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Abstract

For the TREC-2009 Chemical IR Track, we explore
development of a distributed information retrieggtem
based on a dimensional data model. The indexingemod
supports named entity identification and aggregatod
term statistics at multiple levels of patent stouet
including individual words, sentences, claims, digsions,
abstracts, and titles.

The system was deployed across 15 Amazon Web $srvic
(AWS) Elastic Cloud Compute (EC2) instances and 15
Elastic Block Storage (EBS) database shards to astpp
efficient indexing and query processing of the treddy
large index generated from indexing each individuatd
(sans stop words) in the 100G+ collection of chaic
patent documents.

The query processing algorithm fdechnology survey
search and prior art search uses information extraction
techniques and locally aggregated term statistichelp
disambiguate candidate entities and terms in con@ery
processing fomprior art searchautomatically generates a
structured query based on the relative distinctgsnof
individual terms and candidate entity phrases frim
query patent's claims, abstract, and title sectifios both
the technology survewnd prior art search we evaluated
several probabilistic retrieval functions for intating
statistics of retrieved named entities with teratistics at
multiple levels of document structure to identiglavant
patents.

1.

The TREC Chemistry Track for 2009 was organized to
evaluate the statistical significance on the ragkiof
information retrieval (IR) systems and the scalgbif IR
systems when dealing with chemical patents [1].eAt t
collection was assembled from approximately 1.2Nepia
files (approximately 100G) of full-text chemicaltpats and
research papers to evaluate two ad-hoc retrievsitsta
common to patent investigationechnology surveyand
prior art search
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The goals ofechnology survey sear@ndprior art search
are fundamentally differenfTechnology survegearch is
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similar to ad-hoc retrieval targeting patent docoteaising

a natural language query to satisfy an informatiaed.
Systems are required to return a set of documéiatsis
relevant to this information need. The goal of the
technology survey evaluation is to identify howremt IR
methods adapt to text containing chemical names and
formulas. Systems for theéechnology surveytask are
evaluated using a pooling, sampling, and expertuatian
methodology.

The goal ofprior art searchis to evaluate the validity of a
patent claim. In this task, systems attempt to tileprior

art that may invalidate a patent claim. The quetyfar this
evaluation consists of 1000 patent files with priant
references removed. Systems are required to ratsat of
documents relevant to the prior art of claims statethe
patent. Of special interest in this task was tosaer three
types of topics: full text patents, description yonhnd
claims only. Systems for this task are evaluated
automatically using the known references for eaatien.

Chemical and patent information retrieval are @raing
tasks. Chemical IR requires a chemical named entity
identification strategy for dealing with large mwibrd
terms, synonyms, acronyms, and morphological vewian
used for identifying the same chemical concept. r Fo
example, Dipeptidyl peptidase-IVinhibitor can also be
referred to asDipeptidyl peptidase-4, DPP4, DPB-&r
dipeptidylaminopeptidas&uggulsteronecan be identified
as Pregna-4,17-diene-3,16-dione Guggulsterone-E,
Guggulsterone-Z, trans-guggulsteronar as theguggulu
steroid extract. Many chemical terms also haveahafical
hyponym-hypernym relationships. For examplsijver
halides, AgX could includesilver bromide (AgBr), silver
iodide (Agl) orsilver fluorides

Chemical patent retrieval requires not only
identification of named entities, but the relatioips
between entities in the context of how they ardiagpThe
structure of patent documents is important for fifging
and validating specific claims as they serve as |dyal
basis of the patent, however descriptions in opwetions
of the documents may provide important context and
alternative nomenclature [2].
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To meet the needs of chemical IR, patent IR, are th
scalability needs of large patent collections, waveh

developed a distributed search engine based on a

dimensional data model. The model supports chemical
named entity identification and aggregation of term
statistics at multiple levels of patent structureluding
individual words, sentences, claims, descripti@istracts,
and titles [3].

The query processing algorithm uses informatiomagekion
and locally aggregated term statistics to identi#yd
disambiguate candidate named entities in contere ©f
our future goals is to use candidate entities tentidy
additional synonymous chemical terms using public
chemical databases. Processing for prior
automatically generates a structured query basedhen
relative distinctiveness of individual terms anchdidate
chemical entities from the query patent's clainisstract,
and title sections. Finally, for both the technglaurvey
and prior art search, we evaluated several prababil
retrieval functions for integrating statistics oétnieved
named entities with term statistics at multiple elisv of
document structure to identify relevant patents. @imary
objective in this research was to develop a scalaid
flexible system for further research.

