
Avatara: OLAP for Web-scale Analytics Products

Lili Wu Roshan Sumbaly Chris Riccomini Gordon Koo Hyung Jin Kim Jay Kreps Sam Shah

LinkedIn

{lwu,rsumbaly,criccomini,gkoo,ekim,jkreps,samshah}@linkedin.com

ABSTRACT

Multidimensional data generated by members on websites has seen

massive growth in recent years. OLAP is a well-suited solution for

mining and analyzing this data. Providing insights derived from

this analysis has become crucial for these websites to give members

greater value. For example, LinkedIn, the largest professional social

network, provides its professional members rich analytics features

like “Who’s Viewed My Profile?” and “Who’s Viewed This Job?”

The data behind these features form cubes that must be efficiently

served at scale, and can be neatly sharded to do so. To serve our

growing 160 million member base, we built a scalable and fast

OLAP serving system called Avatara to solve this many, small cubes

problem. At LinkedIn, Avatara has been powering several analytics

features on the site for the past two years.

1. INTRODUCTION
LinkedIn, the largest professional social network on the Internet,

has more than 160 million members. Our members create profiles

containing rich structured data such as their industry, work experi-

ence, and skills. By coupling this multidimensional profile informa-

tion with member activity data, we can provide various data-derived

insights to our members. Two examples of analytics features are

Who’s Viewed My Profile? (WVMP) as shown in Figure 1a, which

provides analytics around members who viewed your profile, and

Who’s Viewed This Job? (WVTJ) as shown in Figure 1b, which

provides aggregate analytics to recruiters on members viewing their

posted jobs. These features pre-aggregate data to generate reports

from different dimensions. For example, WVTJ shows the number

of job views broken down by time, title, and company. OLAP is an

ideal solution to handle these tasks.

There are several existing solutions in the market for enterprise

users. These enterprise solutions are designed for offline analytics

and traditional data warehousing, and do not efficiently support

the high throughput, low latency, and high availability needs of a

high-traffic website. That is, these results must be presented to the

user on page load, requiring response times in tens of milliseconds.

In these use cases, queries are mostly known a priori because

the product interface limits the user to select some subset of known

queries. This means expensive operations like joins can be precom-

puted. Additionally, queries span relatively few—usually tens to

at most a hundred—dimensions. These queries, and consequently,

the cubes, can be sharded across a primary dimension. For WVMP,

we can shard the cube by member id, as the product does not allow

analyzing profile views of anyone other than the member currently

logged in. Similarly, for WVTJ, the cube can be sharded by the job

itself because queries do not span across jobs. Each shard contains

a relatively small amount of data (a few megabytes, up to tens of

megabytes), though there are many shards (160 million, one for

each LinkedIn member, for WVMP). We call this class of OLAP

the many, small cubes scenario.

Traditional distributed OLAP systems leverage the scatter-gather

paradigm [1] to retrieve and consolidate partial results from data

partitions spread across nodes. An OLAP operation cannot complete

until all the nodes have responded, resulting in slow response times

when any one node is overloaded [2]. This is undesirable in a web

serving scenario where response times need to be predictable.

This paradigm can also affect the availability of the system. Con-

sider a scenario where on a cluster of 100 nodes, a failure of 10 min-

utes for each machine is expected every 30 days. The availability

of the system is: (1− MTTR/MTTF)n, where MTTR is the mean

time to recovery, MTTF is the mean time to failure, and n is the

number of nodes required to satisfy the query. In our example, the

availability of a query is: (1− 10/(30 · 24 · 60))100 = 0.977115.

This may initially seem like a sufficiently available system, but it

means that a recruiter visiting WVTJ three times a day to check

on the status of their job posting would see around 25 “not avail-

able” errors in a year. This translates to two errors every month,

which is not a pleasant user experience. However, if the query could

be satisfied by cube operations within a shard, we can colocate

the cube such that every query only requires a single disk fetch.

This sharding approach increases the availability of the system to

1−10/(30 ·24 ·60) = 0.999768, which, for the recruiter, translates

to 0.25 “not available” errors per year—fairly reasonable. There are

several assumptions and simplifications here, but this need forms

the basis for highly-available key-value systems, such as Amazon’s

Dynamo [5].

