
The Prague Bulletin of Mathematical Linguistics
NUMBER 101 APRIL 2014 55–69

Pipeline Creation Language for Machine Translation

Ian Johnson
Capita Translation and Interpreting

Abstract
A pipeline is a commonly used architecture in machine translation (MT). Statistical MT

can require, for example, many computational steps during training and decoding which are
best viewed as a pipeline. These pipelines can be tedious to construct and are error prone
since little or no type checking is performed, and no clear interface is defined for a pipeline’s
components. At times this can manifest itself as components requiring knowledge of how a
preceding component’s output is formed in order to consume it. Moreover, collaboration and
sharing of pipelines or components becomes difficult since the components themselves may
need to be changed in order to be used by others.

In order to alleviate these problems a specialised language has been designed called Pipeline
Creation Language (PCL). PCL allows users to construct pipelines that have components with
well defined and compatibility checked interfaces. Components can be defined in packages, so
individual components or packages of components, including entire pipelines, can be shared
and composed with others. PCL supports operators which allow components to be executed
sequentially, in parallel, or conditionally.

1. Introduction

Machine translation seems to attract constructions that are best seen as pipelines.
For example, statistical MT (SMT) tends to use pipelines to build up the computa-
tion needed for its training and decoding phases. Pipelines typically contain many
components that can:

• Have no clear interface: What types of input data are required for this com-
ponent to compute which types of output data? Also, what types of data are
required to instantiate the component? Or,

© 2014 PBML. All rights reserved. Corresponding author: ian.johnson@capita-ti.com
Cite as: Ian Johnson. Pipeline Creation Language for Machine Translation. The Prague Bulletin of Mathematical
Linguistics No. 101, 2014, pp. 55–69. doi: 10.2478/pralin-2014-0004.

PBML 101 APRIL 2014

• Be too coupled: A subsequent component may need to alter the data on its input
from another component. The logic needed to do this is usually placed in the
subsequent component. This “glue” logic prevents the component being easily
re-used in the same or another pipeline.

In this case the user of a component does not know whether it is compatible with
others. Is the data, or the format of the data being output compatible with another
component a developer wishes to use? Plus, these problems can prevent components
being shared by a community and so limiting collaboration.

The development and maintenance of pipelines can be difficult and tedious. Typ-
ical pipeline implementations, with many components, can bear little resemblance to
their conceptual view. Moreover, the implementations tend to be monolithic which
can lead to developers becoming lost in a mass of code. Due to these difficulties cod-
ing errors can occur that are missed.

Pipeline Creation Language (PCL) provides a specialised language that allows the
construction of non-recurrent software pipelines that provides:

• Compatibility checking: Components define an interface that specifies named
data flowing to and from input and output ports. The ports are checked so that
the compatibility of two connecting components can be determined.

• Packages and modules: Components can be defined in a hierarchical manner.
This eases the management of pipelines with many components since one com-
ponent can be worked on at once.

• Testing: Components can be easily tested in isolation using the PCL runtime
and configuration files.

• Promotes component re-use: Components should be developed in isolation
from any other component such that they could be reused. Also, libraries of
components can be constructed using packages. If “glue” logic is needed to
attach two components then the “knowledge” of how to do this resides in the
recipients pipeline.

• Representational implementation: Pipeline implementations “look” like pipe-
lines, unlike when implemented using a procedural approach.

• Sharing and collaboration: All of the above make sharing of components and
collaboration easier. This is how modern programming languages create eco-
systems of libraries that are sharable and used in many applications.

A PCL compiler and runtime, including documentation, is freely available, under
a LGPL v3 license, from GitHub by cloning https://github.com/ianj-als/pcl.git.

2. PCL and Experiment Management

Experiment managers allow experimenters to run and re-run experiments using a
collection of scripts or executables configured into, usually, a software pipeline and
handle experiment inputs and experiment results. An experiment manager ensures
that each run of an experiment has a distinct location for its results. Experiment man-

56

https://github.com/ianj-als/pcl.git

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

agers, such as Moses’ EMS (Philipp Koehn, 2010) and Eman (Ondřej Bojar and Aleš
Tamchyna, 2013), handle two concerns; the definition of a software pipeline, and col-
lating results.

