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This paper describes the participation of the School of Informatics, University of Wales, Bangor at TREC’2003 in the Q&A 
and Genomics Tracks. The paper is organized into three parts as follows. The first part provides a brief overview of the logic-
based framework for Knowledgeable Agents that is currently being developed at Bangor. This was adopted as the basis for 
implementations used for both Tracks. The second part describes the Q&A system that was developed based on the 
framework, and the final part describes some experiments that were conducted within the Genomics Track at specifying 
context using GeneRIFs (for a Q&A system being developed for the BioMedical domain).  
 

 
 “ Knowing About” Knowledge: A Framework for Knowledgeable Agents 

 
A.1 Introduction 
We are in the process of designing and developing a novel 
logic-based framework for implementing knowledgeable 
agents that wil l become the core component for our multi-
agent information retrieval systems. 

In Teahan (2003), we describe a framework for 
designing and implementing knowledgeable agents and 
Knowledge Grids. The framework is based on three types 
of knowledge relations: Knows, KnowsAbout, and 
KnowledgeableAbout. These are used to define what an 
agent knows, what it knows about, and whether an agent 
has been judged to be knowledgeable by other agents. In 
Teahan (2003) and in the second part of this paper, we 
describe how a Knowledge Grid could be implemented 
(based on the framework) which has “knowledge”  based 
on the three defined knowledge relations. Essentially, the 
architecture is based on using knowledgeable agents as a 
middle layer between the user and the information 
resources. A key aspect of the design is the use of 
information extraction coupled with compression-based 
language modelling technology (Teahan & Harper, 2003) 
and the use of a conversational agent that the user asks 
questions of and receives answers from the system. 

In this architecture, there are three types of objects: 
users, knowledgeable agents and information resources. 
The users do not interface directly with the information 
resources. Instead, they must go through a knowledgeable 
agent who effectively acts as a knowledge broker in 
determining which of the information resources are likely 
to contain an answer to the user' s questions. Notice that 
knowledgeable agents may need to go though other 
knowledgeable agents in the hunt to find the most 
relevant answer to the user' s questions. 
 
A.2 A framework for knowledgeable agents 
This section outlines the logic-based framework that we 
wish to use as the basis of knowledge within the 
Knowledge Grid architecture. We wish to stress that the 
framework as described below is stil l in its developmental 
stage, and its final form, we envisage, will be somewhat 

different based on the experiences we garner from future 
research. 

We feel that the traditional propositional truth-based 
approach that epistemic logic-based multi-agent systems 
take, which are usually formulated as normal modal 
logics using the semantics of Kripke (Wooldridge, 2002), 
is not sufficiently expressive enough for our purposes. 
Instead, we would like to adopt some of the capabil ities of 
Question/Answering systems within our inference 
capabilities. A problem with the propositional truth-based 
approach is that although we can state what an agent may 
know per se, it does not help us find out whether an agent 
knows an answer to a question, and just as importantly, 
what answers an agent knows to a question. Neither does 
it help us find out what an agent knows about (where 
knowing about a topic implies that you know something 
about the topic, but it does not imply that you know 
everything about the topic). 

We feel that there are three necessary conditions for 
an agent to be “knowledgeable”. The key condition, 
which we refer to as the Knowledge Test, is the following: 
“An agent is judged to be knowledgeable by other 
(external) knowledgeable agents” . This states that judges 
are used to adjudicate on whether an agent is 
knowledgeable or not (analogously to the Turing Test in 
Artificial Intelligence). The judges are agents – either 
human or computer-based – that must also be 
“knowledgeable”. Like the Turing Test, it is assumed that 
a question and answering testing process is used before 
making the judgment. The second condition is a logical 
consequence of the first condition: “Other agents must 
have the ability to learn about and/or be informed of what 
the agent knows about.” Simply stated, if other agents 
don’ t know about what the agent knows about, then they 
can’ t make a judgment in the first place. The third 
condition states:  “The agent must know: what it knows 
about, and what it doesn’ t know about.” This again relies 
on the judging process used for the Knowledge Test: it 
would seem a natural response for a knowledgeable agent 
to answer “Sorry, I only know about X and not Y” to 
something it doesn’ t know about. 



We have devised the following logic-based 
framework based on these conditions. We define three 
logical relationships – Knows, KnowsAbout and 
KnowledgeableAbout. 
 
A.2.1 The Knows relation 
We define Knows, a 5-tuple relation, as follows: 
Knows (agent, context, question, answer, relevance). 

This is explained as follows: The specified agent 
believes that an answer to a question for a specified 
context has the specified relevance (this is a real number 
in the range 0 to 1.0 with 1.0 indicating absolute belief 
that the answer is relevant to the question). A 
representation of the context, question and answer is 
provided by the specified context, question and answer 
which can be arbitrary text passages or strings or some 
other representation (depending on the implementation). 
Note that it is possible to ask the same question but in 
different contexts. The following example is provided as 
further explanation. 
 
Example 1: Knows (A, “ Domain: Geography” , “ Where 
is Bangor?” , “ North Wales” , 1.0). 

In this example, the agent believes she knows that the 
answer to the question “Where is Bangor?” is “ North 
Wales”. She assigns a relevance ranking of 1.0 (in other 
words, she believes that the answer is certainly correct). 
The context in this case is the domain of geography. 

An agent may believe many answers are relevant to a 
particular question and context. As a shorthand notation, 
we write this in the following manner: 
Knows (agent,  context, question): answer1, r1; answer2, 
r2; … 

We can also assign an agent’s list of answers to a 
variable. For example, KA = Knows (A, “ Domain: 
Geography” , “ Where is Bangor?” ). Similarly, we can 
assign to a variable all that an agent knows on a particular 
context: KB = Knows (B, “ Domain: Geography” ). 
 
A.2.2 The KnowsAbout relation 
We define KnowsAbout, a 5-tuple relation as follows: 
KnowsAbout (agent, topic, context, knows, relevance). 

This is explained as follows: The agent believes that 
the list of questions and answers denoted by knows are 
related to the topic given the context and have the 
specified relevance. Intuitively, the agent believes that she 
knows about the topic given a certain context because she 
knows the answers to the specified questions. Topics and 
contexts can be arbitrary text passages or strings as above 
for the Knows relation. Note that the agent may know 
about the same topic but in different contexts.  
 