In this work, we present Avatara, a fast, scalable OLAP system

to handle the many, small cubes scenario we encounter with our

various analytics features. The system provides a simple, expressive

grammar for application developers to construct cubes and query

them at scale. The sharding of a cube dimension fits well into a

key-value model, allowing us to leverage a distributed key-value

store, such as Voldemort [10], to provide low latency, highly avail-

able access to cubes. On query, a small cube is streamed from

disk with the predicate computed at the storage layer. In addition,

Avatara leverages an offline elastic computing infrastructure, such as

1874

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



(a)

(b)

Figure 1: Two products using Avatara: (a) Who’s Viewed My Pro-
file? provides rich analytics around people who viewed your profile,
including profile views by time, industry, and country; (b) Who’s
Viewed This Job?, provides analytics around members who viewed
a posted job, including job views by time, job title, and company.

Hadoop [11], to precompute its cubes and perform joins outside of

the serving system. These cubes are bulk loaded into the serving sys-

tem periodically, usually every couple of hours. All components of

this system are horizontally scalable, making it easy to add capacity

without downtime.

This system has been in use at LinkedIn for the past two years

and powers several analytics features on the site.

2. RELATED WORK
Distributed data warehouses allow users to run OLAP queries

across various nodes. In general, request latencies to these ware-

houses are heavily dependent on the slowest node’s response as

the data is spread on various nodes. Avatara stores a cube’s data

Figure 2: Avatara architecture consists of an offline batch engine,
which runs Hadoop jobs to transform the data to cubes, and an
online query engine, which fetches results from a key-value store.

in one location so that retrieval only requires a single disk fetch.

Avatara also leverages some performance optimizations [1, 2], par-

ticularly pushing down predicates to the storage layer, to improve

the response time of queries.

MR-Cube [8] efficiently materializes cubes for holistic measures

while fully using the parallelism of a MapReduce [4] framework.

However, the system does not provide a query engine that can

respond to user requests at page load. Avatara emphasizes request

latency as it caters to web-scale traffic. It achieves this by sharding

on a primary key of the dataset to turn a single big cube into many

small cubes.

Avatara also leverages the well-studied key-value paradigm used

by various serving systems for storing data. Some examples of

low latency, high availability applications using this paradigm in-

clude Amazon’s shopping cart powered by Dynamo [5], Yahoo’s

user database powered by PNUTS [3], and LinkedIn’s data fea-

tures [10].

3. ARCHITECTURE
An OLAP system generally consists of two subsystems: cube

computation and query serving. Most enterprise solutions couple the

two together. Avatara, on the other hand, is an offline/online system

that provides high throughput during batch cube computation and

low latency during online query serving.

As shown in Figure 2, Avatara has two components: an offline

batch engine and an online query engine. We observe that for our

use cases, while the online query serving needs to be fast, we can

currently tolerate data that is stale by a couple of hours. For example,

when a job view occurs, it does not need to be reflected immediately

in the WVTJ dashboard.

The offline batch engine performs user-defined joins and pre-

aggregation on activity streams, resulting in sharded small cubes.

We use Hadoop [11] to power our batch engine, leveraging its built-

in fault tolerance and horizontal scalability. The computed cubes

are then bulk loaded into a distributed key-value store for fast online

serving.

Clients issue SQL-like queries to an online query engine, which

then pushes down the computation (such as filtering, sorting, and

aggregation operations) to the key-value store. Our architecture is

pluggable and can support any key-value store. At LinkedIn, we use

Voldemort [10].

Both offline and online engines have the capability to material-

ize cubes, providing application developers the choice to trade off

between faster response time or more flexible query patterns. We

highlight the choice we adopted for our products in Section 3.4.

The rest of this section illustrates the architecture of Avatara with a

running example of WVMP (Figure 1a).

1875



input.profile views=/profile views

input.member info=/member info

// pre-processing

time.column=profile views.time

time.aggregation level=weekly















(1)
→ Preprocessing

// dimensions and fact tables

dimensions=

member info.member id,

member info.industry,

member info.country

facts=

profile views.viewee id,

profile views.viewer id,

profile views.time

measure=profile views.visit

join=

profile views.viewer id,

member info.member id





















































(2)
→ Projection & Join

cube.name=wvmp-cube-profile-views

cube.shard key=profile views.viewee id

]

(3)
→ Cubification

Figure 3: Cube configuration file of the offline batch engine for the
Who’s Viewed My Profile? product. The system builds a cube of
profile view visits by time, industry, and country.

3.1 Offline Batch Engine
The batch processing pipeline (Figure 2) consists of three phases:

preprocessing, projections and joins, and cubification. Each phase

produces output that is the input for the subsequent phase. All of

these phases are driven by a simple configuration file written by

an application developer, who can be agnostic to how the system

works.