The PCL language can be used for the software pipelining aspect of an experiment
manager. The PCL runtime could be used to build an experiment manager since the
runtime presents a public API. For more information on the runtime API please see
the PCL user manual (Ian Johnson, 2013).

3. Implementing an SMT Training Pipeline

In order to demonstrate how PCL can be useful for MT pipelines, a simplified train-
ing pipeline, shown in Figure 1, is to be constructed. The training pipeline generates
a translation and language model, and then tuning is done to produce models which
can be used in a decoding pipeline. A similar pipeline, along with documentation, can
be found in the Moses GitHub repository, see contrib/arrow-pipelines in a clone
of https://github.com/moses-smt/mosesdecoder.git.

Figure 1. Simple SMT training pipeline.

3.1. Pipeline Components

In PCL a pipeline component is a reusable unit of computation that is instanti-
ated and used in other components. Existing programs that are being used in your
pipelines can be adapted for use by wrapping them in a PCL module. This PCL com-
ponent can be imported, and combined with other PCL components.

PCL components can have 2, 3, or 4 ports, and each port should contain one or more
signals. A port is the point, or points, at which one component attaches to another.
Components may attach to each other if, and only if, they have a matching number of
output and input ports. A signal is a piece of named and “duck typed” data that flows
through a port. Ports can have an unlimited number of signals. Port specifications are
used to determine the number of input and output ports and their signals. Single
ports are defined as a comma separated list of signal names, e.g. corpus.source.
filename, corpus.target.filename. Dual ports are defined using two parenthe-

57

https://github.com/moses-smt/mosesdecoder.git

PBML 101 APRIL 2014

sised and comma separated list of signal names, e.g. (corpus.source.filename,
corpus.source.no_sentences), (corpus.target.filename, corpus.target.no_
sentences). This information is used to determine whether components are compat-
ible with each other.

There are two kinds of component in PCL and use slightly different syntax, they
are:

• Computational Component: Represents a computation that shall be evaluated
when the component is executed. These components only have dependencies
on the PCL runtime and are “leaves” in the component dependency tree.

• Combinator Component: These components combine other components, both
computational and combinator kinds, to create new components.

Figure 2 shows the component model used in PCL. This is a structural design pattern
called the composite pattern (Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, 1994).

Figure 2. PCL’s component model.

3.2. Computational Component

An example of how a batch tokeniser can be wrapped in PCL is shown in Figure 3.
Those familiar with Haskell will see that the imperative style is similar to do-notation
(see Miran Lipovača (2011)).

This PCL file defines the computation for a tokeniser component. It is composed
of the following sections:

• Imports (lines 1-5): These imports are part of the runtime library and provide
basic and common operations. These files are written in Python and define func-
tions. Once imported the module alias is used with the function name to gener-
ate a function call, e.g., path.join(...). The search for runtime library imports
is determined by the PCL_IMPORT_PATH environment variable, and allows users
to define their own runtime libraries.

• Name (line 7): A meaningful name for the component. Components should
be uniquely named in a package. The file name of the component must be the
same as the component’s name, e.g., a file called tokeniser.pcl must contain a
component called tokeniser.

• Ports (lines 8 & 9): The input and output port specifications of the component.
Computational components can only define one input and one output port.