Example 2: KnowsAbout (B, “Bangor”, “ Domain: 
General Knowledge”, KA, 0.9). 

In this example, agent B has some general knowledge 
about the topic “Bangor”. What he knows are the same 
answers that agent A knows to the question “Where is 

Bangor?” in a geographical context. He assigns a 
weighting of 0.9 to his belief in the relevance of agent A’s 
answers. 

It seems reasonable to assume that if an agent knows 
the answer to something, then it knows about that 
something. This is written as follows: 
∀agent, context, question, relevance 
Ki = Knows (agent, context, question, answer, relevance) 
⇒ KnowsAbout (agent, question, context, Ki, relevance). 

In this case, the agent is inferred to know about each 
question because she knows the answers to them. So for 
example, from KA above, we can infer that agent A knows 
about the following: KnowsAbout (A, “Where is 
Bangor?” , “Domain: Geography” , KA, relevance). 

By default, the same relevance from the Knows 
relation can be adopted for the KnowsAbout relation, 
although this can be overridden at a latter time. 

It also seems reasonable to assume that if an agent 
knows the context of a given question and answer, then it 
knows about that context. This is written as follows: 
∀agent, context, question 
Ki  = Knows (agent, context, question, answer,  
relevance) ⇒ KnowsAbout (agent, context, context, Ki, 
relevance). 

In this case, the topic that the agent knows about is 
the context itself. 
 
A.2.3 The KnowledgeableAbout relation 
We define KnowledgeableAbout, a 6-tuple relation as 
follows: 
KnowledeagbleAbout (knowledgeable-agent, testing-
agent, agent, topic, context, relevance). 

This is explained as follows: The knowledgeable-
agent believes that the agent is knowledgeable about the 
topic given the context with the specified relevance 
because that agent knows about the same things as the 
testing-agent knows about. Effectively, an external agent, 
which is designated as being knowledgeable, uses test 
questions to determine if a person or agent knows about 
some topic. The knowledgeable agent delegates the 
testing agent to perform the test – this may be a “virtual” 
agent that is provided with sufficient knowledge 
necessary in relation to the test. The testing agent may in 
fact be provided with a subset of the knowledge known by 
the knowledgeable agent. Alternatively, other possibilities 
are having the knowledgeable agent spawn a testing agent 
to perform the test, or having the knowledgeable agent 
designate an independent testing agent to perform the test. 
Notice that the series of test questions have themselves 
now become a form of knowledge. 
 
A.3 Questions, contexts and topics 
Note that in our definitions above of Knows, KnowsAbout 
and KnowledgeableAbout, we do not explicitly state how 
the questions are represented or how they are to be 
matched with each other, and similarly for the topics and 
contexts. If questions, contexts and topics consist of text 



strings, an inference system may simply impose the 
strictest requirement that the strings match exactly. 
Alternatively, a less strict matching system may be 
employed. For example, if contexts are specified as a set 
of labels that specify the context’s relevant domains then 
the conditions for contexts to match may simply be that 
there exists at least one label common to both sets of 
domains. For example, the context for the question “How 
do you cook pumpkin pie?” may be the set of domain 
labels “Domain: Cooking, Recreation”. Another agent 
may know about the answer to the same question, but in 
the slightly different context, “Domain: Cooking, 
Hobbies”, although the inference system may infer the 
contexts match because of the common label “Cooking” 
present in both. 

We have deliberately left open the specific 
representation of the questions, contexts and topics to the 
designer of the knowledge system. We feel that different 
representations are required in different applications 
depending on the nature of the knowledge that needs to be 

specified and/or manipulated. For example, in a 
knowledge-based information retrieval system, the 
context could be used to specify the information purpose 
of the agent that produced each document, and then this 
can be matched against the information need of the user 
based on the user’s question and previous questions.  
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QITEKAT 
Question Inference Tools Employing Knowledgeable Agent Technologies 

 
Abstract 
We present the QITEKAT Question-Answering system 
based on the conceptual theory of Knowing About 
Knowledge, which adopts an agent-based approach to 
extract information from suitable corpora.  The 
components of the QITEKAT system entered by the 
School of Informatics, University of Wales, Bangor, in 
the 2003 Text Retrieval Conference are described in 
detail. We describe PPM compression techniques for 
Named Entity classification; distributed agent 
technologies for developing a Knowledgeable Framework 
and Knowledge Grid; and a Search Engine corroboration 
system for generating confidence estimates for Question 
Answering.  We present favourable results for certain 
question types in the TREC Question Answering Track, 
and discuss future directions for the QITEKAT 
architecture.  
 
B.1. Introduction 
In developing the QITEKAT system, we were aiming to 
take a first step on the TREC road, providing a foundation 
for future development within the School of Informatics, 
at the University of Wales Bangor, for knowledge 
representation, extraction and language processing 
techniques.  Agent technologies and techniques are a 
popular tool in modern computer science, and have been 
applied to a number of problems, including previous 
TREC question and answering tracks (Chu-Carroll et al, 
2002).   As a secondary goal, we were aiming to use the 
TREC Question Answering track as a benchmark to 

evaluate a developing framework for Knowledgeable 
Agents and Knowledge Grids (Cannataro and Talia, 
2003), based on the concepts of ‘Knowing About 
Knowledge’  (Teahan, 2003). 

The short development time period (7 weeks) meant 
that many of the core components of the QITEKAT 
system were based on standard information extraction and 
question/answering techniques, although we were able to 
incorporate a number of interesting features, particularly 
in Named Entity tagging and relevance ranking. 

This report firstly describes the main components of 
the UWB QITEKAT Question Answering System 
(Section 2).  Section 3 presents results obtained from 
various experiments on past and current TREC Q&A 
data, and is followed by a brief analysis of the 
performance of the system (Section 4). The report 
concludes with a discussion of possible future 
enhancements (Section 5). 
 