We first describe our distributed indexing modelldwed
by the system description, indexing process, query
processing, retrieval functions, and our results.

2. Distributed Dimensional Data M od€l

Paragraphs, sentences, and terms, representinglatemp
topics, thoughts, and units of meaning respectjyalgvide

a logical breakdown of document lexical structunt® ifiner
levels of meaning and context [4]. We capture these
hierarchical relationships within a search indezdmhon a
dimensional data model. As shown in Figure 1, this
dimensional model can be logically represented ra-a
dimensional cube. Where each patent document
represented as a series of paragraphs (title, aahstr
descriptions, and claims). Each paragraph is repted as
a series of sentences, and each sentence is nejgctss a
sequence of individual terms. Such a model fatéga
search for multi-word terms and efficient aggregatof
term statistics within multiple levels of patentusture.

is

art search

Figure 1. Search index based on dimensional model.
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As shown inFigure 2, we represent the dimensional index
as a star schema [5, 6] witldemensiontable for each level
of document structure (document, paragraph, seatenc
term) and one&entral facttable orpostinglist The “grain”,
i.e., the smallest non-divisible element of theabase, is
the individual word. Sentences aggregate wordsguence
by position, paragraphs aggregate sentences, anuingnts
aggregate paragraphs.

Figure 2. Search index based on dimensional model.
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The index can be extended to include additional

dimensions, and allows for efficient formulation SQL
search queries. By indexing each individual waypderies
can be developed for searching single- and multdwo
terms, and term statistics can be aggregated dfferemt
levels of document structure.

3.

Indexing, retrieval, and analysis applications were
developed in Java. Th#ySQL 5.0 database with the

MyISAM storage engine was used for index storage and
retrieval. 15 Amazon Elastic Cloud Compute (EC2)

System Description



ml.smallinstances based on thibuntu Hardy base (ami-
ef48af86) machine image were allocated for proogssi
each of 15 database shards [7]. Each shard waslyoug
equivalent to the Chemical IR track collection digition.

For example, one shard for EP 000000, one shardtRor
000001, one shard for US 020060, etc. Each datadbasd
included a dimensional data model for its portidnthee
collection, and a dimensional index d&fubChem [8]
terminology for synonym identification. Elastic Blo
Storage (EBS) volumes of 350G were allocated fahea
compute instance to accommodate the size of trexindd
the need to insure persistence of the databasedfrgpute
instance was restarted. Aml.small EC2 compute unit
consisted of 1.7 GB memory, 1 32-bit virtual caaad 160
GB of storage. Experiments with larger dual-corenpate
instances improved indexing performance 2-fold per
instance, but did not significantly improve query
performance. It takes approximately 2 days to cansthe
entire index. Eaclml.smallinstance cost $0.10 per hour.
Additional charges are encountered for data loadind
storage. Each compute instance performed
equivalent to a standard Pentium 4 laptop with 2G o
memory. The total cost of the experiment was
approximately $1,000 though this included a faioant of
trial and error to get things running.

4.

The indexing process includes the following:

I ndexing Process

1. Lexical Partitioning Documents are parsed into
title, abstract, descriptions, and claims. Each is
subsequently parsed into paragraphs, and these
paragraphs are parsed into sentences.

2. Tokenization Sentence terms are tokenized, stop
words removed, and lexical variants are normalized.
Porter stemming [9] is used on each token with the
following exceptions: all upper case, mixed case,
alpha-numeric terms. Small “s” is also strippedrirall
upper-case terms.

3. Indexing Each individual word is stored in the
index with positional information and its paragraph
type (title, abstract, description, or claim).

4.

Structured query generation for bd#chnical surveyand
prior art search is illustrated with the following abbreeit
example:*We are a new pharmaceutical company that is
interested in entering the area of Dipetidyl peptd-I1V
inhibitors...”

Query Processing

1. Sentences are extracted.
2. Part-of-speed tagging is performed.

3. Candidate entities are identified by locating non-
recursive  noun  phrases: [pharmaceutical NN

company_NN],
inhibitors_NNS]
4. Candidate entities are verified in the index, and
their normalized IDF (Inverse Document Frequency
normalized to between 1 and 0) is verified agamst
minimum threshold of 0.15. Note: Table 1 illustsate
resolved entities for our example.

