
IIT at TREC 2004

Standard Retrieval Models over Partitioned Indices for the Terabyte Track

Jefferson Heard
Information Retrieval

Laboratory
Illinois Institute of Technology

Chicago, Illinois

heard@ir.iit.edu

Ophir Frieder
Information Retrieval

Laboratory
Illinois Institute of Technology

Chicago, Illinois

ophir@ir.iit.edu

David Grossman
Information Retrieval

Laboratory
Illinois Institute of Technology

Chicago, Illinois

dagr@ir.iit.edu

ABSTRACT
For TREC-2004, we participated in the Terabyte track. We
focused on partitioning the data in the GOV2 collection
across a homogeneous cluster of machines and indexing and
querying the collection in a distributed fashion using differ-
ent standard retrieval models on a single system, such as the
Robertson BM25 probabilistic measure and a vector space
measure. Our partitioned indices were each independent of
each other, with independent collection statistics and lex-
icons. We combined the results as if all indices were the
same, however, not weighing any one result set more or less
than another.

1. INTRODUCTION
For the TREC 2004 Terabyte track, we focused on index-

ing and querying the data with our existing AIRE engine
[3]. We partitioned the 480GB GOV2 data across fourteen
machines and built independent indices for each segment.
We then analyzed the statistics for each of these indepen-
dent indices to make sure that the collections were roughly
equal in size and characteristics. After satisfying ourselves
that this was the case, we issued each query on each sys-
tem and combined the results to get the required number of
documents for each query.

2. EXPERIMENTAL SETUP

2.1 Indexing
The hardware for our tests consisted of fourteen machines

networked on a dedicated switch. Each machine was equipped
with 2 10,000 RPM 78 GB SCSI drives, 2 AMD K7 Athlon
MP 2400+ processors, 2GB of RAM, and RedHat Linux
Advanced Server 2.1. The indexing of the system was done
using the BEA JRockit JVM, while the querying was done
using the Sun JDK 1.4.2 04. The system for this set of ex-
periments was very much like last year’s, with no changes
introduced in order to be able to index or query the large
amount of data needed for the Terabyte track.

The indexing engine was set up in as simple a way as pos-
sible to ensure maximum indexing speed and that it would
run to completion. No stemming was done, nor was any link
information or entity extraction mechanism used. Phrasing
was used, with a limit of two words per phrase and a min-
imum of 25 occurrences of a phrase to be entered in the
lexicon.

The data was partitioned out across each machine roughly
equally, and left compressed in gzip format. No directory in
the collection was split out across two separate machines,
however. Documents were chosen for each machine by pick-
ing directories of the GOV2 collection sequentially as listed
by ls and trying to fit them together so that each machine
had roughly 34GB of data.

2.2 Querying
The query engine was set up to do no stemming nor use

any link information. We ran two query runs: one with the
IIT vector-space similarity function [3], and one with the
Robertson BM25 probabilistic similarity function [4]. Only
the query title was included in the query.

Since all queries were issued to each machine, we needed
a way to combine the the independent results to come up
with one master result set. Since the sets of collection statis-
tics were similar, we decided to treat each result set equally
for each query and combine them by simply concatenating
the results and sorting them based on non-normalized rel-
evance score, as in the section on “perfect merge” in [1].
Not normalizing the score was important, since normalizing
would have caused the top documents from each index to be
treated equally by virtue of having the highest score for the
index rather than the highest score overall.

3. RESULTS

3.1 Indexing
Indexing the entire GOV2 collection took 8.2 hours from

the first machine to start until the last machine to end. Each
index was approximately 4GB in total. The lexicon took
up an average of 260 MB, while the posting lists took an
average of 3.05GB. The document data averaged 600 MB.
Each lexicon had between 5.8 and 6.9 million words, between
1.4 and 1.8 million phrases. Standard deviation was 5% of
the mean number of words for all lexica on all machines,
and 7% for phrases. For document count and posting entry
count, the deviation was a mere 2% of the mean number
of documents. The average number of distinct terms per
document in the collection (see Table 2) was similar across
the cluster, with a meager standard deviation of 7 versus
a mean of 221.53 distinct terms per document. Similarly,
the average total number of terms per document varies only
slightly across collections.

