
The Prague Bulletin of Mathematical Linguistics
NUMBER 108 JUNE 2017 271–282

Providing Morphological Information for SMT
Using Neural Networks

Peyman Passban, Qun Liu, Andy Way
ADAPT Centre, School of Computing, Dublin City University, Ireland.

Abstract
Treating morphologically complex words (MCWs) as atomic units in translation would not

yield a desirable result. Such words are complicated constituents with meaningful subunits. A
complex word in a morphologically rich language (MRL) could be associated with a number of
words or even a full sentence in a simpler language, which means the surface form of complex
words should be accompanied with auxiliary morphological information in order to provide a
precise translation and a better alignment. In this paper we follow this idea and propose two
different methods to convey such information for statistical machine translation (SMT) mod-
els. In the first model we enrich factored SMT engines by introducing a new morphological
factor which relies on subword-aware word embeddings. In the second model we focus on the
language-modeling component. We explore a subword-level neural language model (NLM) to
capture sequence-, word- and subword-level dependencies. Our NLM is able to approximate
better scores for conditional word probabilities, so the decoder generates more fluent transla-
tions. We studied two languages Farsi and German in our experiments and observed significant
improvements for both of them.

1. Introduction

Phrase-based SMT (PBSMT) (Koehn et al., 2003) is the state-of-the-art model for
providing automatic translations, but it suffers from serious problems. The perfor-
mance of the PBSMT model considerably decreases in the presence of large vocabu-
laries and a high rate of out-of-vocabulary words. These phenomena are closely tied
to morphology-related issues frequently encountered in MRLs. Recently, neural ma-
chine translation (NMT) (Cho et al., 2014) has appeared as a very powerful alternative

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: peyman.passban@adaptcentre.ie
Cite as: Peyman Passban, Qun Liu, Andy Way. Providing Morphological Information for SMT Using Neural Net-
works. The Prague Bulletin of Mathematical Linguistics No. 108, 2017, pp. 271–282.
doi: 10.1515/pralin-2017-0026.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 108 JUNE 2017

for PBSMT, which is able to generate competitive or in some cases even better results.
However NMT suffers from the same problems. Incorrect word selection and generat-
ing wrong surface forms are direct consequences of such shortcomings. Accordingly,
both paradigms have problems with MRLs, some of which we try to address here. Al-
though we benefit from neural-network-based features, the main interest of the paper
is the SMT approach and its enhancement, so we do not study NMT engines.

SMT can be viewed as a sequential pipeline which takes a sentence in a source
language, manipulates it step by step and finally produces a target sentence. In such
a multi-step process the most compatible data distribution is selected to train the best
(task-specific) model. Data selection techniques are designed in this regard. After-
wards the training data is preprocessed during normalization and tokenization to be
more readable/understandable for other subsequent steps. Source and target words
are aligned to find cross-lingual lexical mappings. Phrases are extracted and mod-
els are trained correspondingly. At the final stage the best counterparts of source
phrases are discovered through a search-based solution. Target phrases are com-
bined together to make a coherent and fluent translation. In special cases some post-
translation processing is also applied to the final translation. All of these steps are
carried out using statistical models which rely heavily on word co-occurrences.

Neural models are known as powerful techniques to capture semantic information.
They provide richer information than count-based and statistical models. There are
several research papers which boost the aforementioned SMT sub-modules via neural
techniques. Duh et al. (2013) uses neural networks (NNs) to select better sentences
to train high-quality SMT engines. Tamura et al. (2014) explore neural alternatives
instead of the EM-based model for word alignment. Li et al. (2014) design a neural
reordering function.

In this paper we also try to model morphological information using NNs. To this
end we propose two solutions: (i) we introduce morphological features for the fac-
tored translation model (Koehn and Hoang, 2007), and (ii) we manipulate a language
model (LM) to incorporate morphological information.

The factored translation model (FTM) is one of the most suitable frameworks to
include different annotations at decoding time, such as morphological information.
The main problem with PBSMT is that it translates text phrases without any explicit
use of linguistic information, which seems crucial for a fluent translation. In FTMs
each word is extended by a set of annotations, so that a word in this framework is not
only a token but a vector of factors, e.g. a simple word in PBSMT can be represented by
a vector of {word (surface form), lemma, part-of-speech (POS) tag, word class, morphological
information} in its factored counterpart. Clearly the new representation is richer than
the word’s surface-form. Since the main focus in FTMs is on word-level enrichments,
it addresses the problem of morphology which is the main interest of this paper.