B.2. System Description 
The QITEKAT system was designed not only to offer a 
practical implementation for the theoretical concepts of 
‘Knowing About Knowledge’, which are explained in 
greater detail at the start of this paper, but to offer a 
foundation for the future development of information 
extraction and question answering techniques to enhance 
the system for future use, either through the TREC forum, 
or for practical applications.  This need for extensibili ty, 
and to be able to swap out various sections of the system 
as new techniques were developed, leant itself to the use 



of an object-oriented development platform. We decided 
that the Java language would offer the greatest flexibility 
for future development. 

The knowledge framework proposed by Teahan 
(Teahan, 2003), which is used as the basis for the 
extraction of knowledge relations from suitable source 
documents essentially relies on a reverse approach to 
standard Q&A techniques. Rather than using the question 
text to retrieve a subset of documents from the test 
collection, which are then analysed to find an answer, the 
QITEKAT system was designed to parse the entire 
collection, forming a number of question/answer relations 
before any actual questions are posed. 

The TREC 2003 Q&A Track uses the AQUAINT 
document collection as its source corpus, which consists 
of over 1 million documents, totalling 375 million words.  
Quite obviously, performing any kind of extensive 
parsing or analysis of this size of document collection 
would be computationally intensive, and not best suited to 
the Java language. 

With these considerations in mind we adopted a 2-
level modular approach to the system development, using 
the Java language to facilitate extensibility, and C where 
speed was of the essence, integrated using Java native 
methods. The system was developed based around three 
main stages: 

• document normalisation  and storage; 
• knowledgeable agents; 
• question analysis and answer ranking. 
Figure B.2 shows the component make up, and how 

each of the individual modules interacts with the rest of 
the system, and a more detailed explanation of each of the 
key components follows. 
 
B.2.1 XML Document System 
Although the TREC Q&A track was our main target 
during the development of the QITEKAT system, it was 
important that we consider its application to other areas 
and document sources.  With this in mind we developed a 
rudimentary XML notation to normalise any source 
documents, and store them in a consistent fashion for 
analysis by the Knowledgeable Agents of the system. 
 
 

 
Figure B.1 – Simple XML Notation 

 

 
Figure B.2 – System Design 

 
This means that the addition of a new corpora or 

alternative source of information could be handled using a 
simple Java based API, and plugged into the system as 
details of the data source become available. 
 
B.2.2 Speech Tagger 
The speech tagger forms a major portion of the QITEKAT 
development, as the part of speech and named entity tags 
are used as the basis for extracting knowledge relations 
from the AQUAINT documents. 
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The system is loosely based upon the Fastus system 
(Hobbs et al, 1996), employing the architecture of a 
cascading finite state automata in order to achieve usable 
levels of performance.  Each stage of the system was 
developed as a switchable module, so it could be invoked 
as required, depending on the document structure it is 
being used to parse. 

The system handles each document as a complete 
entity, separating it into sentences, and then words, before 
passing it on to first the POS tagger, and subsequently the 
NE tagger. Again, XML is used extensively to provide 
run-time modification of the rules and constructs used to 
tag the portions of a sentence. 
 
POS Tagger and Phrase Chunker 
The Part of Speech (POS) tagger is a 2-phase tagger, 
adopting ideas proposed by Brill (Brill, 1992).  It uses a 
frequency count, extrapolated from a pre-tagged version 
of the Brown corpus to assign preliminary part of speech 
tags to each word in a sentence, using the Penn Treebank 
tagset.  These pre-tagged words are then re-examined by a 
transformation based tagger.  The rules for this tagger 
were developed through automatic examination of the 
Brown corpus, with some minor manual modification.   

Once tagging of individual parts of speech is 
complete, the sentences are passed on to the phrase 
chunking module, which adopts a three-stage approach.  
A POS is tagged with one of three standard types 

• Inside a chunk; 
• Outside a chunk; 
• Boundary of a chunk. 

 
These are based solely on the POS tag assigned to the 
particular word.  This phase is succeeded by a 
transformation based chunk, again based on rules 
generated from the Brown Corpus. 

Once the final chunking is complete, each phrase 
chunk is examined to determine its content, and is 
labelled accordingly (Verb, Proper Noun, Noun, 
Punctuation, Other). 

XML is used to store the transformation and 
frequency rules for this portion of the speech tagging 
system, offering a look-ahead/behind matching system on 
three entity types: 

• Words; 
• POS Tags; 
• Chunk Tags. 

 
Figure B.3 shows an example of an XML rule 

description for transforming a noun tag (NN) to a verb tag 
(VB). We can see that the rule specifies that in order for 
the transformation to take place the POS tag TO must be 
found in the position before the tag being examined. 
Multiple conditions can be applied for each rule. The 
validity of the new tag is checked using the original tag 
frequency information from the Brown corpus, to ensure 
that the new tag is a suitable option for the current word.  

Transformations are applied in frequency order and can 
be cascaded to apply multiple transformations to the same 
entity. 
 
 
 
 
 
 
 
 
 
 
 
NE Tagger 
Once phrase chunking and identification is complete the 
system is aware of the phrases in a document that 
correspond to Proper Noun phrases, and are therefore 
candidates for Named Entity Tagging.  Each of the phrase 
chunks is passed to the NE tagger, which applies a 
cascading series of modules to determine the type of 
Named Entity that the chunk refers to: Currencies; Dates; 
Times; Locations; Professions; Relations; Measures; 
Organisations; Names (Pre/Post Honours). 

Each of these types is defined by a series of rules, 
again stored as XML for easy modification, which rely on 
a combination of direct matching, designator matching 
and sure-fire context rules 
 
Direct matching 
Certain named entity types fall into this category, in 
particular dates and times, which follow a series of 
standard word patterns.  Regular expression matching is 
used to identify matches, which are then tagged 
accordingly.  For example the regular expression below 
can be used to match the initial portion of a date such as 
23rd October. 
 
((0?[1-9]|[1|2][\\d]|3[0|1])(st|nd|rd|th)?) 
 
