
Bangor at TREC 2003: Q&A and Genomics Tracks
Terence Cli fton Alex Colquhoun Wil liam Teahan

{ terence, alex, wjt} @informatics.bangor.ac.uk

This paper describes the participation of the School of Informatics, University of Wales, Bangor at TREC’2003 in the Q&A
and Genomics Tracks. The paper is organized into three parts as follows. The first part provides a brief overview of the logic-
based framework for Knowledgeable Agents that is currently being developed at Bangor. This was adopted as the basis for
implementations used for both Tracks. The second part describes the Q&A system that was developed based on the
framework, and the final part describes some experiments that were conducted within the Genomics Track at specifying
context using GeneRIFs (for a Q&A system being developed for the BioMedical domain).

 “ Knowing About” Knowledge: A Framework for Knowledgeable Agents

A.1 Introduction
We are in the process of designing and developing a novel
logic-based framework for implementing knowledgeable
agents that wil l become the core component for our multi-
agent information retrieval systems.

In Teahan (2003), we describe a framework for
designing and implementing knowledgeable agents and
Knowledge Grids. The framework is based on three types
of knowledge relations: Knows, KnowsAbout, and
KnowledgeableAbout. These are used to define what an
agent knows, what it knows about, and whether an agent
has been judged to be knowledgeable by other agents. In
Teahan (2003) and in the second part of this paper, we
describe how a Knowledge Grid could be implemented
(based on the framework) which has “knowledge” based
on the three defined knowledge relations. Essentially, the
architecture is based on using knowledgeable agents as a
middle layer between the user and the information
resources. A key aspect of the design is the use of
information extraction coupled with compression-based
language modelling technology (Teahan & Harper, 2003)
and the use of a conversational agent that the user asks
questions of and receives answers from the system.

In this architecture, there are three types of objects:
users, knowledgeable agents and information resources.
The users do not interface directly with the information
resources. Instead, they must go through a knowledgeable
agent who effectively acts as a knowledge broker in
determining which of the information resources are likely
to contain an answer to the user' s questions. Notice that
knowledgeable agents may need to go though other
knowledgeable agents in the hunt to find the most
relevant answer to the user' s questions.

A.2 A framework for knowledgeable agents
This section outlines the logic-based framework that we
wish to use as the basis of knowledge within the
Knowledge Grid architecture. We wish to stress that the
framework as described below is stil l in its developmental
stage, and its final form, we envisage, will be somewhat

different based on the experiences we garner from future
research.

We feel that the traditional propositional truth-based
approach that epistemic logic-based multi-agent systems
take, which are usually formulated as normal modal
logics using the semantics of Kripke (Wooldridge, 2002),
is not sufficiently expressive enough for our purposes.
Instead, we would like to adopt some of the capabil ities of
Question/Answering systems within our inference
capabilities. A problem with the propositional truth-based
approach is that although we can state what an agent may
know per se, it does not help us find out whether an agent
knows an answer to a question, and just as importantly,
what answers an agent knows to a question. Neither does
it help us find out what an agent knows about (where
knowing about a topic implies that you know something
about the topic, but it does not imply that you know
everything about the topic).

We feel that there are three necessary conditions for
an agent to be “knowledgeable”. The key condition,
which we refer to as the Knowledge Test, is the following:
“An agent is judged to be knowledgeable by other
(external) knowledgeable agents” . This states that judges
are used to adjudicate on whether an agent is
knowledgeable or not (analogously to the Turing Test in
Artificial Intelligence). The judges are agents – either
human or computer-based – that must also be
“knowledgeable”. Like the Turing Test, it is assumed that
a question and answering testing process is used before
making the judgment. The second condition is a logical
consequence of the first condition: “Other agents must
have the ability to learn about and/or be informed of what
the agent knows about.” Simply stated, if other agents
don’ t know about what the agent knows about, then they
can’ t make a judgment in the first place. The third
condition states: “The agent must know: what it knows
about, and what it doesn’ t know about.” This again relies
on the judging process used for the Knowledge Test: it
would seem a natural response for a knowledgeable agent
to answer “Sorry, I only know about X and not Y” to
something it doesn’ t know about.

We have devised the following logic-based
framework based on these conditions. We define three
logical relationships – Knows, KnowsAbout and
KnowledgeableAbout.

A.2.1 The Knows relation
We define Knows, a 5-tuple relation, as follows:
Knows (agent, context, question, answer, relevance).

This is explained as follows: The specified agent
believes that an answer to a question for a specified
context has the specified relevance (this is a real number
in the range 0 to 1.0 with 1.0 indicating absolute belief
that the answer is relevant to the question). A
representation of the context, question and answer is
provided by the specified context, question and answer
which can be arbitrary text passages or strings or some
other representation (depending on the implementation).
Note that it is possible to ask the same question but in
different contexts. The following example is provided as
further explanation.

Example 1: Knows (A, “ Domain: Geography” , “ Where
is Bangor?” , “ North Wales” , 1.0).

In this example, the agent believes she knows that the
answer to the question “Where is Bangor?” is “ North
Wales”. She assigns a relevance ranking of 1.0 (in other
words, she believes that the answer is certainly correct).
The context in this case is the domain of geography.