In word- or phrase-based approaches, each word is treated independently, i.e.
‘studies’ has no relation to ‘studied’. If only one of them was seen during training,
translation of the other one would be hard (or impossible) for any SMT engine, even

272

Passban et al. Providing Morphological Information for SMT Using NNs (271–282)

though both words come from the same stem. Translation knowledge of their shared
stem along with auxiliary morphological information could help us translate both
of them. This property not only provides solutions for these types of morphologi-
cal issues but also addresses the data sparsity problem at the same time. A factored
translation model follows a similar approach and performs better than other models
(which rely on surface forms) for MRLs.

Translation in FTMs is generally broken up into two translation and one genera-
tion steps. A source lemma is translated into a target lemma. Morphological and POS
factors are translated into target forms and the final form is generated based on the
lemma and other factors. Factored models follow the same implementation frame-
work as the phrase-based model. In these models the translation step operates at the
phrase level whereas generation steps are word-level operators. For more information
on FTMs see Koehn and Hoang (2007). In our modified FTM we have four factors of
the surface form, lemma, POS tag and morphology tag for each word. It is clear how the
first three factors are defined. The last factor is based on morphology-aware embed-
dings. First we train word embeddings (see Section 2.1) which preserve subword-level
and morphological information. Then we cluster words based on their embeddings.
The cluster label of each word indicates its morphological tag.

As previously mentioned, along with the translation model we try to enrich an
LM. The LM is the main source of monolingual knowledge in translation which plays
a key role in providing fluent translations. This module is the best means by which
we can directly impose morphological constraints. In PBSMT models n-gram LMs
are explored, whereas we benefit from a neural variant in our case. We selected Farsi
(Fa) and German (De) for our experiments. Farsi is a morphologically rich and a low-
resource language. Therefore, any small improvement in such a language could be
a valuable achievement. Beside Farsi experiments we also evaluate our models on
German. This language is well-studied in the field of MT and there exist plenty of
experimental studies on German, but we use it to provide better comparisons with
previous work and show the strength and weakness of our models.

2. Proposed Models

2.1. Enriching Word Embeddings with Subword Information

Words are not always usable in their original forms, as they are symbolic units and
need to be transformed into numerical forms for some applications. Each word car-
ries a particular type of information and has specific syntactic and semantic roles. The
word’s relation with other constituents is also a key property which is defined exclu-
sively for each word. Considering all of these features, it is quite challenging to find a
numerical counterpart for a word, which preserves all of these properties and repre-
sents the same word in a numerical feature space. To this end there are well-known
models such as Salton et al. (1975) which try to transfer words and their syntactic

273

PBML 108 JUNE 2017

and semantic information. Recently, NNs have become the established state-of-the-
art for creating distributed representations of words (and also other textual units such
as characters etc.). Hinton (1986) proposed an NN-based embedding model for the
first time, introducing the idea of a shared learning space, where the embeddings (word
vectors) themselves are also trainable parameters of the model.

Word embeddings are real-valued representations in an n-dimensional feature
space. Recent work has shown that these distributed representations can preserve
meanings, as well as semantic and syntactic dependencies. However, existing word-
based models have some deficiencies, especially with regard to MRLs. In these mod-
els, each word is treated as an atomic unit which is not an appropriate way of process-
ing MCWs. In this section we propose a new technique designed to model intra-word
relations. Word-based models (Mikolov et al., 2013; Pennington et al., 2014) are not
able to (efficiently) transfer rare words. Our model composes word embeddings from
subunit embeddings and tries to solve this problem.

There are several models to train word embeddings. One of the most successful
models is Word2Vec proposed by Mikolov et al. (2013). Almost all other work has
followed this unsupervised approach. The main intuition behind our model is the
same, but the internal operation is quite different. Word2Vec is a simple feed-forward
model in which a target random word of an input sequence is selected to be predicted
by means of its surrounding context. Word vectors are updated with respect to error
values of the prediction phase. More formally the network tries to compute P(wi|C)
where wi is the target word and C indicates its context. In the simplest scenario the
context C is the preceding word just before the target word and the network includes
one hidden layer h with the weight matrices Wi:h ∈ R|input|×d and Wh:o ∈ Rd×|V|.
V is the vocabulary set and d is the size of h. The probability of each word given its
context is estimated via a softmax function, which is a scalar that maps values of its
input vector into the range [0, 1], so that new values can be interpreted as probabilities.
This scalar is formulated as in (1):