58

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

1 import pcl.io.file as file
2 import pcl.os.path as path
3 import pcl.system.process as process
4 import pcl.util.list as list
5 import pcl.util.string as string
6
7 component tokeniser
8 input corpus.filename
9 output corpus.tokenised.filename

10 configuration corpus.language, working.directory.root, moses.installation
11 do
12 language <- string.lower(@corpus.language)
13
14 corpus.file.basename <- path.basename(corpus.filename)
15 corpus.file.basename.bits <- string.split(corpus.file.basename, ".")
16 list.insert(corpus.file.basename.bits, -1, "tok")
17 result.basename <- string.join(corpus.file.basename.bits, ".")
18 result.pathname <- path.join(@working.directory.root, result.basename)
19
20 working.exists <- path.exists(@working.directory.root)
21 if working.exists == False then
22 path.makedirs(@working.directory.root)
23 return ()
24 else
25 return ()
26 endif
27
28 tokeniser.cmd <- path.join(@moses.installation, "scripts",
29 "tokenizer", "tokenizer.perl")
30 tokeniser.cmd.line <- list.cons(tokeniser.cmd, "-l", language, "-q")
31
32 corpus.file <- file.openFile(corpus.filename, "r")
33 result.file <- file.openFile(result.pathname, "w")
34 process.callAndCheck(tokeniser.cmd.line, corpus.file, result.file)
35 file.closeFile(result.file)
36 file.closeFile(corpus.file)
37
38 return corpus.tokenised.filename <- result.pathname

Figure 3. tokeniser.pcl: An example of how an existing tokenisation script can be
used in PCL.

• Configuration (line 10): The configuration is static data which is used to instan-
tiate the component. This data is optional since components may not require
any parameters to construct them. Prefixing an identifier with @ references a
configuration value, e.g., @corpus.language.

• Computation (lines 11-38): The component must define the computation that
maps input signals to output signals. This section begins with the do keyword.
Execution flows from top to bottom and each line yields a value which can be
assigned to a “write once” identifier. This section must end with a return state-
ment which assigns values to all output signals.

59

PBML 101 APRIL 2014

Once all of the computational components have been defined they can be com-
bined, using PCL, to create more complex components. The next section describes
how PCL combines components into, in this instance, the training pipeline.

3.3. Pipeline Implementation

A combinator component representing the training pipeline is shown in Figure
12. A PCL file that defines a combinator component is composed of the following
sections:

• Imports (lines 1-4): Imports can be optionally specified. Importing, as in other
languages, makes available other components to the PCL component being writ-
ten. PCL components can be defined in namespaces. PCL components in names-
paces must be fully qualified by using dot separated names. The search for PCL
components is determined by the PCL_IMPORT_PATH environment variable. This
is a colon separated list of directories where PCL namespaces are to be found.
Only one PCL component can be imported with one import statement and each
imported component must be given an alias. The component shall be known by
its alias.

• Component (line 6): This starts the component definition and provides its name.
The file name of the component must be the same as the component’s name.
For example, a component defined in training_pipeline.pcl must be called
training_pipeline.

• Inputs and Outputs (lines 7 and 8): Defines the input and output port specifi-
cations of the component. This information is used to determine if a component
is compatible with another.

• Configuration (lines 9-13): This is an optional section that defines static data
which shall be used to construct this component.

• Declarations (lines 14-36): This optional section is used to construct compo-
nents which will have been imported. The imported component’s alias is used
to build, possibly, more than one instance of the component. If an imported
component requires configuration to be constructed the importing component’s
configuration must be mapped using a declaration’s with clause. The with clause
defines which configuration, possibly renamed, shall be passed to the compo-
nent’s constructor.

• Definition (lines 37-58): Beginning with the as keyword, this section defines a
single expression which represents the pipeline. Constructed components, pre-
defined components (see Section 3.5) and combinator operators (see Section 3.4)
can all be used to create the component’s definition.

3.4. Component Combinator Operators

Behind the scenes, combinator components are implemented as arrows (John Hughes
(2000), Paterson (2001), Paterson (2003), John Hughes (2005), and Conor McBride

60

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

(2011)). Arrows are abstractions of computation that define a set of combinator oper-
ators which construct, as a result, another arrow. Arrows can be combined indetermi-
nately and this allows any arbitrarily complex PCL component to be used in another
component. There are five component combinator operators defined in PCL, they are:

• Composition: Join one component’s output to the input of another component,
e.g., the PCL expression composes components f : b → c and g : c → d with
f >>> g. The PCL compiler shall compatibility check the two components
when using the composition combinator. The input and output port specifica-
tions are b and d respectively.