The only statistics that really vary widely are the maxi-



Table 1: Mean Collection Statistics Across All Indices

num docs num ents max(nidf) min(nidf) words phrases
Max 1795443 400094218 14.4 0.79 6924754 1816753
Min 1631840 377033932 14.31 0.7 5820360 1479404
Mean 1743419 385991502 14.37 0.74 6348646 1633945
Max-Min 163603 23060286 0.1 0.09 1104394 337349
Std Dev 43443 7832298 0 0 340602 112354

Table 2: Mean Term Statistics Across All Indices

avg dist terms min dist terms max dist terms avg terms min terms max terms
Max 239.53 0 38249 960.24 0 84337
Min 213.79 0 17788 804.15 0 61069
Mean 221.53 0 23642.73 857.42 0 68056.33
Max-Min 25.74 0 20461 156.09 0 23268
Std Dev 7 0 5774 46 0 6970

mum terms per document and maximum number of distinct
terms per document. Most indexes have in the 60,000-70,000
range for maximum non-distinct terms, with two machines
having a maximum of 83-84,000. The global maximum for
number of non-distinct terms in a document was 84,337
terms. Considering that the average number of terms in
a document was only 857 terms, this would suggest that
long documents were spread across the cluster fairly evenly.

3.2 Querying
Querying the whole collection took one hour from the first

machine to start until the last machine to end. Query perfor-
mance was hampered by the fact that a configuration error
caused the entire lexicon to be loaded into memory. This
caused our memory footprint for the query engine to jump
to around 1.6GB – almost the full extent of RAM. Since
this meant that garbage collection had to be done for al-
most every posting list, each query took between 15 seconds
and 5 minutes to perform, when retrieving the top 10,000
documents. Subsequent experiments with the lexicon in the
proper format confirm that when our system is configured
optimally, the memory footprint and query timings are much
more reasonable, 160MB heap size and around 5 seconds per
query. However this mistake confirms that it is, if not prac-
tical, possible to load the entire lexicon into memory at once
for such a large collection.

Most query result sets on the individual machines pro-
vided the maximum number of scored documents each, 10,000.
After the query engines on each machine finished, we copied
the results to a single machine and used the UNIX sort util-
ity to combine them, and then a short perl script to delete
any results beyond the 10,000 highest ranked for each query.
This process took 15 minutes for the entire result set. The
simple vector-space and probability rankings with no rele-
vance feedback returned enough results that only one query
had few (less than 3,000) results.

4. CONCLUSIONS
In our experimental runs for this year’s Terabyte track, we

distributed the collection across a homogenous cluster and
treated each node in the cluster has having an independent
index. We then ran probabilistic and vector space models
and merged the independent results on each node as if they
were one result set in order to create two master result sets:

one for the probabilistic model and one for the vector space
model. In the future, we will experiment with creating a
consolidated collection statistics structure and lexicon with
the intent of providing the same relevance rankings for any
document regardless of which sub-index it is found in. We
will also experiment with different document distributions
to see if term statistics change noticeably for a round-robin
or random distribution of documents across our cluster and
if this changes our effectiveness score. We will also work to
make sure that relevance feedback is available in our next
year’s track.

5. ACKNOWLEDGEMENTS
Special thanks to Tristan Sloughter (IIT Information Re-

trieval Lab) for his work in distributing data and running
tests tirelessly.

6. REFERENCES
[1] N. Craswell. Methods for distributed information

retrieval. PhD thesis, The Australian National
University, 2000.

[2] M. McCabe, A. Chowdhury, S. Beitzel, E. Jensen,
M. SaeLee, D. Grossman, and O. Frieder. IIT TREC-9
- entity based feedback with fusion. In Overview of the
Ninth Text Retrieval Conference, November 2000.

[3] S. Robertson, S. Walker, and M. Beaulieu. Okapi at
TREC-7: Automatic ad hoc, filtering, VLC and
interactive. In Proceeedings of the Seventh Text
Retrieval Conference (TREC) [5].

[4] S. E. Robertson. The probability ranking principle in
IR. Journal of Documentation, 33(4), 1977.