P(wi = j|C) =
exp(ht.w

j + bj)∑
j ′∈V exp(ht.wj ′ + bj ′)

(1)

wherewi is the j-th column ofWh:o and bj is a bias term. Input to the softmax function
is ht ∈ Rd and its output is v ∈ R|V|. The j-th cell of v is interpreted as the probability
of selecting the j-th word from V as the target word. Based on softmax values the word
with the highest probability is selected and the error is computed correspondingly.
Error values are back-propagated to the NN in order to update network parameters.
Word embeddings are part of those parameters which are updated.

Our model is a simple extension of the basic Word2Vec model. In the basic model
the surface form of words are taken into account, whereas we segment each word
into its stem and affixes, and the embedding of the surface form of each word is
a composition of its subunit embeddings, i.e. the embedding of wi is obtained by
E(wi) =

(∑
m∈M(wi)

E(m)
)
+ E(wi), where E is the embedding form. wi may have

274

Passban et al. Providing Morphological Information for SMT Using NNs (271–282)

several morphemes (subunits) where M(wi) is the set of all possible subunits of wi.
We show an example from our training corpus to clarify the mechanism of making
word embeddings. For the given word ‘pre.process.ing.s’ the embedding is generated
with this computation: E(pre) + E(process) + E(ing) + E(s) + E(preprocessings).

In our model we treat the word’s surface form as another internal subunit, be-
cause it makes the approach more robust to noisy morphological segmentations. This
strategy also generates better embeddings. We process all sentences of our training
corpora. Words are segmented using Morfessor (Smit et al., 2014). We have a unique
embedding vector for each subunit in our neural architecture. Subunit embeddings
reside in a look-up table whose values are updated during training. Based on the
input sentence the target word is randomly selected and the context vector is gen-
erated. Each word’s embedding in the context vector is a linear combination of its
subunits. The model tries to predict the correct target word at the output layer. Based
on the prediction the error value is computed and back-propagated to the network. In
the back-propagation pass all network parameters including word and subunit em-
beddings are updated. After training the model we obtain high-quality embeddings
which have information about morphological properties and subunits of words. In
Section 3 we show the impact of using such embeddings in SMT engines.

2.2. Training Subword-Aware Neural Language Models

An LM measures how likely a sequence of words is to occur in a text. It addresses
the fluency of the given sequence, so that a sequence with a good word order has
a high probability. The leading types of LMs are count-based or n-gram models
which function based on the Markov chain assumption. In such models the prob-
ability of a sequence is computed by the conditional probabilities of words given
their history: P(S) = P(w1, ..., wm) =

∏m
i=1 P(wi|w

i−1
1), where S is the given se-

quence with the length m. The model conditions the probability of each word over
a chain of preceding words. Since computing the probability over the entire chain
is not computationally feasible, it is usually limited to a bounded set of n previous
words: P(wi|w

i−1
1) ≃ P(wi|w

i−1
i−n). The assumption states that the probability of a

word is affected by its n preceding words. Obviously, a long history is preferable
but such an assumption is made because of computational restrictions and limited
data resources. These models are known as n-gram models and the limited-history
problem is the main disadvantage of these models.

Recently, NLMs have been proposed as better alternatives for conventional LMs.
NLMs are able to compute the word conditional probabilities over the entire chain and
mitigate the history problem. They benefit from recurrent neural networks (Zaremba
et al., 2014). As the name of these networks shows they have a recurrent mechanism;
they process the input sentence word by word. At each step one word is taken as an
input and the hidden state(s) is updated correspondingly. This loop continues until
visiting the end of the sequence. When the process ends a summary of the entire

275

PBML 108 JUNE 2017

sequence resides in hidden states. As the network has access to such rich information
it is able to provide a better estimation of word probabilities.

Although NLMs mitigate the history problem, similar to embedding models they
also have serious problems with MRLs. In order to make NLMs compatible with
MRLs, different models work at morpheme and character levels. We also propose
a new hybrid (morpheme+character-level) model. For our NLM we could fine-tune
the same architecture as in Section 2.1 (linear combination of subword embeddings),
but character-aware models outperform subword-based NLMs. The state-of-the-art
model for neural language modeling is the model by Kim et al. (2016) which relies on
characters. Therefore, we also prefer to build our NLM over character-aware models.