Designator Matching 
This method is adopted to determine such NEs as 
organisations and persons, and relies on common pre and 
post entity word matches.  For example if we have the NE 
British Gas Plc, we can match the Plc designator, and tag 
the phrase as an organisation.  Other such designators that 
the QITEKAT system relies upon are: 
 

Mr Sr Corp 
Dr Ltd Jr 

 
Sure-fire context rules 
Certain sentence constructs are used to determine the type 
of Named Entity for a specific phrase, where the 
surrounding context unambiguously denotes a specific 
type.  As an example, take the partial sentence: 
 

Figure B.3 – XML Based Tag Transformation Rule 

<rule> 
<initialtag>NN</initialtag> 
<newtag>VB</newtag> 
<condition>POS</condition> 
<operator1>TO</operator1> 
<operator2>-1</operator2> 
</rule> 



Share s in XY Z ro se 5 4% on t he days tra din g… 
The context Shares in ??? implies that ??? is an 

organisation, and can be used as a suitable sure-fire rule to 
tag that particular unknown NE. 

A small number of these sure-fire rules were 
manually created (again stored as XML constructs) in 
order to tag these particular sentence contexts. 

PROFESSION of ??? PERSON 
RELATION of ??? PERSON 
??? province LOCATION 

 
Partial Matching 
Natural language, and particular the construction of news 
articles, which are the basis for the TREC Question & 
Answering Track Corpora, often rely heavily human 
memory and implicit definition.  For example, in an 
article about a particular person, they may be referred to 
by their full name only once, early in the article, yet will 
be referred to again on numerous occasions throughout 
the text.  This may be by some abbreviation of their name, 
say their surname only, or some other means such as 
anaphora (He said…).  It is important for a successful 
Named Entity tagging system to be able to handle this 
cross-reference in a particular document in order to 
correctly tag the unknown NEs present. 

The QITEKAT system employs a simple partial 
matching algorithm to solve these problems, and cross-tag 
equivalent entities.  This works by extracting all known 
NEs from a particular document (which have been 
identified previously, either by designator matching or 
some other means) and creating partial orders of each.  
These partial orders are then compared to the remaining 
unknown NEs in the document, and should a match occur, 
the new NE is tagged with the equivalent type. 

As an example, take a document that discusses the 
work of Dr . Bil l Teahan.  This phrase would be 
correctly identified as a PERSON, by matching of the Dr. 
designator. Partial orderings of this phrase would then be 
constructed (retaining word order to ensure correct cross-
matching): 

Dr . Bi l l , Dr . Te ahan, Bi l l Teahan 
Should these phrase constructs occur elsewhere in 

this same document, they would be tagged according to 
the original phrase (i.e. As a PERSON type). 
 
PPM-Based Language Modelling 
The final stage of the QITEKAT speech tagging system 
focuses on labelling all remaining unknown NE phrases, 
and adopts a compression-based language modelling 
system to achieve this goal.  Much research has been 
carried out into the use of PPM compression systems for 
the text classification (Teahan and Harper, 2003), whether 
it be to identify languages, determine authorship or 
otherwise. 

We have adopted a PPM based compression system 
to deal with unknown NE classification, by training PPM 
models on various known data sets corresponding to the 

available NE types in the QITEKAT system (PERSONS, 
ORGANISATIONS, etc).  Given a suitably large data set 
of known phrases of each type, we have been able to train 
compression models for each.  These models are then 
used in turn to compress unknown phrases from the 
document set.  The model providing the best compression 
level (i.e. the shortest code length) is thus assumed to be 
the most appropriate type for the unidentified phrase. 

In initial tests on 200 Reuters news articles, this 
compression system was able to produce very favourable 
results, when applied as the final stage in the QITEKAT 
tagging process. 

Number of unknown NEs 141 
Number of NEs correctly identified 132 
Number of NEs incorrectly identified 9 

 
B.2.3 Knowledgeable Agents 
The theory of Knowledgeable Agents proposed in 
Teahan, 2003, and outlined at the start of this paper is 
used as the basis for the main document processing 
component of QITEKAT.  Each agent is capable of 
running autonomously and analysing a given series of 
XML documents to generate Knows and KnowsAbout 
relations, which it then stores for the purpose of question-
answering. 
 
B.2.3.1 Regular Expressions 
In order to extract Knows relations from the AQUAINT 
corpora, regular expressions were developed manually to 
pattern match sentence construction for common question 
types.  These expressions were developed using the 
TREC 2001 question text, and focus on the Who and 
When question types only, due to time constraints.   

It was important to make the best use of the tagged 
documents, and to ensure that regular expressions used by 
the system were not too specific as to require multiple 
expressions for a single question construct.  This led us to 
develop a dynamic substitution system, whereby a generic 
RE was populated at run-time using the tagged contents 
of the sentence it was being applied to.   

Again all rules are stored in an XML file, to enable 
rapid updating and maintenance of the rule base, and a 
typical entry looks as follows.  The file denotes a basic 
regular expression format, suitable substitution types, an 
allowable answer type, and a question format for the 
particular relation 

• When did OBJECT1 die? 
• Who was OBJECT1? 

 
 
 
 
 
 
 
 
 

Figure B.4 – XML Based Regular Expression Rule 

<questionpack> 
<domain>PEOPLE</domain> 
<answer>DATE</answer> 
<object1>PERSON</object1> 
<object2>NONE</object2> 
<object3>NONE</object3> 
<regexp> 
(OBJECT1)\ sdi ed\ s(( on|in|ar ound) \ s(A NSWER) 
</regexp> 
<format>When did OB JECT1 d i e?</format> 
</questionpack> 



 
By using the NEs already tagged in this sentence, the 

system creates a number of regular expressions, 
substituting suitable NE types into the ANSWER and 
OBJECT locations. Given the sentence: John L ennon 
di ed o n De cember 8th , 1 980 dur i ng a 
publ ic dr amat i c i nte rp r et at io n of J . D. 
Sal i nger ' s " Cat ch er i n t he R ye” ,  the 
QITEKAT system would tag 1 DATE entity (December 
8th, 1980) and 2 PERSON entities (John Lennon and J.D. 
Salinger) the QITEKAT system would dynamically 
produce 2 regular expressions: 
1.  ( John Lennon) \ sdi ed\ s( ( on| i n| ar ound 

) \ s( December  8th , 1 980)  
2.  ( J . D. Sal i nger ) \ sdi ed\ s( ( on| i n| ar ound

) \ s( December  8th , 1 980)  
 

These would then be applied to the sentence to extract 
any matches which would be transformed into Knows 
relations.  In this case, option 1 would match, resulting in 
the following relation (given that the “knowledgeable” 
agent who produced the document text referred to as A). 
 

