
 

    

TREC Chemical IR Track 2009: A Distributed Dimensional Indexing Model for 
Chemical Patent Search 

 

Jay Urbain 
Elec. Eng. & Comp. Sci. Department 

Milwaukee School of Engr. 
Milwaukee, WI 

urbain@msoe.edu 
 

Ophir Frieder 
Department of Computer Science  

Georgetown University 
Washington, DC 

ophir@cs.georgetown.edu 

 

Abstract  

For the TREC-2009 Chemical IR Track, we explore 
development of a distributed information retrieval system 
based on a dimensional data model. The indexing model 
supports named entity identification and aggregation of 
term statistics at multiple levels of patent structure 
including individual words, sentences, claims, descriptions, 
abstracts, and titles. 

The system was deployed across 15 Amazon Web Services 
(AWS) Elastic Cloud Compute (EC2) instances and 15 
Elastic Block Storage (EBS) database shards to support 
efficient indexing and query processing of the relatively 
large index generated from indexing each individual word 
(sans stop words) in the 100G+ collection of chemical 
patent documents. 

The query processing algorithm for technology survey 
search and prior art search uses information extraction 
techniques and locally aggregated term statistics to help 
disambiguate candidate entities and terms in context. Query 
processing for prior art search automatically generates a 
structured query based on the relative distinctiveness of 
individual terms and candidate entity phrases from the 
query patent's claims, abstract, and title sections. For both 
the technology survey and prior art search, we evaluated 
several probabilistic retrieval functions for integrating 
statistics of retrieved named entities with term statistics at 
multiple levels of document structure to identify relevant 
patents.  

1. Introduction 

The TREC Chemistry Track for 2009 was organized to 
evaluate the statistical significance on the ranking of 
information retrieval (IR) systems and the scalability of IR 
systems when dealing with chemical patents [1]. A test 
collection was assembled from approximately 1.2M patent 
files (approximately 100G) of full-text chemical patents and 
research papers to evaluate two ad-hoc retrieval tasks 
common to patent investigation: technology survey and 
prior art search.  

The goals of technology survey search and prior art search 
are fundamentally different. Technology survey search is 

similar to ad-hoc retrieval targeting patent documents using 
a natural language query to satisfy an information need. 
Systems are required to return a set of documents that is 
relevant to this information need. The goal of the 
technology survey evaluation is to identify how current IR 
methods adapt to text containing chemical names and 
formulas. Systems for the technology survey task are 
evaluated using a pooling, sampling, and expert evaluation 
methodology. 

The goal of prior art search is to evaluate the validity of a 
patent claim. In this task, systems attempt to identify prior 
art that may invalidate a patent claim. The query set for this 
evaluation consists of 1000 patent files with prior art 
references removed. Systems are required to return a set of 
documents relevant to the prior art of claims stated in the 
patent. Of special interest in this task was to consider three 
types of topics: full text patents, description only, and 
claims only. Systems for this task are evaluated 
automatically using the known references for each patent. 

Chemical and patent information retrieval are challenging 
tasks. Chemical IR requires a chemical named entity 
identification strategy for dealing with large multiword 
terms, synonyms, acronyms, and morphological variants 
used for identifying the same chemical concept.  For 
example, Dipeptidyl peptidase-IV inhibitor can also be 
referred to as Dipeptidyl peptidase-4, DPP4, DPP-4, or 
dipeptidylaminopeptidase. Guggulsterone can be identified 
as Pregna-4,17-diene-3,16-dione, Guggulsterone-E, 
Guggulsterone-Z, trans-guggulsterone, or as the guggulu 
steroid extract. Many chemical terms also have hierarchical 
hyponym-hypernym relationships. For example, silver 
halides, AgX, could include silver bromide (AgBr), silver 
iodide (AgI), or silver fluorides.  

Chemical patent retrieval requires not only the 
identification of named entities, but the relationships 
between entities in the context of how they are applied. The 
structure of patent documents is important for identifying 
and validating specific claims as they serve as the legal 
basis of the patent, however descriptions in other portions 
of the documents may provide important context and 
alternative nomenclature [2]. 



 

    

To meet the needs of chemical IR, patent IR, and the 
scalability needs of large patent collections, we have 
developed a distributed search engine based on a 
dimensional data model. The model supports chemical 
named entity identification and aggregation of term 
statistics at multiple levels of patent structure including 
individual words, sentences, claims, descriptions, abstracts, 
and titles [3].  

The query processing algorithm uses information extraction 
and locally aggregated term statistics to identify and 
disambiguate candidate named entities in context. One of 
our future goals is to use candidate entities to identify 
additional synonymous chemical terms using public 
chemical databases. Processing for prior art search 
automatically generates a structured query based on the 
relative distinctiveness of individual terms and candidate 
chemical entities from the query patent's claims, abstract, 
and title sections. Finally, for both the technology survey 
and prior art search, we evaluated several probabilistic 
retrieval functions for integrating statistics of retrieved 
named entities with term statistics at multiple levels of 
document structure to identify relevant patents. Our primary 
objective in this research was to develop a scalable and 
flexible system for further research. 