Figure 4. >>>: Component composition.

• First: A component that takes a component, e.g. f : b → c, which will apply
the first element of the input pair to f. The second element of the pair passes
through unchanged. In PCL, first f. The input and output port specifications
are (b), (d) and (c), (d) respectively.

Figure 5. first: First element of input pair applied to component f.

• Second: Similar to first only the second element of the input pair is applied
to the component, and the first element passes through unchanged. In PCL,
second f. The input and output port specifications are (d), (b) and (d), (c) re-
spectively.

• Parallel: The components f : b → c and g : d → e can be executed in parallel by
using ∗∗∗ combinator. In PCL, f ∗∗∗ g. The input and output port specifications
are (b), (d) and (c), (e) respectively.

• Fanout: The components f : b → c and g : b → d receive the same input
and are executed in parallel. In PCL, f &&& g. The input and output port
specifications are b and (c), (d) respectively.

61

PBML 101 APRIL 2014

Figure 6. ∗ ∗ ∗: Parallel components.

Figure 7. &&&: Input applied to parallel components.

3.5. Pre-defined Components

There are four pre-defined components available for use in PCL which split, merge
and convert signals. Also, there is an If component which allows components to be
conditionally executed.

3.5.1. Split

The split component is a component with a single port and two output ports. This
component takes the signal(s) on the input port and copies them to each of the output
ports.

3.5.2. Merge

The merge component has a dual input port and a single output port. This com-
ponent merges signals from the input pair to unique signals in the output port. Sig-
nals in the input ports are used as indices to the keywords top and bottom referring
the the top and bottom input port. Also, literal values can be “injected” in a merge
component or signals can be dropped. All top and bottom signals must be specified
in a merge. The example merge component in Figure 8 shows the top port’s signals

62

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

eval.data.filename, and eval.data.size begin mapped to the output signal evalu-
ation_filename and dropped respectively. Also, the language.model.filename sig-

1 merge top[eval.data.filename] -> evaluation_filename,
2 top[eval.data.size] -> _,
3 bottom[language.model.filename] -> language_model,
4 9 -> language_model_type

Figure 8. An example merge component.

nal from the bottom port is mapped to output signal language_model, and the literal
value 9 is mapped to an output signal called language_model_type. This merge com-
ponent has the following input and output port specifications

(eval.data.filename, eval.data.size), (language.model.filename)
and

evaluation_filename, language_model, language_model_type
respectively.

3.5.3. Wire

A wire component renames signals so that components can be used together. Wires
can have 2 ports, one input and output port, or 4 ports, two input and output ports.
Two port wires contain one signal mapping such as shown in Figure 9, and a four port
wire is shown in Figure 10. As with merge components, literal values can be injected
and signals can be dropped in wires, but all input signals must be specified.

1 wire src_filename -> filename,
2 src_language -> language,
3 src_no_sentences -> _,
4 True -> is_file_clean

Figure 9. An example two port wire component.

1 wire (tokenised_filename -> tokenised_src_filename,
2 tokenised_filename_size -> _,
3 "de" -> tokenised_src_language),
4 (tokenised_filename -> tokenised_trg_filename,
5 tokenised_filename_size -> _,
6 "en" -> tokenised_trg_language)

Figure 10. An example four port wire component.

63

PBML 101 APRIL 2014

3.5.4. Conditional Execution with If

Components can be conditionally executed using the If component. The If com-
ponent takes three arguments:

• Condition expression: when evaluated if this is a “truthy” value the then com-
ponent is executed, otherwise the else component is executed.

• Then component: a component which is executed on the condition being of a
“truthy” value, and

• Else component: a component which is executed on the condition not being of
a “truthy” value.