Knows( A, “ Domai n: P EOPLE” ,  
“ When di d John Lennon di e?” , 
“ December 8 th , 1 980” , 1. 0) .  

 
Further examples of extracted Knows relations: 
K1 = Knows( A, “ Domai n: P EOPLE” , “ Who i s 
Geor ge W. Bus h?” , “ Uni t ed St ate s 
Pr esid ent ” , 1 .0 ) .  
K2 = Knows( A, “ Domain : PEOPLE” , “ When 
was Geor ge W. Bush bor n?” , “ Jul y 6t h 
1946” , 1 .0 ) .  
 
These Knows relations are then used to populate suitable 
KnowsAbout relations such as the following: 

KnowsAbout ( A, “ Domai n: P EOPLE” ,  
“ Georg e W. Bu sh” , { K1, K 2} ,  
1. 0) .  

KnowsAbout ( A, “ Domai n: PE OPLE” ,  
“ John Lennon” , Ka, 1. 0) .  

 
A small number of broad domain types are used 
(PEOPLE, GEOGRAPHY, HISTORY, SPORT, MISC), 
and all relations are stored within the Knowledgeable 
Agents using serialized vectors, in order to achieve 
persistent data storage between executions. 
 
B.2.3.2 Distr ibution 
In developing the QITEKAT system, consideration was 
given to its use as a prototype for a Knowledge Grid 
(Cannataro and Talia, 2003), and for knowledgeable 
agents to communicate effectively with one another.  This 
concept pointed toward the need for some kind of 
distributed system where agents could show mobility, and 

the ability to reside on a network, wherever there was data 
to process.  

In addition, the large amount of data that was being 
handled for the Q&A task (1 million+ documents) lent 
itself to exploiting distributed paradigms to share the 
workload of examining this data and extracting suitable 
relations. 

The QITEKAT system uses a simple UDP based 
system to handle communication between agents.  This 
allows each agent to determine what other resources are 
available on the grid, and also inform others about the 
knowledge it possesses.  As more agents are added to the 
grid, each becomes aware of what knowledge resources 
are available, and where a certain domain of questions 
may be best answered. 

The system handles 5 message types: 
Ping   Ask an agent if they are active. 
Broadcast  Inform other agents in the grid 
   that this  agent is active. 
Send_Question  Post a question to a specific 
   agent on the grid. 
Send_Answer  Send an answer back. 
Send_KnowsAbout Tell another agent what this 
   agent has information about. 
 

This approach allows knowledge to propagate 
through the system, as each question is sent from agent to 
agent to discover answers.  When an answer is found, the 
response is returned, and the agents in the chain are each 
able to ‘learn’ that fact.  A user only needs to enquire of a 
single agent in the grid, and that agent will be able to find 
the other agents on the grid that may be capable of 
answering the users query, and forward the question as 
required. A typical interaction between Knowledgeable 
Agents on this grid system is outlined below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.5 – Typical Agent Interaction 

Agent 1 st arts u p, load s Knows and  K nowsAbout 
rel ations and Age nt IPs  an d sends a br oadcast 
message on t he loc al netwo r k.  
 
Receives r espons es f ro m other ag ent s and 
updates it s K nowsAbout relat i ons .  
 
Receives qu estion f rom use r .  
 
Checks it s o wn Kno ws rela t ions f or a s uitable 
ans wer – no ne found .  
 
Checks i t s Knows About r ela t ions for anot her 
agent t hat may have a n answer – one fou nd 
( Agent 2) .  
 
Tags the qu estio n a nd forwa r ds it t o Agent 2. 
 
Agent 2 fin ds an  answ er to the ques t ion and 
sen ds it ba ck to Agent 1 
 
Agent 1 updates it’s k nows r elations so it  
now kno ws t he answer  a nd w on’ t need t o ask 
Agent 2 nex t time .  
 
Agent 1 f orw ards t he an swer to  the user , and 
updates its loc al disk storage .  



B.2.4 Confidence Ranking 
In the specific area of question answering it is often the 
case that systems are able to generate a number of 
candidate answers for a particular query.  In this year’s 
TREC Q&A track for example, an entire section of 
questions is devoted to returning multiple results for a 
single query (the so called List questions). 

This poses the problem of determining the best result 
for a particular query, which is what is required by the 
standard questions in the Q&A track, and is likely to be 
the requirements of any practical application of a 
Question-Answering system. 

The way in which this is often achieved is through a 
confidence ranking for an answer, reflecting the degree of 
certainty the system places on the answer returned being 
correct.  The confidence ranking is often returned as a 
decimal value in the range 0.0 (zero confidence that the 
answer is correct) to 1.0 (completely confident that the 
answer is correct). 

Past Q&A systems have used a number of means for 
determining a confidence measure from answers. 
Weighting based on matching NE types from the answer 
to that expected by a specific question type (i.e. A where 
type question expects a LOCATION type answer, and so 
a corresponding answer gets a higher weighting) is 
popular.  Other popular measures include keyword 
densities in the answer document, and vector matching of 
question and answer pairs. 

We adopted a new approach based on corroboration 
with external data sources (popular search engines) 
 
B.2.4.1 Search Engine Corr oboration 
Search engines provide a large document base – Google 
for example currently claims to index over 3.3 billion 
Web pages, and as a result are likely to contain many 
examples of the correct answer to any query likely to be 
posed to a Q&A system.  Although this offers scope to 
use Web search results as a source corpora for practical 
Q&A applications, the TREC Tracks require that all 
answers are found in the AQUAINT document collection.  
This does not preclude, however, the use of web search 
results to aid in the Q&A process, and we have adopted a 
novel approach for confidence ranking of answers, based 
on the results of an appropriate Web search query. 

The fact that a suitable query to a search engine, 
based on the original question, is likely to result in many 
examples of the correct answer means that we can use the 
proportion of each possible answer within these search 
results to determine a relevance rank for that answer. 

