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Abstract 

In this paper, we present our system we developed at Santa Clara University to address the SSF task 

in TREC KBA 2014. We used the pattern matching method to extract slot values for interested 

entities from relevant passages. We improved the approach we used last year to enhance the 

performance. Our system consists of the following steps: processing filtered corpus, retrieving 

relevant passages, pattern matching, computing scores, and generate results. 

1. Introduction 

The Knowledge Base Acceleration (KBA) track is a relatively new track in TREC and has been 

conducted for three years: 2012, 2013, and 2014. In 2012, KBA had only the CCR task. In 2013, KBA 

had two tasks, CCR and SSF. In 2014, KBA includes three tasks: Vital Filtering, SSF, and Accelerate & 

Create. Accelerate & Create is a new open task which invites participants to try novel ideas using the 

track data. In this paper, we present our approach to the SSF task. 

2. Streaming Slot Filing 

Large knowledge bases such as Wikipedia need to be updated on time and accurately. This task is 

very time consuming and error-prone if manually performed. The SSF task in KBA invites participants 

to create a system that can automatically detect the changes in slot value of interest entities. Such 

systems would be very useful to perform those updating task automatically. 

The KBA Stream Corpus 2014 is 16.1 TB after XZ compression and GPG encryption, which is three 

times larger than the 2013 corpus. This year the organizers provided the filtered corpus which is a 

specially filtered subset of the full 2014 corpus for use in KBA CCR and KBA SSF tasks. It was filtered 

using surface form names and slot fill strings from the official query entities for KBA 2014. The total 

size of the filtered corpus is 639 GB after XZ compressed. This filtered corpus contains 20,494,260 

StreamItems which were stored in 2,022,998 chunk files. 

3. Our System 

Our system consists of the following components: 

a) Processing filtered corpus 



 Accessing document 

 Removing duplicated StreamItems 

b) Retrieving relevant passages 

 Building document index 

 Generating seed patterns 

 Extracting relevant passages 

c) Pattern Matching 

d) Computing score 

e) Generate results 

The following subsections introduce each component in detail. 

 

3.1 Processing Filtered Corpus 

Since we had the filtered corpus, we could skip the filtering process and concentrated more on 

extracting slot values for entities. The text data in the corpus was serialized by Thrift library1 into 

StreamItems, then zipped with XZ utility, and encrypted by GPG. To access data in the corpus, we 

process it in reverse order. First we decrypted data with GPG, and unzipped the files with XZ utility. 

After unzipping, the file size becomes more than 15x larger than the original file, and each file can 

contain one or more StreamItems. To access text data in StreamItem, we deserialized the chunk files 

to access StreamItem objects. The “clean_visible” text inside StreamItem is the content we would be 

working on to extract data. 

Each StreamItem has a StreamID which is unique in the corpus. We have seen some duplicated 

StreamItem on the same day. Before proceeding to the next step, we removed those duplicated 

StreamItems. 

3.2 Retrieving Relevant Passages 
3.2.1 Building Index 

With the clean_visible text from StreamItems, the TREC format files were built to be used as input 

for Indri2 query language to perform phase matching [1]. From TREC files, Indri will build index of the 

documents. 

<DOC> 

<DOCNO>1325779697-fc463f58249d873a5b62b8345c1f8162</DOCNO> 

<TIME>2012-01-05-16</TIME> 

<TEXT>            CERN-PH-EP-2011-140; Submitted to EPJC Letters. 

 

EPJ manuscript No. (will be inserted by editor) 

</TEXT> 

                                                           
1
 https://thrift.apache.org/ 

2
 http://www.lemurproject.org/indri/ 



<SENTENCE>CERN-PH-EP-2011-140; Submitted to EPJC Letters.</SENTENCE> 

<SENTENCE>EPJ manuscript No. (will be inserted by editor)</SENTENCE> 

</DOC> 

 

Figure 1. An example file in TREC format 

 

3.2.2 Extracting Relevant Passages 

With the index from the previous step, we were able to execute the Indri search function to extract 

passages which are relevant to the entities and the interested slots. We used the Indri formula 

#od20(…) to perform the search for related passages. The formula #od20 will request Indri engine to 

search for the text in ordered windows. The terms must appear in order, with at most 19 words 

between consecutive terms in parentheses. The figure 2 below shows an example of the query to 

search for passages which are relevant to entity “Joby Shimomura” and the slot 

“PER_SCHOOL_ATTENDED”. Figure 2 below shows a fragment of the xml input file which contains all 

queries for Indri engine. 