Both the then and else components must have identical input and output port spec-
ifications. The condition can contain the usual comparison operators (==, !=, >, <,
>=, and <=), logically operators (or, and and xor), input port signal names and literal
values. For example, src_language == "en" and trg_language != "th".

4. PCL Compiler

The PCL compiler is located in src/pclc of your Git clone, and is called pclc.py.
The compiler has a number of command line options that are shown in Table 1 along
with their meanings.

Option Meaning
-i, --instrument The object code is instrumented with logging mes-

sages. These messages will appear on stderr when the
pipeline is executed.

-l LOGLEVEL,
--loglevel=LOGLEVEL

Logging level of the compiler during compilation. This
affects the content of the pclc.log file. Valid values
of LOGLEVEL are: CRITICAL, ERROR, WARNING, WARN, INFO,
DEBUG.

-v, --version Show the compiler’s version and exits.
-h, --help Shows the compiler’s help information and exits.

Table 1. PCL compiler command line options.

To compile a PCL component called tokeniser.pcl use the command:
pclc.py tokeniser.pcl

This shall generate three files: the object file tokeniser.py, a __init__.py file, and a
compilation log file called pclc.log.

64

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

5. PCL Runtime

The PCL runtime can be found in the src/pcl-run directory of your Git clone. The
PCL runtime has some command line options that are shown in Table 2 along with
their meanings.

Option Meaning
-n NO_WORKERS,

--noworkers=NO_WORKERS
Number of pipeline evaluation threads and defaults
to 5 threads. The runtime executes the pipeline in a
thread pool whose size is governed with this option.
The performance of a pipeline may be dependent on
the value used.

-v, --version Show the compiler’s version and exits.
-h, --help Shows the compiler’s help information and exits.

Table 2. PCL runtime command line options.

The runtime requires a configuration file, specified on the command line, to run
the component of the same name. To execute a component called tokeniser invoke
the runtime using:

pcl-run.py tokeniser.cfg
On stdout, providing all goes well, the output of the pipeline shall be displayed. The
PCL_IMPORT_PATH environment variable is used to search for runtime libraries and
compiled components.

5.1. Runtime Configuration File

The pipeline configuration file contains the static configuration and the pipeline’s
inputs. The configuration filename must be the same as the component you wish to
run with a .cfg extension, e.g. the tokeniser configuration file must be called to-
keniser.cfg and must be in the same directory. The configuration file contains two
sections [Configuration], for configuration values, and [Inputs], for pipeline in-
puts. Each section contains key value pairs, e.g. the tokeniser configuration might
look like the example in Figure 11. Environment variables can be used in configura-
tion files with $(VAR_NAME). The environment variable, if it exists, shall be substituted
and used in the pipeline. The ability to execute any pipeline component facilitates
testing during pipeline development. It is recommended that a configuration file and
test data be developed alongside a component.

65

PBML 101 APRIL 2014

1 [Configuration]
2 corpus.language = en
3 working.directory.root = tokenisation
4 moses.installation = /opt/moses
5 [Inputs]
6 corpus.filename = my_corpus.src

Figure 11. An example PCL configuration file.

6. PCL Performance

The pipeline implemented here is shown in Figure 1. It is used to show the run-
time overhead using PCL compared with a Bash script implementation. The PCL im-
plementation is shown in Figure 12 and is the top level component definition which
defines the entire pipeline. The Bash script, however, implements each of the compo-
nents to emulate the PCL pipeline, and executes each “component” sequentially. The
entire PCL implementation and the Bash script can be found in the contrib/arrow-
pipelines directory of the Moses GitHub repository.1

The parallel corpus used is 50,000 sentences extracted from the English to Dutch
Europarl corpus. Each training pipeline implementation and thread count combina-
tion was executed three times. The PCL implementation executed with 1 thread is
equivalent to the Bash script, when executed, since components in both implementa-
tions are forced to execute sequentially.