[Dipetidyl NN peptidase-1V

5. Stop and function words are removed.
Table 1. Resolved Entity

Resolved entity Synonyms
[Dipetidyl peptidase-1V | [Dipeptidyl peptidase-4
inhibitor] inhibitor]

[DPP-4]

[dipeptidylaminopeptidase]

Paragraph Queries
For technology surveythe topic is used as the basis of the

roughlyparagraph query. Faprior art search paragraph queries

are generated from the query patent title, abstead for
each of (up to) the first 20 claims. The top 7 teby NIDF
(normalized inverse document frequency) above a
minimum threshold of 0.10 (0.0 to 1.0) is used ¢ograte a
query for each paragraph.

The top 500 paragraphs are retrieved using thesjitigtic
BM25 retrieval function [10] shown in equation (BM25
is implemented using standard SQL.

1)

(ke +12)* ths

KL* (L-b) +b* ( docLen

(ks +1) * tqu

k3 + tfq

BM25
z n N —df + 05

wa df +05 ) +tfd
avgDocLen

Note: We used k1=1.4, k2=0, k3=7, and b=0.75

Entity Queries

From the cached list of candidate entities fronossttitle,
abstract, and claim paragraphs, entities are seleas
follows:

1. Entities must occur in at least 2 paragraphs and
have a NIDF > 0.15. We have found that this
drastically reduces the number of spurious entity
phrases.

2. Entity phrases are ranked by NIDF and their log

frequency of occurrence.

3. The top 20 remaining entity phrases are searched

within the context of title, abstract, descripticemd

claims paragraphs of target patent documents. We do
not place a limit on retrieved results.

The following abbreviated query illustrates ensgarch for



“Dipetidyl peptidase-IV inhibitdr All queries are
distributed across all database shards and resubts
aggregated:

select il.term, pl.docid, pl.parid, pl.sentid, pd,91.section, d.docnum
from invertedindex_qc i1, postinglist_qc p1, pamgresults_qc d
where il.term="dipetid’
" and il.termid=pl.termid and pl.docid=d.docidnd
d.parid=p1.parid

and exists (
select * from invertedindex_qc i2, postinglist gt
where i2.term="' peptidas' and i2.termid=p2.termidnd
pl.docid=p2.docid and pl.parid=p2.parid and gdntid=p2.sentid
and pl.section=p2.section and abs(p2.seq-pl.s€g)<

and exists (...

Document Query

The top 2000 target patent documents are retrieged) a
BM25 formulated query of the top 20 individual texifby
NIDF) selected from the top 20 candidate entifid®e idea
is to select a relatively even distribution of teracross all
patent claims.

5. Retrieval Functions

Table 2 shows the similarity coefficients (SC) cateol
from the paragraph, entity, and document queryltse$or
each retrieved patent document. Each individuatesi®
normalized.

Table 2. Retrieval Function Similarity Coefficients

Similarity Coefficient Definition

DocScNorm Document normalized BM25

ParScNorm Paragraph (Title, Abstract, Claims,
Description) normalized BM25

ConceptDocCountNorm Distinct count of candidatatiest

per document

Normalized IDF summation df [a
distinct entities per document

ConceptDocldfSumNorm

Max distinct count of caatkd
entities per paragraph

ConceptMaxParCountNorm

Max normalized IDF sumnratib
all distinct entities per paragraph

ConceptMaxParldfSumNorm

A linear weighted sum (2) is used to generate wario
retrieval functions by weighting and combining damity
coefficients (SC) for each target document.

SQomposite: w;SG + Wo,SG+ ...+ W,,SG, 2

Table 3 shows probabilistic model weighting for feac
search coefficient.