In the character-aware framework words are segmented into characters. Each char-
acter has a dedicated embedding. All character embeddings are combined through
a convolutional module. There is a set of different filters with different widths. The
idea behind using different filters is to capture different n-gram information where
the size of n-gram corresponds to the filter width. The maximum value of each filter,
which is the most representative feature is selected to be combined with other max-
imum values from other filters. The combination of maximum values makes up the
word’s surface-form embedding. Word embeddings are passed through a highway
layer (Srivastava et al., 2015) to make richer information for the following modules.
The output of the highway layer is consumed by a Long Short-Term Memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997). LSTMs are memory-augmented recurrent
models. Simple recurrent models are not able to model long-distance dependencies,
but through an internal memory unit defined for LSTMs, they are able to remember
the relation among words much better than simple models.

Our model is a simple extension to the character-aware NLM. The main respon-
sibility of the convolutional module is to find relations among characters by using
different filters. Instead of this neural computation we define a simpler but more
straightforward technique to capture the same type of information. There are sets
of consecutive characters in training corpora which always appear together. Since
these characters are tied to each other and appear together, we do not decompose
them, which means that instead of finding the relation of such a set of characters via
different filters, we keep them together and explicitly inform the model about their
relation. Therefore, we do not change the neural architecture but rather define a new
preprocessing method.

In our model we extract all possible character n-grams. Each word with the length
l (characters) could have up to l×(l+1)

2
character n-grams, e.g for the word ‘the’ we can

extract these character n-grams: {‘t’, ‘h’, ‘e’, ‘th’, ‘he’, ‘the’}. For each word, first we sepa-
rate n-grams which are frequent. We keep those blocks (sets of consecutive characters
which make the n-gram) as they are and do not segment them. Then we decompose
the reminder into characters (if they are not frequent). In this model we start from
higher order n-grams, i.e. for a word with l characters we start from (l− 1)-grams. If

276

Passban et al. Providing Morphological Information for SMT Using NNs (271–282)

we cannot find a frequent subunit in the higher order (such as l− 1), we look at lower
orders (such as l−2, l−3, ..., 2). When we find a frequent l ′-gram in a word, this means
that there was no frequent character n-gram where n > l ′. By use of an example from
our Farsi1 corpus (see Section 3) we try to clarify our segmentation method. For the
word ‘prdrāmdtrynhā’ meaning ‘the people with the highest salary’, the first frequent sub-
string extracted is ‘āmd’ which is a 3-gram constituent. This means that there is no
frequent n-gram with n > 3. ‘āmd’ also has the highest frequency among all other
3-grams, so in the presence of several frequent n-grams we select the most frequent
one. ‘āmd’ is separated and the segmentation model is applied to its preceding and
following substrings. Each substring is considered as a new input to the model. We
recursively apply the same procedure until all frequent substrings have been sepa-
rated, which are ‘āmd’, ‘dr’ and ‘hā’ for this example. There are still three substrings
remaining, namely ‘pr’, ‘tr’ and ‘yn’. These three substrings are not considered as
frequent in our setting, so they are all decomposed into characters. The final decom-
position result by the proposed model is: ‘prdrāmdtrynhā’ ⇒ ‘p.r.dr.āmd.t.r.y.n.hā’. In
our experiments we consider a constituent as frequent if it occurs more than 100 times
in the entire training corpus.

Our NLM is the same as that of Kim et al. (2016) with one main difference. In
the input layer of our model we have blocks instead of characters. Each block could
include one or many characters. By using the character blocks we keep related char-
acters together which means we do not need a convolutional (or any other neural)
procedure. We explicitly define such information for the network through our blocks,
and the convolutional module is a complementary layer to provide richer information
about the relation of characters. Using this simple technique we are able to boost the
character-aware NLM. We can use the same mechanism as in Section 2.1 in our NLM,
namely each word can be represented via a linear combination of its subunits. Botha
and Blunsom (2014) implemented this idea for language modeling and considerably
improved the performance of previous NLMs. Although this model was quite suc-
cessful, the model of Kim et al. (2016) outperforms it. Accordingly, we built our NLM
via the character-aware model. Table 1 illustrates a simple comparison of these three
approaches and shows the impact of our model.