The QITEKAT system achieves this through a simple 
search API, developed in Java, which queries a number of 
popular search engines. Noun and verb phrase chunks 
from the question text are used to form a suitable search 
query, and the abstracts of the first 1000 results are 
retrieved from the search engine. These results are then 
scanned to determine the frequency of each of the 
possible results as produced by the Q&A system.  The 

proportion of these frequencies are then used to calculate 
a relevance ranking. 

This is better explained using a simple example: 
• Given the question: 

When did John Lennon die? 
• We extract the noun and verb phrases  

John Lennon 
Die 

• These are then passed as a search query to Google 
“J ohn Lennon” + “ die”  

• The first 1000 abstracts are retrieved 
• The Knowledgeable Agents return three possible 

answers 
8th December 
15th August 
19th July 

• Thus we find frequency matches for each of these 
answers in the Google abstracts, and calculate a 
relevance rating: 

 
ANSWER FREQ CALC RELEVANCE 
8th December 462 462/533 0.87 
15th August 28 28/533 0.05 
19th July 43 43/533 0.08 

Table B.1 – Relevance Ranking Calculation 

So we have a corroborated relevance for each of the 
answers, and the Q&A system is able to return the answer 
8th December as the most favourable. 
 
B.3. Results 
Preliminary testing of the QITEKAT system showed 
positive results on previous TREC question sets, and 
these are confirmed by the TREC 2003 evaluations.   
 
B.3.1 Trained Question Types 
In developing the regular expression rules to extract 
Knows relations from source corpora we used the question 
data supplied as part of the TREC 2001 Question-
Answering track. We constructed 400 regular expression 
rules, although time constraints meant we were unable to 
construct rules for all question types.  
 
B.3.2 TREC 2002 
Initial testing of the QITEKAT system was carried out on 
TREC 2002 Q&A Track questions in order to provide an 
indication of how the system would perform under typical 
application.  Manual examination shows that of the 500 
questions provided, rules have been constructed that 
should be able to find answers to 122 of them, assuming 
those answers exist within the AQUAINT source 
documents. 

The system registered 107 correct answers, of which 
4 were NIL answer questions, as no answer existed in the 
AQUAINT corpus. 15 incorrect answers were registered, 
of which 2 should have been NIL answers. 



.
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Figure B.6 - Results on TREC 2002 Questions 

 
B.3.3 TREC 2003 
Manual evaluation of the TREC 2003 question set showed 
that the system should have been able to answer 124 of 
the 500 questions made available with its current regular 
expression definitions.  Evaluation of the TREC 2003 run 
showed 107 completely correct answers and 6 answers 
judged as being inexact. 11 incorrect answers were 
registered, which included answers that were judged as 
being unsupported answers. 
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Figure B.7 - Results on TREC 2003 Questions 

 
B.4. Analysis 
The results produced by the QITEKAT system, both from 
in-house tests on previous Q&A data, and on the current 
TREC Q&A track questions are promising, particularly 
given the timescale of the development process.  With 
levels of correct answers exceeding 80% in both tests, this 
implies a positive first step on the Q&A ladder, and a 
solid foundation to build on the work in Knowledgeable 
Agents and the concepts of  ‘Knowing About Knowledge’ . 
 
B.4.1 Question Types 
The results gained by the QITEKAT system need to be 
considered in the context of the question types that were 
addressed in order to gain a more accurate indication of 
the performance of the system.   

It could be argued that the When and Who question 
types are the simpler of the main types used in the TREC 
evaluations, offering a definite answer type, and often 
more simple sentence constructs where an answer may be 
found.  We felt this to be the case in this respect, and 
deliberately chose these types in order to aid the speed of 

system development in order to meet the deadline for run 
submission.  We hope, however, that the underlying 
concepts of the system that we have adopted should be 
able to achieve similar results on all of the major question 
types, given suitable Regular Expressions on which to 
match.   
 
B.4.2 Speed 
Analysis of the AQUAINT documents which formed the 
source corpora for the TREC 2003 Q&A evaluation 
demonstrated the benefits of the distributed design 
adopted as the basis for the QITEKAT system, but also 
indicated a need for further speed improvements.   

The final evaluation was carried out using a 
distributed network of 8 Pentium III computers, each 
using a 128Mb of local memory, and approximately 
500Mb of local storage.  The parsing and analysis of the 1 
million documents took approximately 72 hours on this 
configuration.  Although this level of performance is 
manageable, it would need to be improved if the system 
were to be applied to practical applications, or larger 
corpora, such as Web search results. 
 
B.5. Future Directions 
As a foundation for future Q&A and language processing 
research, the QITEKAT system has performed well, 
although a number of areas have been targeted as areas 
for improvement.  In particular it is important that we are 
able to handle a greater number of question types in order 
to perform a more accurate evaluation of the systems 
performance, and allow for a direct comparison to other 
research systems participating in the TREC tracks.  
Further additional features that we feel may improve 
system performance, both in terms of speed of execution, 
and the ability to determine answers are outlined below. 
 
B.5.1 Improved NE Classification 
Although the NE classifier developed as part of the 
QITEKAT system performs well, for the purposes of 
Q&A it is important to broaden the scope of the system, 
and introduce further NE types in order to allow for more 
accurate answer matching.  Sekine et al present a system 
offering a far greater number of NE classifications 
(Sekine et al, 2002), which we feel would be a beneficial 
addition to the QITEKAT architecture. 
 
B.5.2 Synonym substitution 
The present system architecture offers no methods for 
word substitution, which is a limiting factor, both in terms 
of matching questions with appropriate knowledge 
relations, and also extracting relations from document 
texts.  The addition of a synonym system, such as 
WordNet (Miller, 1990) would enable a greater number of 
sentence constructs to be identified and extrapolation of 
questions to form multiple queries, offering a far greater 
chance of successful responses. 

As an example, take the question text 



When di d C har l es Br onson di e? 
In the present QITEKAT system, this will match only 
those relations with an equivalent question construct, 
which may result in no answer being found.  With 
synonym substitution, however, the query would be 
reformulated as: 

When di d C har l es Br onson pass away? 
which may provide a positive match. 
 
B.5.3 Past Participle Determination 
In a similar vein to synonym substitution, it would be 
useful to develop a feature within the system to 
automatically generate past participles of verbs, 
particularly for Search Engine Corroboration.   

