1+4i)° 2*d+b +8i*d (-d,d) 
(2+4i)° 4*d+b +8i*d (-d,-d) 
(3+4i)° 6*d+b +8i*d (d,-d) 
(4+4i)° 8*d+b +8i*d (d,d) 



 

 

Step  Quarter starting 
point 

Quarter end point 

(1+4i)° (d+b+8i*d,d) (-d,3*d+b+8i*d) 
(2+4i)° (-d,3*d+b+8i*d) (-5*d-b-8i*d,-d) 
(3+4i)° (-5*d-b-8i*d,-d) (d,-7*d-b-8i*d) 
(4+4i)° (d,-7*d-b-8i*d) (9*d+b+8i*d,d) 
 
Figure 4: Initializing table for the algorithm’s 
step. 
 
 
It is easy to see, see Fig. 4, how (according to the 
belonging quadrant) the quarter starting (end) points 
always have a fixed y (x) coordinate and an x (y) 
coordinate given by the radii values, opportunely 
translated by the quantity –d (+d).  
Moreover, each quarter starting point is 
automatically given by the quarter end point of the 
previous step. 
 
We previously reserved to describe the behavior of 
the first spiral segment. It is known, that the center of 
a spiral represents a particular case of singularity: i.e. 
it is a point about which the curve twists infinitely 
and at which the function is not defined. Also in our 
algorithm, this point leads to an exception, as it is the 
only arc whose center does not belong to the defined 

ic , but it results to be placed in the point ),( db  (see 
Fig. 5).  
We also investigated ways to achieve better 
performances by varying the length and the center 
position of this first circular arc, anyway the 
explained case (arc length bdA +=0 , center 
position in ),(0 dbc = ) results to produce an easier 
implementation, and consequently we calculate the 
error in this case as an upper bound. 
The argument for this algorithm with respect to 
approximation quality is this: The distance of two 
circular arcs with the same center is md ⋅= π28  as 
required. However, this distance is not measured 
with respect to the origin, as it should be, but with 
respect to the circles´ centers in every quadrant. 
 
Yet, the absolute approximation error depends on the 
ratio of d and r , which means it diminishes for 
large r . Furthermore, circular segments meet with 
horizontal or vertical tangent. Thus, the resulting 
approximation is 1G . Note that it is not 1C  as the 
meeting circular arcs have different radii.  
 
 
 
As explained, depending on the translation between 
the two origins, the relative distances of the origins 
to the function’s points are different.  
Referring to the first quadrant (see Figure 5), a 
general radius starting from the system coordinates 
origin is given by: 

22
)1(44 )8( dddARR iqiqn +−+== −++          (9) 

 
and a generic radius starting from the circles´ center 
is given by (8):  
 
                 dAAA iqiqn 8)1(44 +== −++  
 
Let’s consider again Figure 5: using Pitagora´s 
theorem it is possible to see how, increasing the 
rotating angle θ , the difference between the radii 

nR  and nA  progressively decreases, as the angles α  
given by the defined radii also decrease.  
As a result, the approximation error is maximum 
close to the origin and progressively decreases when 
we increase the angle θ  in the following quadrants 
and thus with increasing periods number.  
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Figure 5: Error bound’s calculation. 
 
 
To give an error bound on the approximation 
depending on the radius we investigate the behavior 
at points on the positive x -axis. The desired radius 
is diimri ⋅=⋅⋅= 82π , while the approximation 
leads to 
 

22)8(´ ddir i −⋅=                      (11) 
 
This leads to a relative error of 
 

264
111)(
i

ie −−=                       (12) 

 
which quickly vanishes with increasing cycle number  
i . 
 



 

 

5. VARIATIONS & FUTURE WORK 
 
There is an intricate relationship between the spirals’ 
eccentricity and the center points ic . If the distance 
between these points is constant the growth of the 
radius is linear. However, altering the distance of the 
center points should allow to change the growth of 
radius. 
 
It seems that, instead of keeping the arcs´ centers 
fixed for every quadrant with a relative distance of 

d2 , if the distance between these points is 
constantly increased this would result an exponential 
spiral. If it is decreased it results in a logarithmic 
spiral. However, this has to be investigated more 
thoroughly and we regard it as future work. 
 
In general, the variation of the center points allows 
the scan converting of a variety of different spiral 
curves. All of these approximations are simple to 
implement and generate 1G  approximations. 
 
 
6. CONCLUSIONS 
 
We have investigated several methods to render 
Archimedes’ spiral. Two algorithms have been 
derived and explained, the approximation error has 
been analyzed and the results are quite satisfactory. 
 
The quarter ellipse algorithm produces a 1C  curve, 
but the resulting approximation has systematic error.  
 
The quarter circle algorithm is simple in 
implementation and execution; the approximation 
error depends on a translation offset and, thus, is 
only relative and diminishes with increasing winding 
number. The resulting curve is 1G . 
 
Both algorithms allow the use of integer arithmetic; 
consequently they offer great simplicity and fast 
implementation. They take advantage of symmetry 
characteristics and avoid calculations´ redundancy 
and trigonometric complexity. 
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