<query> 

   <number>5005</number> 

   <text>#combine[sentence](#od20(Joby Shimomura attends))</text> 

</query> 

 

Figure 2. An example query in Indri query language 

 

3.3 Pattern Matching 

Our pattern matching process relies heavily on pattern generating. A good set of patterns is very 
important to extract information from passages. For each entity type and each slot name, we came 
up with a list of seed patterns and used that list to generate the pattern for matching. For example, 
for the entity type PER (person) and slot name PER_CITIES_OF_RESIDENCE, one of the seed patterns 
was “lives in”. Assuming we have a sentence “John lives in New York”, with this pattern, we are able 
to detect the location “New York” as a value for the slot PER_CITIES_OF_RESIDENCE for the entity 
“John”. 
 

Our pattern matching process this year is very similar to the method we used in KBA TREC 2013 
[2] with some enhancement to obtain more accurate result. First, we did not apply the same pattern 
matching method for every slot type. For example, for the slot “PER_SCHOOLS_ATTENDED”, we 
used the Stanford Named Entity Recognizer (NER) library3 to obtain the slot value which is of the 
type <ORGANIZATION>. A slot value with the type <ORGANIZATION> is not necessary a school. We 
search for a few keywords such as “University”, or “College”, etc. to determine if this organization is 
a school. Another example is the slot “PER_COUNTRY_OF_BIRTH”. The NER library only returns a 
slot value of the type <LOCATION>. This value could be a city, a state, a country, or any location. We 
needed to check the value against the list of all countries in the world to determine if the value is a 
country. 

                                                           
3
 http://nlp.stanford.edu/index.shtml 



 
Example: 

John lives in New York 
 
 

 

 
For the example above, we simply need to match the pattern in the sentence, and check if the 

next word(s) is of type <LOCATION>. If the word is tagged as <LOCATION>, New York in this case, we 

consider that word(s) is the candidate for slot value. One additional step was that we needed to 

check the slot value against the list of cities to find a match. In order to do that, we collected list of 

cities, list of states, and list of countries. 

Besides generating seed patterns, the Pattern Matching method also relies on the ability of 

tagging the words correctly. The Stanford NER library only provides seven types of tag: LOCATION, 

TIME, PERSON, ORGANIZATION, MONEY, PERCENT, and DATE. Therefore, some slot types can be 

detected with Stanford NER library. One example is the slot PER_TITLE. For this case, we devised a 

list of possible titles, such as Mayor, Senator, and appended each of the title to each of the entity 

name, says Joby Shimomura, we would generate the patterns “Mayor Joby Shimomura”, and 

“Senator Joby Shimomura”. We searched for the exact match of those patterns. If we found a match, 

we could get the value for the slot PER_TITLE for the entity. 

 

3.4 Computing Score 
3.4.1 Confidence Score 

In TREC KBA 2013, if a slot gets multiple values, the slot value which has the most votes would get 
the score of 1000 and the slot value which has the least votes would get the score of 1. This year we 
adjusted our formula to compute the confidence score. The new formula is as follows. 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) =  
𝑐𝑖 ∗ 1000

∑ 𝑐𝑖
𝑛
1

 

 
 
where n is the number of different value Vi we retrieve for a slot type for an interested entity, and ci 
is the number of votes of value Vi. As with this formula, for example, if a slot gets 10 results, 6 of 
them have the value of A, and 4 of those have the value of B, with this new formula, A will have the 
confidence score of 600, and B will have the confidence score of 400. 
 

3.4.2 Vital Ratings 

Vital ratings can have the following values 

 -1, Garbage 

 0, Neutral 

 1, Useful 

Pattern Matching Slot Value (LOCATION) 



 2, Vital 

We submitted multiple runs with different confidence scores as cutoff values to determine the Vital 

ratings. 

4 Preliminary Results 

With a few adjustments this year, our system has improved over the last year’s. Part of results is 
shown in Figure 3 and 4, and Table 1.  

 

 
Figure 3. ORG Vital + Useful results 

 

 
Figure 4. PER Vital + Useful results 

 
 
 
 
 
 
 



   Table 1. Our top 3 runs for various evaluation metrics  

Sokalsneath     SCU-ssf_6.gz    36.5750775602  
    SCU-ssf_11.gz    36.5750775602  
    SCU-ssf_2.gz    36.5750775602 

Cosine     SCU-ssf_9.gz    54.5623548418  
    SCU-ssf_12.gz    54.5623548418  
    SCU-ssf_8.gz    54.5623548418 

Dot     SCU-ssf_6.gz    423.0  
    SCU-ssf_11.gz    423.0  
    SCU-ssf_2.gz    423.0 

C_TT     SCU-ssf_6.gz    269.0  
    SCU-ssf_11.gz    269.0  
    SCU-ssf_2.gz    269.0 

 

5 Future Work 

We used the pattern matching method to extract the slot values. Although this approach can detect 
slot values from passages, it relies on seed patterns. Without comprehensive seed patterns, we may 
miss some important slot values. We will explore to combine the proposed method with machine 
learning. Moreover, external knowledge bases such as DBpedia could also be incorporated into the 
process, which would enhance the corpus filtering process as well as slot value extraction [3]. 
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