Model German (De) Farsi (Fa)

Botha and Blunsom (2014) 296 -
Kim et al. (2016) 239 128
Proposed Model 225 110

Table 1. Perplexity scores of different NLMs (lower is better).

1We use the DIN transliteration standard to show the Farsi alphabets.

277

PBML 108 JUNE 2017

The table reports perplexity scores for different NLMs. The numbers reported for
the German experiments from the first two models are taken from Kim et al. (2016).
The German models are trained and evaluated on the same dataset as reported in
the original paper (Kim et al., 2016). For the Farsi model we selected a corpus of 1
million words from the TEP++ corpus (see Section 3). We selected 1 million words to
have the same size with the German corpus. The source code for the character-aware
model is publicly available and we can run it on our Farsi corpus. Therefore, as we
do not have access to the original morpheme-aware model, it is not possible to report
its perplexity over the Farsi corpus.

3. Experimental Study

In this section we evaluate our models on Farsi and German. We selected Farsi
as it is a morphologically rich and low-resource language. Because of such difficul-
ties it is quite challenging to develop a reliable MT model for this language. Accord-
ingly, we propose such complementary techniques to enrich existing models. Ger-
man is one of the well-studied languages in the field of MT and there are plenty of
resources and models for this language. Generally, German models are high-quality
models and their translation and language models are rich enough to provide accept-
able results. Because of large datasets, German models are diverse and cover almost
all cases (words, phrases etc.), so they do not need such complementary techniques.
It is also hard to show the impact of auxiliary information (morphological informa-
tion in our case) for German as small improvements are usually lost in the presence of
large datasets. Nonetheless we report German results for comparative purposes with
acceptable improvements.

In the first experiment we trained De↔En and Fa↔En SMT models. To train the
engines we used the TEP++ (Passban et al., 2015) and WMT-15 datasets2 for Farsi and
German, respectively. TEP++ is a collection of ∼600K parallel sentences. We used 3K
sentences each for testing and tuning, and the rest of the corpus for training. From
the En↔De dataset we randomly selected 2M sentences for training. The German
model is evaluated on newstest-2015 and tuned using newstest-2013. Our models are
trained using Moses (Koehn et al., 2007) with its default configuration. The evaluation
metric is BLEU (Papineni et al., 2002) and language models are trained on the target
side of our corpora with SRILM (Stolcke, 2002). Language models are 5-gram mod-
els. In our FTMs, English and German words are lemmatized via the NLTK toolkit
(Bird, 2006) and tagged using the Stanford POS tagger (Toutanova et al., 2003). For
Farsi, words are lemmatized with an in-house lemmatizer and tagged with our neu-
ral model (Passban et al., 2016b). The English tagger uses the Penn Treebank tagset
with 36 tags. The German model uses the STTS3 tagset with 54 tags and the Farsi

2http://www.statmt.org/wmt15/translation-task.html.
3http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html.

278

http://www.statmt.org/wmt15/translation-task.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html

Passban et al. Providing Morphological Information for SMT Using NNs (271–282)

model has 37 tags. Table 2 shows the impact of incorporating our embeddings into
the SMT pipeline.

Direction Baseline Extend3 Extendw
4 Extendm

4

En→De 21.11 21.42 21.57 21.70
De→En 29.50 29.58 29.71 29.78
En→Fa 21.03 22.14 22.27 22.61
Fa→En 29.21 30.53 30.67 30.91

Table 2. Enriching the FTM using morpheme-aware word embeddings.

In Table 2 Baseline is a PBSMT model and Extend3 is an FTM with 3 factors of
{word, lemma, POS tag}. Extendw

4 and Extendm
4 show factored models with additional

morphological factors (4-factor models), where the first one relies on surface-form
word embeddings (Word2Vec) and the second on our morpheme-aware embeddings.
Word embeddings by nature are real-valued vectors, so they can be easily clustered.
The cluster label of a word conveys morphological, syntactic and semantic informa-
tion about the word. In our training mechanism we highlighted morphological in-
formation, so the cluster label could be interpreted as the morphology tag of words
which defines the fourth factor. Bold numbers indicate that improvements are sta-
tistically significant compared to Baseline according to paired bootstrap re-sampling
(Koehn, 2004) with p = 0.05.