Figure 3 shows the configuration for WVMP. The first phase

shows input file paths for profile view events and member infor-

mation. At this stage, the developer can perform any necessary

preprocessing on the input to prepare the data. There are several

built-in preprocessing functions available for common use cases.

This example uses a built-in function to roll up a time column to

“week” granularity. The developer can also specify a customized

script for further processing. The output of this phase is saved in a

temporary location that serves as the input to the next phase in our

pipeline.

The second phase models the preprocessed data as a star-

schema [7], and builds the dimension and fact tables. For our

WVMP example, the dimension table has the industry and country

details of the viewer, while the fact table has details of the profile

view event, such as viewing timestamp and member identifiers of

both the viewer and the viewee. The profile view visit count is the

measure in the fact table. A join key ties the dimension and fact

tables together; WVMP joins the tables using the viewer’s mem-

ber id. The offline engine projects and joins the fields, then outputs

the results to another temporary location.

The final phase is cubification. This phase partitions the data by

the cube shard key and generates small cubes. Avatara provides the

flexibility to pre-aggregate these cubes based on certain dimensions.

The cube is a multidimensional OLAP (MOLAP) [9] formatted blob

combining dimensions and measures. This format uses multidimen-

sional arrays, providing optimized storage: the query engine can

retrieve this data in a single disk fetch, resulting in fast response

time. Here, the data is structured as an array of tuples of the form

(d1, d2, . . . , dn,m1,m2, . . . ,mm), where di represents a dimen-

sion and mj represents a measure. For example, Figure 4 shows the

layout for the WVMP cube. The first section highlights the dimen-

{
dimensions: {
viewer id: 1,

viewer industry: 87,

viewer country: us,

view time: 1330214400

},
measures: {
visit: 3

}
}

Figure 4: The resulting cube storage structure for the Who’s Viewed
My Profile? cube definition from Figure 3. In Avatara, cubes are
stored as multidimensional arrays.

AvataraQuery query = new AvataraSqlishBuilder()

.setCube("wvmp-cube-profile-views")

.setShardKey(member_id)

.select("visit")

.select("member_info.industry")

.group("member_info.industry")

.sum("visit")

.order("visit", "desc")

.limit(10)

.build();

AvataraResult result = queryEngine.getCube(query);

Figure 5: An example client query to retrieve the top 10 profile
view counts by industry from the Who’s Viewed My Profile? cube
for a given member.

sions of the viewer including member id, industry, country, and the

week viewing activity happened (our data is rolled up in the “week”

granularity). The second section shows the measures: in WVMP,

we track the profile view visit count of how many times the viewer

visited the viewee’s profile in a given week. These resulting cubes

are then bulk loaded into a distributed key-value store, with the key

being the cube shard key. In WVMP, it is the viewee’s member id.

The MOLAP format we adopted is compact, but has the disad-

vantage of being inflexible in the evolution of dimensions, such as

adding a new dimension. Due to our requirement of low latency

during online serving, we mandate joins to only happen offline.

This also means that the dimensions of a cube must be identified a

priori, which is not a problem as our user interfaces do not change

dynamically. Further, if required, the bulk loading nature of Avatara

allows the developer to rebuild and repush the full dataset with a

simple configuration change.

The offline engine processes data incrementally by storing results

from previous runs. This allows processing to happen multiple times

per day.

3.2 Online Query Engine
Avatara’s query engine retrieves and processes data from the key-

value store before returning results to clients. Because we chose to

build a compact cube per sharded key, the retrieval step is quite fast.

The query engine models a SQL-like syntax and supports operations

such as select, where, group-by, having, order, limit, and basic math

operations (count, percent, sum, and average). The wide-spread

adoption of SQL makes it easy for application developers to interact

with cubes. The query engine is stateless, allowing the system to

easily scale horizontally.

Figure 5 shows the query to compute the top 10 profile visit

counts by industry for the WVMP application: select the “visits”

and “industry” fields, group visits by “industry”, and perform a

sum of visits. Finally, the results are sorted in descending order

of visit count and are limited to 10 rows for display. Similarly, to

display profile view by country, the application developer selects

the “country” field without recomputing any cubes.

1876



response time (milliseconds)

fr
e
q
u
e
n
c
y

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Figure 6: Query latency CDF for a high-traffic day. 95% of queries
can be served within 25 ms.

If the key-value store supports local storage node computation, the

query engine can push down the predicate to decrease data transfer.