The execution times for each performance experiment is shown in Table 3. The
times shown represent the median, minimum and maximum execution times, in sec-
onds, for each performance experiment.

Implementation Thread Real execution times (s)
Count Median Min Max

PCL pipeline 5 276 275 278
PCL pipeline 1 279 277 281

Bash script 1 650 643 654

Table 3. Performance results for the implemented training pipeline.

The PCL implementation completes in under half the time of the Bash script imple-
mentation. This is due a slow running implementation of the Cleanup component in
the Bash implementation of the pipeline. The Bash implementation takes around 390s
to execute, compared to around 1s in Python. The Bash implementation of the Cleanup
component uses the command wc to count the number of words in each source and

1https://github.com/moses-smt/mosesdecoder.git

66

https://github.com/moses-smt/mosesdecoder.git

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

target sentence in the corpus. The wc command is, therefore, executed 100,000 times
for this corpus. This means that at least 100,000 processes, but is probably as many
as 500,000 processes, need to be spawned in order to process this corpus. The wc
command, once cached, will execute in around 1ms; including the other processes re-
quired in this component it is conceivable that the elapsed time, on the test hardware,
could be as much as 500s.

Increasing the number of threads for this pipeline only produces a marginal perfor-
mance increase since the number of active branches in this pipeline is low. Moreover,
the Mert component can only execute once all other components have completed and
generated their output signals, and any files that need to be written to disk. It, also,
takes up much of the execution time, around 180s in both implementations.

Discounting the Cleanup component’s performance in Bash, the PCL implementa-
tions take around 7% longer to execute than the Bash script using this parallel corpus.
The PCL runtime, therefore, introduces a minimal execution time overhead, and the
pipeline developer gets all the advantages of the PCL language and component vali-
dations by the compiler.

7. Summary

Pipeline creation language (PCL) is a specialised, and modular language for build-
ing non-recurrent software pipelines. This paper briefly describes how PCL can be
used to construct an, albeit simplified, SMT training pipeline. The PCL language,
and how to integrate existing programs with PCL was described along with a perfor-
mance test to show the minimal impact on execution time. It is recommended that
the PCL user manual (Ian Johnson, 2013) be consulted for further details.

Acknowledgements

This work was done as part of the MosesCore project sponsored by the European
Commission’s Seventh Framework Programme (Grant Number 288487).

67

PBML 101 APRIL 2014

1 import components.translation_model_training as model_training
2 import components.wrappers.irstlm_build.irstlm_build as lang_model
3 import components.wrappers.mert.mert as mert
4 import components.wrappers.tokeniser.tokeniser as tokeniser
5
6 component training_pipeline
7 inputs src_filename, trg_filename
8 output moses_ini_filename
9 configuration source_language, target_language, max_segment_length, corpus_development_size,