Since Farsi and German are more complicated languages compared to English, we
assign 1000 clusters for them and English words are categorized into 200 clusters. As
Table 2 shows, the 3-factor model (Extend3) outperforms the baseline PBSMT model.
This is an expected result because FTMs are better alternatives for MRLs. The per-
formance obtained by the 3-factor model could be further enhanced via word em-
beddings. The fourth factor in Extendm

4 provides morphological information which
is useful for the decoder to cope with complicated morphological constituents. We
have a comparison between basic surface-form and morpheme-aware embeddings.
Extendw

4 is based on Word2Vec embeddings which inform the decoder with some gen-
eral and high-level information about words. Such information is useful but not as im-
pactful as the information provided by Extendm

4 , which relies on morpheme-aware
embeddings and thus provides more specific/relevant information. This comparison
demonstrates that the mechanism used in training our embeddings is able to capture
morphological information.

In addition to the first experiment we designed another experiment to show the
impact of the subword-aware NLM. The baseline model in Table 3 is a PBSMT model
with a 5-gram language model. There are several ways to embed an NLM into the
SMT pipeline. We could use the NLM to re-rank translation results. We could also

279

PBML 108 JUNE 2017

Direction Baseline n-gramw n-gramm Direction Baseline n-gramw n-gramm

En→De 21.11 21.53 21.88 En→Fa 21.03 21.86 22.36
De→En 29.50 29.87 30.43 Fa→En 29.21 29.91 31.05

Table 3. Re-scoring word n-grams with NLMs.

restructure the decoder to score translation hypotheses by the NLM. We chose a third
way which re-scores the wordn-grams of the existing non-neural LM, i.e. we manipu-
late the n-gram LM with the NLM. The n-gram LM includes word n-grams and their
associated scores (scores which are computed based on the word co-occurrences and
the Markov chain assumption). We recompute those scores with our NLM and substi-
tute the new scores with previous ones. In this experiment we use an LM whose word
n-grams come from the statistical 5-gram model and their associated scores are com-
puted by the subword-aware NLM. In Table 3 our NLM-based model is shown with
n-gramm. Results show that decoding with new scores is quite effective and improves
translation performance. Along with our subword-aware NLM we trained another
NLM which is a two-layer LSTM model and works over words (surface forms). We
repeated the language-modeling experiment and re-scored word probabilities with
the word-based LSTM model. The final system is n-gramw. Although the LSTM-
based model enhances the baseline model, its impact in not as great as n-gramm.
This comparison confirms that morphological information provided by n-gramm is
more impactful than those of the word-based NLM and n-gram LM.

4. Conclusion and Future Work
In this paper we proposed two new models to incorporate morphological informa-

tion into the SMT pipeline. In the first model we enriched a factored SMT model via a
new factor which relies on morphology-aware word embeddings. In our model we fo-
cus on Farsi. There are similar models (Zou et al., 2013; Passban et al., 2016a,c) which
benefit from word embeddings to improve translation of Farsi and other languages.
They train bilingual embeddings but in our model we used monolingual embeddings
for the same task. In the second model we tried to manipulate the conventional n-
gram LM and recompute the scores of word n-grams with a subword-aware NLM.
Both methods are able to effectively improve existing SMT models. For our future
work we will develop NMT models which have compatible architectures with MRLs
and explicitly benefit from morphological information.

Acknowledgments
We thank the anonymous reviewers, as well as Meghan Dowling and Abigail Walsh

for their helpful comments, and the Irish centre for high-end computing (www.ichec.
ie) for providing computational infrastructures. This research is supported by Sci-

280

www.ichec.ie
www.ichec.ie

Passban et al. Providing Morphological Information for SMT Using NNs (271–282)

ence Foundation Ireland at ADAPT: Centre for Digital Content Platform Research
(Grant 13/RC/2106).

Bibliography

Bird, Steven. NLTK: the natural language toolkit. In COLING/ACL, pages 69–72, 2006.
Botha, Jan A and Phil Blunsom. Compositional Morphology for Word Representations and

Language Modelling. In ICML, pages 1899–1907, Beijing, China, 2014.
Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation. In EMNLP, pages 1724–1734, Doha,
Qatar, 2014.

Duh, Kevin, Graham Neubig, Katsuhito Sudoh, and Hajime Tsukada. Adaptation Data Selec-
tion using Neural Language Models: Experiments in Machine Translation. In ACL (Volume
2: Short Papers), Sofia, Bulgaria, 2013.