This is straightforward as it involves performing projections and

rollups on a single blob of cube data. A concern might be that local

processing could add additional load on each storage node, but we

have found that in the case of Voldemort, the storage nodes are

I/O-bound with ample free CPU cycles for computation.

3.3 Cube Thinning
Most cubes can easily be processed by Avatara, but due to the

power-law nature of the Internet [6], there will be a few cubes that

are too large to process with an acceptable amount of frontend

latency. For example, President Barack Obama is an active member

of the site and his profile is viewed several orders of magnitude more

than most other members. This makes the WVMP cube for him

prohibitively large to process at page load. To deal with these rare,

large cubes, Avatara provides a mechanism for developers to set

priorities and constraints on dimensions that can be aggregated to a

particular value (such as an “other” category). The system also has

the ability to drop data across predefined dimensions. For example,

WVMP can choose to drop data across the time dimension, resulting

in a shorter history for these heavy-hitters.

3.4 Discussion
Avatara provides flexibility in terms of where cube materialization

can happen: operations such as sum, average, order, or limit can be

performed offline or online. With more offline aggregation, online

queries will be faster, but naturally less flexible. For example, after

a developer specifies the granularity of a time dimension to be at

the “week” level in the offline phase, future online aggregations can

only happen at equal or coarser levels such as “weeks” or “months”.

For WVMP, partial materialization happens offline to roll up profile

visits into a weekly aggregation level; the remaining materialization

happens online because the cubes are small. This also enables

us to introduce new query patterns by selecting a different set of

dimensions without recomputing any cubes.

4. PRODUCTION WORKLOADS
Avatara has been running successfully at LinkedIn for more than

two years. It powers some of our larger web-scale applications such

as “Who’s Viewed My Profile?”, “Who’s Viewed This Job?”, “Jobs

You May Be Interested In”, and more. The single configuration file

model and SQL-like interaction with the query engine are easy for

any application developer to understand and has enabled multiple

teams at LinkedIn to provide useful insights to our members with

quick development cycles. Avatara uses Hadoop [11] as its batch

computing infrastructure, and Voldemort batch extensions [10] for

efficient bulk loading from Hadoop as its key-value storage layer.

The Hadoop batch engine can handle terabytes of input data with

a turnaround time of hours. On the other hand, Voldemort as the

key-value store behind the query engine responds to client queries

in milliseconds.

Figure 6 shows the query latency for a high-traffic day for

LinkedIn’s “Who’s Viewed My Profile?” feature. As the figure

shows, 80% of queries can be satisfied within 10 ms with over 90%

of queries returning within 20 ms.

5. CONCLUSION AND FUTURE WORK
Avatara, the in-house OLAP system at LinkedIn, provides a

generic batch processing platform, allowing any developer to build

OLAP cubes with a single configuration file. The system uses

a hybrid offline/online strategy coupled with sharding into a key-

value store by an application-specified primary dimension to support

OLAP queries at web scale.

We are working on adding near-line updates to cubes to support

applications with stricter data refresh requirements. Some of the

challenges include read scaling in the presence of writes, memory-

limited execution of windowed joins, and multitenant issues such as

those introduced by multiple colocated streams and the execution of

assorted user-defined functions.

6. REFERENCES
[1] M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S.

Lakshmanan, and D. Srivastava. Efficient OLAP Query

Processing in Distributed Data Warehouses. Information

Systems, 28(1-2):111–135, 2003.

[2] R. Almeida, J. Vieira, M. Vieira, H. Madeira, and

J. Bernardino. Efficient Data Distribution for DWS. In

DaWaK, pages 75–86, 2008.

[3] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.

PNUTS: Yahoo!’s Hosted Data Serving Platform. PVLDB,

1(2):1277–1288, 2008.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, pages 137–150, 2004.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s Highly Available

Key-Value Store. SIGOPS Operating Systems Review,

41(6):205–220, 2007.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law

Relationships of the Internet Topology. In SIGCOMM, pages

251–262, 1999.

[7] R. Kimball and M. Ross. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling. John Wiley &

Sons, Inc., 2nd edition, 2002.

[8] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan.

Distributed Cube Materialization on Holistic Measures. In

ICDE, pages 183–194, 2011.

[9] T. B. Pedersen and C. S. Jensen. Multidimensional Database

Technology. Computer, 34(12):40–46, 2001.

[10] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and

S. Shah. Serving Large-scale Batch Computed Data with

Project Voldemort. In FAST, pages 223–235, 2012.

[11] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 1st

edition, 2009.

1877