Table 3. Similarity Coefficients

Parameters

Similarity Coefficient

x111111

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x100000

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x010000

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x110000

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x111000

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x110100

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x110010

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm

x110001

OOOI—‘I—‘HOOOI—‘I—‘HOOOI—‘I—‘HOOOI—‘I—‘HOOOOHHOOOOHOOOOOOHI—‘I—‘HI—‘I—‘H

DocScNorm

ParScNorm
ConceptDocCountNorm
ConceptDocldfSumNorm
ConceptMaxParCountNorm
ConceptMaxParldfSumNorm




Table 4. Results

Retrieval Function | 111111 | 100000 | 010000 | 110000 111000 110100 | 110010 | 110001
num_ret 98300 | 98300 | 98300 | 98300 98300 9830( 98300 30®8
num_rel 2860 2860 2860 2860 2860 2860 2860 6028
num_rel_ret 1508 1201 1298 1492 1509 1507 1503] 9114
map 00118 | 0.0063 | 0.0074| 0.0080  0.0086 0.009 0.0077 0076.
gm_map 0.0047 | 0.0016 | 0.0030| 0.0041  0.0043 0.004 0.0040 0040.
Rprec 0.0094 | 0.0029 | 0.0058| 0.0051  0.0057 0.006 0.0042 0043.
bpref 05458 | 04705 | 04552 | 05369 | 0.5433 05423 | 05406 | 0.5365
recip_rank 0.0444 | 00228 00240 00284  0.0275 0.028 0.0228 0170.
iprec_at_recall_0.00 | 00546 | 00320 | 00354 00379  0.0377 0.037 0.03]2 0270
iprec_at_recall_0.10 | 0.0391 | 00137 | 00192 00173  0.0225 0.027 0.0187 o17a
iprec_at_recall_0.20 | 0.0267 | 00127 | 00165 0.0160  0.0209 0.026 0.0159 0160.
iprec_at_recall_0.30 | 0.0159 | 00122 | 00152 0.0148  0.0151 0.015 0.0147 0143.
iprec_at_recall_0.40 | 0.0147 | 00119 | 00117 0.0135  0.0140 0.013 0.0135 0138.
iprec_at_recall_0.50 | 0.0121 | 00109 | 00090 | 0.0115  0.0117 0.011 00116 0118.
iprec_at_recall_0.60 | 00107 | 00098 | 00073 0.010  0.0105 0.010 0.0104 0102
iprec_at_recall_0.70 | 0.0074 | 00072 | 00041 0.0067  0.0072 0.007 0.0075 0063.
iprec_at_recall_0.80 | 00039 | 00043 | 00023 0.0035  0.0040 0.003 0.0035 0038.
iprec_at_recall_0.90 | 0.0022 | 00030 | 00015 0.0022  0.0022 0.002 0.0022 002.
iprec_at_recall_1.00 | 00005 | 00017 | 0.0001| 0.0003  0.0003 0.000 0.0003 0008.
P 5 00101 | 0.0061 | 0.0081| 0.0061  0.0061 0.006 0.0061 0020.
P 10 0.0091 | 0.0030 | 0.0091| 0.0051  0.0051 0.003 0.0061 0040.
P 15 0.0088 | 0.0034 | 0.0074| 0.0054  0.0040 0.004 0.0034 0043.
P 20 0.0081 | 0.0030 | 0.0056| 0.0051  0.0040 0.005 0.0036 0048.
P 30 0.0071 | 0.0030 | 0.0074| 0.0044  0.0047 0.005 0.0064 0040.
P 100 0.0064 | 0.0038 | 0.0069| 0.0047]  0.0054 0.005 0.0052 004G.
P 200 0.0061 | 0.0037 | 0.0072| 0.0064  0.0057 0.005 0.0036 0068.
P 500 0.0069 | 0.0045 | 0.0078| 0.0065  0.0064 0.006 0.0062 0068.

00152 | 0.0130 | 00131 00151  0.0152 0.015 0.0152 0150

P_1000




6.

Results

Results for the first 100 query patents are showhable 4.
The document retrieval similarity coefficient (S@pulted

in abprefmeasurement df.4705, competitive with the top
TREC results. The paragraph SC Watb52. Integrating
document with paragraph SC’s improved the result to
0.5369. Integrating individual entity SC’s further impred
the results t®.5484. These results clearly demonstrate the
efficacy of integrating.

From these results we have noted a number of issugs
opportunities for further development of these nside

7.

Limiting individual paragraph retrieval and subsequ
named entity retrieval to the top 500 paragrapheads
small for a collection of greater than 1M documents
Cursory analysis of relevant document not incluated
our final results were often identified by our domnt
retrieval SC, but were not included in the reldtive
short list of paragraphs.

Identifying candidate entities is a work in progres

though selecting document retrieval terms from
individual entity terms appears to be an effective
strategy.
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