Hinton, Geoffrey E. Learning distributed representations of concepts. In Proceedings of the eighth
annual conference of the cognitive science society, volume 1, page 12. Amherst, MA, 1986.

Hochreiter, Sepp and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kim, Yoon, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural lan-
guage models. In AAAI-16, pages 2741–2749, Phoenix, Arizona, USA, 2016.

Koehn, Philipp. Statistical Significance Tests for Machine Translation Evaluation. In Lin,
Dekang and Dekai Wu, editors, Proceedings of EMNLP 2004, pages 388–395, Barcelona,
Spain, July 2004. Association for Computational Linguistics.

Koehn, Philipp and Hieu Hoang. Factored Translation Models. In Conference on Empirical
Methods in Natural Language Processing Conference on Computational Natural Language Learning
(EMNLP-CoNLL), pages 868–876, Prague, Czech Republic, 2007.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
NACL, pages 48–54, Edmonton, Canada, 2003.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. Moses: Open
source toolkit for statistical machine translation. In ACL, pages 177–180, Prague, Czech
Republic, 2007.

Li, Peng, Yang Liu, Maosong Sun, Tatsuya Izuha, and Dakun Zhang. A Neural Reordering
Model for Phrase-based Translation. In COLING, pages 1897–1907, Dublin, Ireland, 2014.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Rep-
resentations in Vector Space. CoRR, abs/1301.3781, 2013.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In ACL, pages 311–318, Pennsylvania, USA, 2002.

Passban, Peyman, Andy Way, and Qun Liu. Benchmarking SMT Performance for Farsi Using
the TEP++ Corpus. In EAMT-15, pages 82–89, Antalya, Turkey, 2015.

281

PBML 108 JUNE 2017

Passban, Peyman, Chris Hokamp, Andy Way, and Qun Liu. Improving Phrase-Based SMT
Using Cross-Granularity Embedding Similarity. In EAMT, pages 129–140, Riga, Latvia,
2016a.

Passban, Peyman, Qun Liu, and Andy Way. Boosting Neural POS Tagger for Farsi Using Mor-
phological Information. ACM Transactions on Asian and Low-Resource Language Information
Processing (TALLIP), 16(1):4:1–4:15, 2016b. ISSN 2375-4699.

Passban, Peyman, Qun Liu, and Andy Way. Enriching Phrase Tables for Statistical Machine
Translation Using Mixed Embeddings. In COLING, pages 2582–2591, Osaka, Japan, 2016c.

Pennington, Jeffrey, Richard Socher, and Christopher Manning. Glove: Global Vectors for Word
Representation. In EMNLP, Doha, Qatar, 2014.

Salton, Gerard, Anita Wong, and Chung-Shu Yang. A vector space model for automatic index-
ing. Communications of the ACM, 18(11):613–620, 1975.

Smit, Peter, Sami Virpioja, Stig-Arne Grönroos, and Mikko Kurimo. Morfessor 2.0: Toolkit for
statistical morphological segmentation. In ACL, pages 21–24, Gothenburg, Sweden, 2014.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. Highway networks. In ICML
Deep Learning workshop, Lille, France, 2015.

Stolcke, Andreas. SRILM - an extensible language modeling toolkit. In INTERSPEECH, Denver,
Colorado, USA, 2002.

Tamura, Akihiro, Taro Watanabe, and Eiichiro Sumita. Recurrent Neural Networks for Word
Alignment Model. In ACL (Volume 1: Long Papers), pages 1470–1480, Baltimore, Maryland,
2014.

Toutanova, Kristina, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich part-
of-speech tagging with a cyclic dependency network. In NACL, pages 173–180, 2003.

Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Network Regulariza-
tion. CoRR, abs/1409.2329, 2014.

Zou, Will Y, Richard Socher, Daniel M Cer, and Christopher D Manning. Bilingual Word Em-
beddings for Phrase-Based Machine Translation. In EMNLP, pages 1393–1398, 2013.

Address for correspondence:
Peyman Passban
peyman.passban@adaptcentre.ie
ADAPT Centre, School of Computing, Dublin City University, Ireland.

282

	Introduction
	Proposed Models
	Enriching Word Embeddings with Subword Information
	Training Subword-Aware Neural Language Models

	Experimental Study
	Conclusion and Future Work