10 corpus_evaluation_size, alignment_method, reordering_method, smoothing_method,
11 tokenisation_directory, translation_model_directory, language_model_directory,
12 mert_directory, moses_installation_directory, giza_installation_directory,
13 irstlm_installation_directory
14 declare
15 src_tokeniser := new tokeniser with source_language -> corpus.language,
16 tokenisation_directory -> working.directory.root,
17 moses_installation_directory -> moses.installation
18 trg_tokeniser := new tokeniser with target_language -> corpus.language,
19 tokenisation_directory -> working.directory.root,
20 moses_installation_directory -> moses.installation
21 model_training := new model_training with max_segment_length -> model_training.max_segment_length,
22 corpus_development_size -> model_training.corpus.development_size,
23 corpus_evaluation_size -> model_training.corpus.evaluation_size,
24 translation_model_directory -> model_training.translation_model.dir,
25 alignment_method -> model_training.method.alignment,
26 reordering_method -> model_training.method.reordering,
27 source_language -> model_training.src.language,
28 moses_installation_directory -> model_training.moses.installation,
29 giza_installation_directory -> model_training.giza.installation,
30 target_language -> model_training.trg.language
31 irstlm := new lang_model with irstlm_installation_directory -> irstlm_installation_dir,
32 smoothing_method -> irstlm_smoothing_method,
33 language_model_directory -> language_model_directory
34 mert := new mert with source_language -> source_language, target_language -> target_language,
35 moses_installation_directory -> moses_installation_dir,
36 mert_directory -> mert_working_directory
37 as
38 (wire src_filename -> src_filename, trg_filename -> _ &&&
39 wire trg_filename -> trg_filename, src_filename -> _) >>>
40
41 (wire (src_filename -> corpus.filename), (trg_filename -> corpus.filename) >>>
42 (src_tokeniser *** trg_tokeniser) >>>
43 wire (corpus.tokenised.filename -> tokenised_src_filename),
44 (corpus.tokenised.filename -> tokenised_trg_filename)) >>>
45
46 merge top[tokenised_src_filename] -> tokenised_src_filename,
47 bottom[tokenised_trg_filename] -> tokenised_trg_filename >>>
48
49 ((wire tokenised_src_filename -> src_filename, tokenised_trg_filename -> trg_filename >>>
50 model_training) &&&
51 (wire tokenised_trg_filename -> input_filename, tokenised_src_filename -> _ >>> irstlm)) >>>
52
53 merge top[moses_ini_filename] -> moses_ini_filename,
54 top[evaluation_data_filename] -> evaluation_data_filename,
55 bottom[compiled_lm_filename] -> trg_language_model_filename,
56 bottom[add_start_end_filename] -> _, bottom[lm_filename] -> _,
57 3 -> trg_language_model_order, 9 -> trg_language_model_type >>>
58 mert

Figure 12. PCL implementation of the simple training pipeline.

68

Ian Johnson Pipeline Creation Language for Machine Translation (55–69)

Bibliography

Conor McBride. Kleisli arrows of outrageous fortune. (unpublished), 2011.
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software, chapter Structural Patterns. Addison-Wesley, 1994. ISBN
0201633612.

Ian Johnson. Pipeline Creation Language (PCL): User Manual. Capita Translation and Inter-
preting, 2013. URL https://github.com/ianj-als/pcl/blob/master/documentation/
pcl-manual.latest.pdf.

John Hughes. Generalising Monads to Arrows. Science of Computer Programming, 37:67–111,
May 2000.

John Hughes. Programming with Arrows. In Advanced Functional Programming, pages 73–129.
Springer Berlin Heidelberg, 2005.

Miran Lipovača. Learn You a Haskell for Great Good!, chapter A Fistful of Monads. No Starch
Press, 2011. ISBN 1593272839.

Ondřej Bojar and Aleš Tamchyna. The Design of Eman, an Experiment Manager. The Prague
Bulletin of Mathematical Linguistics, 99:39–58, September 2013.

Paterson, Ross. A new notation for arrows. In International Conference on Functional Program-
ming, pages 229–240. ACM Press, Sept. 2001.

Paterson, Ross. Arrows and computation. In The Fun of Programming, pages 201–222. Palgrave,
2003.

Philipp Koehn. An Experimental Management System. The Prague Bulletin of Mathematical
Linguistics, 94:87–96, September 2010.

Address for correspondence:
Ian Johnson
ian.johnson@capita-ti.com
Capita Translation and Interpreting,
Riverside Court, Huddersfield Road,
Delph, Lancashire,
OL3 5FZ, United Kingdom.

69

https://github.com/ianj-als/pcl/blob/master/documentation/pcl-manual.latest.pdf
https://github.com/ianj-als/pcl/blob/master/documentation/pcl-manual.latest.pdf

	Introduction
	PCL and Experiment Management
	Implementing an SMT Training Pipeline
	Pipeline Components
	Computational Component
	Pipeline Implementation
	Component Combinator Operators
	Pre-defined Components
	Split
	Merge
	Wire
	Conditional Execution with If

	PCL Compiler
	PCL Runtime
	Runtime Configuration File

	PCL Performance
	Summary