We first describe our distributed indexing model, followed 
by the system description, indexing process, query 
processing, retrieval functions, and our results.  

2. Distributed Dimensional Data Model 

Paragraphs, sentences, and terms, representing complete 
topics, thoughts, and units of meaning respectively, provide 
a logical breakdown of document lexical structure into finer 
levels of meaning and context [4]. We capture these 
hierarchical relationships within a search index based on a 
dimensional data model.  As shown in Figure 1, this 
dimensional model can be logically represented as an n-
dimensional cube. Where each patent document is 
represented as a series of paragraphs (title, abstract, 
descriptions, and claims). Each paragraph is represented as 
a series of sentences, and each sentence is represented as a 
sequence of individual terms. Such a model facilitates 
search for multi-word terms and efficient aggregation of 
term statistics within multiple levels of patent structure. 

 

 

 

 

 

 

 

 

Figure 1. Search index based on dimensional model. 

 

As shown in Figure 2, we represent the dimensional index 
as a star schema [5, 6] with a dimension table for each level 
of document structure (document, paragraph, sentence, 
term) and one central fact table or postinglist. The “grain”, 
i.e., the smallest non-divisible element of the database, is 
the individual word. Sentences aggregate words in sequence 
by position, paragraphs aggregate sentences, and documents 
aggregate paragraphs.  

Figure 2. Search index based on dimensional model. 

 
The index can be extended to include additional 
dimensions, and allows for efficient formulation of SQL 
search queries.  By indexing each individual word, queries 
can be developed for searching single- and multi-word 
terms, and term statistics can be aggregated over different 
levels of document structure. 

3. System Description 

Indexing, retrieval, and analysis applications were 
developed in Java. The MySQL 5.0 database with the 
MyISAM storage engine was used for index storage and 
retrieval. 15 Amazon Elastic Cloud Compute (EC2) 



 

    

m1.small instances based on the Ubuntu Hardy base (ami-
ef48af86) machine image were allocated for processing 
each of 15 database shards [7]. Each shard was roughly 
equivalent to the Chemical IR track collection distribution. 
For example, one shard for EP 000000, one shard for EP 
000001, one shard for US 020060, etc. Each database shard 
included a dimensional data model for its portion of the 
collection, and a dimensional index of PubChem [8] 
terminology for synonym identification. Elastic Block 
Storage (EBS) volumes of 350G were allocated for each 
compute instance to accommodate the size of the index and 
the need to insure persistence of the database if a compute 
instance was restarted. An m1.small EC2 compute unit 
consisted of 1.7 GB memory, 1 32-bit virtual core, and 160 
GB of storage. Experiments with larger dual-core compute 
instances improved indexing performance 2-fold per 
instance, but did not significantly improve query 
performance. It takes approximately 2 days to construct the 
entire index. Each m1.small instance cost $0.10 per hour. 
Additional charges are encountered for data loading and 
storage. Each compute instance performed roughly 
equivalent to a standard Pentium 4 laptop with 2G of 
memory. The total cost of the experiment was 
approximately $1,000 though this included a fair amount of 
trial and error to get things running. 

4. Indexing Process 

The indexing process includes the following:  

1. Lexical Partitioning: Documents are parsed into 
title, abstract, descriptions, and claims. Each is 
subsequently parsed into paragraphs, and these 
paragraphs are parsed into sentences. 
2. Tokenization:  Sentence terms are tokenized, stop 
words removed, and lexical variants are normalized.  
Porter stemming [9] is used on each token with the 
following exceptions: all upper case, mixed case, 
alpha-numeric terms. Small “s” is also stripped from all 
upper-case terms. 
3. Indexing: Each individual word is stored in the 
index with positional information and its paragraph 
type (title, abstract, description, or claim). 

4. Query Processing 

Structured query generation for both technical survey and 
prior art search is illustrated with the following abbreviated 
example: “We are a new pharmaceutical company that is 
interested in entering the area of Dipetidyl peptidase-IV 
inhibitors…” 

1. Sentences are extracted. 
2. Part-of-speed tagging is performed.  
3. Candidate entities are identified by locating non-
recursive noun phrases: [pharmaceutical_NN 

company_NN], [Dipetidyl_NN peptidase-IV 
inhibitors_NNS]. 
4. Candidate entities are verified in the index, and 
their normalized IDF (Inverse Document Frequency 
normalized to between 1 and 0) is verified against a 
minimum threshold of 0.15. Note: Table 1 illustrates 
resolved entities for our example. 