When querying a search engine, the system passes the 
main subjects of a question, so for example, given the 
question: 

When di d C har l es Br onson di e? 
The system forms a query using Charles Bronson and 

Die.  It is likely however that in any documents retrieved 
by a search engine, the information that we are interested 
in would be described using the past participle (died), i.e.  

Char le s B r ons on di ed o n …. .  
 
Substituting the past participle may result in a more useful 
query string, and ultimately a greater number (or more 
accurate) results. 
 
B.5.4 Automate RE Production 
Manual production of Regular Expressions to extract 
information from document texts was one of the more 
time consuming aspects of the initial QITEKAT 
development, and as a result meant we were only able to 
focus the tool at a limited number if question types in 
order to meet the TREC deadline.  A key idea for future 
development of the system is to implement an automated 
system, capable of producing generic expressions which 
could then be used to extract further information.  Initial 

thoughts are that this issue may lend itself to a 
transformation based system, similar to that found in 
Brill-type POS tagging systems (Brill, 1992), where it 
would be possible for the system to learn a set of rules, 
based on existing, manually produced REs. 
 
B.6. References 

E. Brill. 1992. “A simple rule -based part-of-speech 
tagger” In Proceedings of ANLP-92, pp 152–155, 1992. 

M. Cannataro and D. Talia. 2003. “The Knowledge 
Grid”. In Communications of the ACM Vol 46, Number 1, 
pp 89-93. 

J. Chu-Carroll, J. Prager, C. Welty, K. Czuba and D. 
Ferrucci. 2002. “A Multi -Strategy and Multi-Source 
Approach to Question Answering”. In TREC 2002 
Proceedings. 

J. Hobbs, D. Appelt, J. Bear, D. Israel, M. 
Kameyama, M.  Stickel, and M. Tyson. 1996. “Fastus: A 
Cascaded Finite-State Transducer for Extracting 
Information from Natural-Language Text” In Finite State 
Devices for Natural Language Processing. MIT Press, 
Cambridge MA. 

G. Miller. 1990. “Word Net: An On-Line Lexical 
Database” In International Journal of Lexicography. 

S. Sekine, K. Sudo, and C. Nobata. 2002 “Extended 
Named Entity Hierarchy” In Proceedings of the LREC-
2002 Conference, pp 1818–1824, 2002. 

W. Teahan and D. Harper. 2003. “Using 
Compression-Based Language Models for Text 
Categorization” Language Modelling for Information 
Retrieval,  Chapter 7,  pp 141-165. Kluwer Academic 
Publishers. 

W. Teahan. 2003. “Knowing About Knowledge: 
Towards a Framework for Knowledgeable Agents and 
Knowledge Grids”. Artificial Intelligence and Intelligent 
Agents Tech Report AIIA03.2, School of Informatics, 
University of Wales Bangor. 

  

Generating GeneRIFs for a Multi-Agent-based Biomedical Information Retrieval System  
 

Abstract 
This section describes work that was done for the 2003 
Text Retrieval Conference (TREC) Genomics Track 
second task. It also describes preliminary work on 
implementing a multi-agent Biomedical information 
retrieval system. The proposed multi-agent system will 
apply knowledgeable agents using a logic-based question 
and answering framework. Part of this work requires the 
specifying of context for the questions and answers, and 
one means of doing this is to generate GeneRIFs for each 
biomedical document, where a GeneRIF is a MEDLINE 
standard for describing the contents of the biomedical 
document in terms of gene function. Various methods are 
explored to generate the GeneRifs automatically. 

 
C.1 Introduction 
The Text Retrieval Conference (TREC) Genomics Track 
was started to provide a forum for information retrieval in 
the genomics area. The Secondary Task for this year' s 
track is to analyse automatic methods to reproduce the 
GeneRIF notation for biomedical papers. Below shows 
the official definition of what a GeneRIF should be: 

A concise phrase describing a function or functions 
(less than 255 characters in length, preferably more 
than a restatement of the title of the paper.) 
(www.ncbi.nlm.nih.gov/LocusLink/GeneRIFhelp.html) 
 



The GeneRIF annotation is designed to allow the 
contents of a bioscience paper to be summarised in such a 
way as to show the function of the gene, which is the 
subject of the bioscience paper. An analysis by Mork and 
Aronson (2003) of NLM found that 95% of GeneRIF 
snippets contained some text from the title or abstract of 
the article.  About 42% of the matches were taken directly 
from the title or abstract, 25% contained significant runs 
of words from pieces of the title or abstract. 

The data provided for the Secondary Task consists of 
139 GeneRIFs representing all of the articles appearing in 
five journals – Journal of Biological Chemistry, Journal 
of Cell Biology, Nucleic Acids Research, Proceedings of 
the National Academy of Sciences, and Science – during 
the latter half of 2002.   
 
C.2 Methodology 
The main objective of our research is to design and 
implement a multi-agent based system for knowledge-
based retrieval to biomedical literature. The purpose is to 
provide easy-to-use and seamless interfaces to biomedical 
literature both for the expert and for the layperson. The 
main components of the multi-agent systems we envisage 
will consist of peer-to-peer based communicating agents 
which are knowledgeable about biomedical resources. 
The biomedical information retrieval systems will provide 
scientists in the biomedical community with better 
support for searching the latest literature, therefore 
enabling them to be better informed about the latest 
developments in the biomedical field. The systems will 
also serve the wider community that will enable 
researchers, whether they are experts or non-specialists, a 
seamless and natural interface that will require minimal 
training. 
 
C.3 Knowledgeable Agent Framework 
We are in the process of designing and developing a novel 
logic-based framework for implementing knowledgeable 
agents that will become the core components for our 
multi-agent biomedical information retrieval system. The 
logic is based on three relations that describe whether an 
agent is “knowledgeable”  or not (Teahan, 2003; also see 
the first part of this paper). 
 