5. Stop and function words are removed. 

Table 1. Resolved Entity 

Resolved entity Synonyms 

[Dipetidyl peptidase-IV 
inhibitor] 

[Dipeptidyl peptidase-4 
inhibitor] 

[DPP-4] 

[dipeptidylaminopeptidase] 

 

Paragraph Queries 

For technology survey, the topic is used as the basis of the 
paragraph query. For prior art search, paragraph queries 
are generated from the query patent title, abstract, and for 
each of (up to) the first 20 claims. The top 7 terms by NIDF 
(normalized inverse document frequency) above a 
minimum threshold of 0.10 (0.0 to 1.0) is used to generate a 
query for each paragraph.  
The top 500 paragraphs are retrieved using the probabilistic 
BM25 retrieval function [10] shown in equation (1). BM25 
is implemented using standard SQL.  
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Note: We used k1=1.4, k2=0, k3=7, and b=0.75  

Entity Queries 

From the cached list of candidate entities from across title, 
abstract, and claim paragraphs, entities are selected as 
follows: 

1. Entities must occur in at least 2 paragraphs and 
have a NIDF > 0.15. We have found that this 
drastically reduces the number of spurious entity 
phrases. 

2. Entity phrases are ranked by NIDF and their log 
frequency of occurrence. 
3. The top 20 remaining entity phrases are searched 
within the context of title, abstract, description, and 
claims paragraphs of target patent documents. We do 
not place a limit on retrieved results. 

 

The following abbreviated query illustrates entity search for 



 

    

“Dipetidyl peptidase-IV inhibitor”. All queries are 
distributed across all database shards and results are 
aggregated: 

select i1.term, p1.docid, p1.parid, p1.sentid, p1.seq, p1.section, d.docnum 
from invertedindex_qc i1, postinglist_qc p1, paragraphresults_qc d 
where i1.term=' dipetid’ 
'  and i1.termid=p1.termid   and p1.docid=d.docid   and 
d.parid=p1.parid 

and exists ( 
select *   from invertedindex_qc i2, postinglist_qc p2 
where i2.term=' peptidas'  and i2.termid=p2.termid   and 
p1.docid=p2.docid   and p1.parid=p2.parid   and p1.sentid=p2.sentid   
and p1.section=p2.section   and abs(p2.seq-p1.seq)<=5 

and exists (… 
 

Document Query 

The top 2000 target patent documents are retrieved using a 
BM25 formulated query of the top 20 individual terms (by 
NIDF) selected from the top 20 candidate entities. The idea 
is to select a relatively even distribution of terms across all 
patent claims. 

 

5. Retrieval Functions 

Table 2 shows the similarity coefficients (SC) computed 
from the paragraph, entity, and document query results for 
each retrieved patent document. Each individual score is 
normalized. 

Table 2. Retrieval Function Similarity Coefficients 
Similarity Coefficient Definition 

DocScNorm Document normalized BM25 

ParScNorm Paragraph (Title, Abstract, Claims, 
Description) normalized BM25 

ConceptDocCountNorm Distinct count of candidate entities 
per document 

ConceptDocIdfSumNorm Normalized IDF summation of all 
distinct entities per document 

ConceptMaxParCountNorm Max distinct count of candidate 
entities per paragraph 

ConceptMaxParIdfSumNorm Max normalized IDF summation of 
all distinct entities per paragraph 

 

A linear weighted sum (2) is used to generate various 
retrieval functions by weighting and combining similarity 
coefficients (SC) for each target document.  

 SCcomposite = w1SC1 + w2SC2 + …+ wnSCn                      (2) 

Table 3 shows probabilistic model weighting for each 
search coefficient. 

 

 

 

 

Table 3. Similarity Coefficients 
 Parameters Similarity Coefficient 

x111111 1 
1 
1 
1 
1 
1 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x100000 1 
0 
0 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x010000 0 
1 
0 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x110000 1 
1 
0 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x111000 1 
1 
1 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x110100 1 
1 
1 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x110010 1 
1 
1 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

x110001 1 
1 
1 
0 
0 
0 

DocScNorm  
ParScNorm  
ConceptDocCountNorm 
ConceptDocIdfSumNorm  
ConceptMaxParCountNorm 
ConceptMaxParIdfSumNorm 

 

 

 

 

 



 

    

Table 4. Results 

 