C.3.1 Context modelling 
We feel that context has a very important role to play in 
specifying knowledge. For example, for an agent to 
answer the question “What is entropy?' ” in a 
knowledgeable way, the agent must first appreciate the 
context in which the question is asked. A different answer 
is required to this question depending on whether the 
context concerns the domain of physics or the domain of 
information theory. If neither domain is apparent given 
the context, then it might be appropriate for an agent (if it 
wishes to be knowledgeable) to inform the person asking 
the question that more than one answer is possible to the 
question. We feel that different representations of context 

are required in different applications depending on the 
nature of the knowledge that needs to be specified and/or 
manipulated.  
 
C.3.2 GeneRIF as a context 
For the application that we investigate in this paper, we 
explore the possibility of using GeneRIF-based annotation 
for specifying the context of biomedical documents in the 
Genomics domain. Importantly, in this “context” , we 
consider the MEDLINE GeneRIFs as provided in the 
training data for the TREC 2003 Genomics Secondary 
Task experiments as only a representation of the “true”' 
GeneRIF. By “true” , we mean what a correct annotation 
of the article might be if it was performed by a group of 
experts, rather than the GeneRIFs encountered in the 
MEDLINE database. Note that some of the MEDLINE 
GeneRIFs in the training data evidently fall short of what 
a group of experts might assign to the “correct” or “true”  
GeneRIF, if they had been allocated this task. 

In light of this, we can also partially ignore the 
differences between the MEDLINE provided GeneRIF 
and the candidate GeneRIFs we are automatically 
generating, since we are only interested in finding a 
GeneRIF description that encompasses some notion of a 
true GeneRIF. Hence, providing GeneRIF strings that are 
potentially longer than the MEDLINE GeneRIF, but have 
a much greater chance of encompassing the “true”  
GeneRIF description makes sense, as our goal is to ensure 
as comprehensive description as possible is generated for 
information retrieval purposes. Our contention is this will 
make it more likely that a relevant document is retrieved 
when the GeneRIF is used in an IR system – in our case, 
within the distributed IR framework that we are 
developing based on Knowledgeable Agents. 

The consequence of this is that we feel that a 
modified co-efficient is more suitable for our purposes to 
evaluate the “goodness”  of the generated GeneRIF. This 
modified co-efficient is a measure of the percentage of 
words in X that occur in Y, so we are effectively ignoring 
the extraneous words in Y. The equation below is for the 
modified measure:  

( ) XZD BA ='
,      [1] 

as opposed to the original DICE co-efficient: 

( ) ( )YXZD BA +×= 2'
,     [2] 

where A is the MEDLINE GeneRIF, B is the generated 
GeneRIF, Z is the number of words that occur in both A 
and B, X is the number of words in A, and Y is the number 
of words in B. 

Changing the DICE co-efficient in this way shows 
that we are only interested in the following questions: 
“Does the generated GeneRIF contain the MEDLINE 
GeneRIF?” or “ How much of it does it contain?”  These 
questions are noticeably different to what the standard, 
unmodified DICE co-efficient measures which is: “How 
similar are the MEDLINE and generated GeneRIFs?” 
 



C.3.3 Experimental Results 
Table C.1 shows the results for the secondary task 
experiments, using both the standard DICE co-efficients 
(Classic DICE (see equation [2]), Modified Unigram 
DICE, Modified Bigram DICE, and Modified Bigram 
Phrases DICE), and the modified measure (see equation 
[1]). The table is divided into sections by experimental 
run, and these sections are divided further by the co-
efficient used to generate the average result for the 
particular run. The runs processed the following data:  
uwb2 used a concatenation of the document titles and the 
last line of the document abstracts as input data, uwb3 
used the document titles as input data, uwb4 used the last 
line of the document abstracts as input data, and 
clairvoyant used pre-calculated DICE co-efficients to find 
the best possible generated GeneRIF from a choice of 
document title, first line of document abstract, 
penultimate line of the document abstract, and last line of 
document abstract. The clairvoyant run is therefore a 
measure of the best possible result that the chosen 
generated GeneRIF selection technique could produce, 
but used data that would not be available to the system 
when it operates autonomously. Due to this, only runs 
uwb2, uwb3, and uwb4 were submitted to TREC for 
evaluation. The use of the modified measure in the 
clairvoyant run is justified as the run produces the best 
standard DICE co-efficient results and the second best 
modified measure result. 

The result the modified measure achieved (61.48%) 
indicates the better coverage of the input data of run 
uwb2. This is unsurprising, as the input data for this run 
was a concatenation of two strings; so the modified 
measure had more data to work with. However, incorrect 
data for run uwb2 was sent to TREC, but this did not have 
an effect on the results for the classic DICE, the modified 
unigram DICE, or the modified measure in this run. Our 
own analysis of the corrected data gives the results shown 
in table C.2. 

The best run using the standard DICE co-efficients 
was the Modified Unigram DICE co-efficient in run 
uwb3, which produced 48.25%. This result is interesting 
as it shows that document titles do contain pertinent data 
for generating GeneRIFs. However, this advantage is lost 
when document titles are combined with other parts of the 
document, such as the last line of the document abstracts 
in run uwb2. 

 
 
 
 
 
 

 
 
 
 
 

Table C.1: Experimental Results 
 

CO-EFFICIENT TYPE Average %  
uwb2 

Classic DICE 44.41 
Modified Unigram DICE 44.07 
Modified Bigram DICE 2.33 
Modified Bigram Phrases DICE 1.80 
Modified Measure 61.48 

uwb3 
Classic DICE 46.48 
Modified Unigram DICE 48.25 
Modified Bigram DICE 29.53 
Modified Bigram Phrases DICE 32.82 
Modified Measure 42.74 

uwb4 
Classic DICE 36.28 
Modified Unigram DICE 35.21 
Modified Bigram DICE 22.73 
Modified Bigram Phrases DICE 24.52 
Modified Measure 38.80 

clairvoyant 
Classic DICE 58.16 
Modified Unigram DICE 59.61 
Modified Bigram DICE 45.04 
Modified Bigram Phrases DICE 47.94 
Modified Measure 54.43 

 
Table C.2: Corrected Results for uwb2 

 
CO-EFFICIENT TYPE Average % 

uwb2 
Classic DICE 44.53 
Modified Unigram DICE 40.08 
Modified Bigram DICE 29.20 
Modified Bigram Phrases DICE 31.80 
Modified Measure - 
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