Retrieval Function 111111 100000 010000 110000 111000 110100 110010 110001 

num_ret              98300  98300  98300  98300  98300  98300  98300  98300  

num_rel              2860   2860   2860   2860   2860   2860   2860   2860   

num_rel_ret          1508   1291   1298   1492   1509   1507   1503   1491   

map                  0.0118 0.0063 0.0074 0.0080 0.0086 0.0094 0.0077 0.0076 

gm_map               0.0047 0.0016 0.0030 0.0041 0.0043 0.0041 0.0040 0.0040 

Rprec                0.0094 0.0029 0.0058 0.0051 0.0057 0.0062 0.0042 0.0047 

bpref                0.5458 0.4705 0.4552 0.5369 0.5433 0.5423 0.5406 0.5365 

recip_rank           0.0444 0.0228 0.0240 0.0284 0.0275 0.0281 0.0228 0.0177 

iprec_at_recall_0.00 0.0546 0.0320 0.0354 0.0379 0.0377 0.0371 0.0312 0.0271 

iprec_at_recall_0.10 0.0391 0.0137 0.0192 0.0173 0.0225 0.0276 0.0187 0.0172 

iprec_at_recall_0.20 0.0267 0.0127 0.0165 0.0160 0.0209 0.0260 0.0159 0.0160 

iprec_at_recall_0.30 0.0159 0.0122 0.0152 0.0148 0.0151 0.0151 0.0147 0.0147 

iprec_at_recall_0.40 0.0147 0.0119 0.0117 0.0135 0.0140 0.0139 0.0135 0.0135 

iprec_at_recall_0.50 0.0121 0.0109 0.0090 0.0115 0.0117 0.0117 0.0116 0.0115 

iprec_at_recall_0.60 0.0107 0.0098 0.0073 0.0102 0.0105 0.0105 0.0104 0.0102 

iprec_at_recall_0.70 0.0074 0.0072 0.0041 0.0067 0.0072 0.0072 0.0075 0.0067 

iprec_at_recall_0.80 0.0039 0.0043 0.0023 0.0035 0.0040 0.0039 0.0035 0.0035 

iprec_at_recall_0.90 0.0022 0.0030 0.0015 0.0022 0.0022 0.0022 0.0022 0.0022 

iprec_at_recall_1.00 0.0005 0.0017 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 

P_5                  0.0101 0.0061 0.0081 0.0061 0.0061 0.0061 0.0061 0.0020 

P_10                 0.0091 0.0030 0.0091 0.0051 0.0051 0.0030 0.0061 0.0040 

P_15                 0.0088 0.0034 0.0074 0.0054 0.0040 0.0040 0.0054 0.0047 

P_20                 0.0081 0.0030 0.0056 0.0051 0.0040 0.0051 0.0056 0.0045 

P_30                 0.0071 0.0030 0.0074 0.0044 0.0047 0.0054 0.0064 0.0040 

P_100                0.0064 0.0038 0.0069 0.0047 0.0054 0.0056 0.0052 0.0047 

P_200                0.0061 0.0037 0.0072 0.0064 0.0057 0.0057 0.0056 0.0064 

P_500                0.0069 0.0045 0.0078 0.0065 0.0064 0.0064 0.0062 0.0065 

P_1000               0.0152 0.0130 0.0131 0.0151 0.0152 0.0152 0.0152 0.0151 

 



 

    

 

6. Results 

Results for the first 100 query patents are shown in Table 4. 
The document retrieval similarity coefficient (SC) resulted 
in a bpref measurement of 0.4705, competitive with the top 
TREC results. The paragraph SC was 0.4552. Integrating 
document with paragraph SC’s improved the result to 
0.5369. Integrating individual entity SC’s further improved 
the results to 0.5484. These results clearly demonstrate the 
efficacy of integrating.  

From these results we have noted a number of issues and 
opportunities for further development of these models: 

• Limiting individual paragraph retrieval and subsequent 
named entity retrieval to the top 500 paragraphs is too 
small for a collection of greater than 1M documents. 
Cursory analysis of relevant document not included in 
our final results were often identified by our document 
retrieval SC, but were not included in the relatively 
short list of paragraphs. 

• Identifying candidate entities is a work in progress, 
though selecting document retrieval terms from 
individual entity terms appears to be an effective 
strategy. 

• In this work sought to demonstrate the efficacy of 
multievidentiary contextual models. In future work we 
plan to develop more refined probabilistic models for 
integrating SC’s. 

• Ablation studies to identify the most effective sections 
of source and target documents for technology survey 
and prior art search. 

• Identifying the optimal size and number of shards for 
indexing and query model performance.  

• More effective probabilistic models. 

 

7. Conclusion 

We explored development of a distributed multidimensional 
indexing model to enable efficient search and aggregation 
of entities and terms at multiple levels of document context 
and distributed across a cloud computing cluster. 

Several probabilistic retrieval models for integrating term 
statistics with entity search using multiple levels of 
document context to improve the performance of chemical 
patent invalidity search. Relevance measurements were 
integrated within a probabilistic retrieval model for re-
ranking of results. Results from our integrated approach 
outperformed baseline results and exceeded the top results 
reported at the TREC forum, demonstrating the efficacy of 
our approach. 
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