An agent may believe many answers are relevant to a
particular question and context. As a shorthand notation,
we write this in the following manner:
Knows (agent, context, question): answer1, r1; answer2,
r2; …

We can also assign an agent’s list of answers to a
variable. For example, KA = Knows (A, “ Domain:
Geography” , “ Where is Bangor?”). Similarly, we can
assign to a variable all that an agent knows on a particular
context: KB = Knows (B, “ Domain: Geography”).

A.2.2 The KnowsAbout relation
We define KnowsAbout, a 5-tuple relation as follows:
KnowsAbout (agent, topic, context, knows, relevance).

This is explained as follows: The agent believes that
the list of questions and answers denoted by knows are
related to the topic given the context and have the
specified relevance. Intuitively, the agent believes that she
knows about the topic given a certain context because she
knows the answers to the specified questions. Topics and
contexts can be arbitrary text passages or strings as above
for the Knows relation. Note that the agent may know
about the same topic but in different contexts.

Example 2: KnowsAbout (B, “Bangor”, “ Domain:
General Knowledge”, KA, 0.9).

In this example, agent B has some general knowledge
about the topic “Bangor”. What he knows are the same
answers that agent A knows to the question “Where is

Bangor?” in a geographical context. He assigns a
weighting of 0.9 to his belief in the relevance of agent A’s
answers.

It seems reasonable to assume that if an agent knows
the answer to something, then it knows about that
something. This is written as follows:
∀agent, context, question, relevance
Ki = Knows (agent, context, question, answer, relevance)
⇒ KnowsAbout (agent, question, context, Ki, relevance).

In this case, the agent is inferred to know about each
question because she knows the answers to them. So for
example, from KA above, we can infer that agent A knows
about the following: KnowsAbout (A, “Where is
Bangor?” , “Domain: Geography” , KA, relevance).

By default, the same relevance from the Knows
relation can be adopted for the KnowsAbout relation,
although this can be overridden at a latter time.

It also seems reasonable to assume that if an agent
knows the context of a given question and answer, then it
knows about that context. This is written as follows:
∀agent, context, question
Ki = Knows (agent, context, question, answer,
relevance) ⇒ KnowsAbout (agent, context, context, Ki,
relevance).

In this case, the topic that the agent knows about is
the context itself.

A.2.3 The KnowledgeableAbout relation
We define KnowledgeableAbout, a 6-tuple relation as
follows:
KnowledeagbleAbout (knowledgeable-agent, testing-
agent, agent, topic, context, relevance).

This is explained as follows: The knowledgeable-
agent believes that the agent is knowledgeable about the
topic given the context with the specified relevance
because that agent knows about the same things as the
testing-agent knows about. Effectively, an external agent,
which is designated as being knowledgeable, uses test
questions to determine if a person or agent knows about
some topic. The knowledgeable agent delegates the
testing agent to perform the test – this may be a “virtual”
agent that is provided with sufficient knowledge
necessary in relation to the test. The testing agent may in
fact be provided with a subset of the knowledge known by
the knowledgeable agent. Alternatively, other possibilities
are having the knowledgeable agent spawn a testing agent
to perform the test, or having the knowledgeable agent
designate an independent testing agent to perform the test.
Notice that the series of test questions have themselves
now become a form of knowledge.

A.3 Questions, contexts and topics
Note that in our definitions above of Knows, KnowsAbout
and KnowledgeableAbout, we do not explicitly state how
the questions are represented or how they are to be
matched with each other, and similarly for the topics and
contexts. If questions, contexts and topics consist of text

strings, an inference system may simply impose the
strictest requirement that the strings match exactly.
Alternatively, a less strict matching system may be
employed. For example, if contexts are specified as a set
of labels that specify the context’s relevant domains then
the conditions for contexts to match may simply be that
there exists at least one label common to both sets of
domains. For example, the context for the question “How
do you cook pumpkin pie?” may be the set of domain
labels “Domain: Cooking, Recreation”. Another agent
may know about the answer to the same question, but in
the slightly different context, “Domain: Cooking,
Hobbies”, although the inference system may infer the
contexts match because of the common label “Cooking”
present in both.

We have deliberately left open the specific
representation of the questions, contexts and topics to the
designer of the knowledge system. We feel that different
representations are required in different applications
depending on the nature of the knowledge that needs to be

specified and/or manipulated. For example, in a
knowledge-based information retrieval system, the
context could be used to specify the information purpose
of the agent that produced each document, and then this
can be matched against the information need of the user
based on the user’s question and previous questions.
A.4 References

W. Teahan and D. Harper. 2003. “Using
Compression-Based Language Models for Text
Categorization” In Language Modelling for Information
Retrieval, Chapter 7, pp 141-165. Kluwer Academic
Publishers.

W. Teahan. 2003. “Knowing About Knowledge:
Towards a Framework for Knowledgeable Agents and
Knowledge Grids” . Artificial Intelligence and Intelligent
Agents Tech Report AIIA03.2, School of Informatics,
University of Wales, Bangor.

Wooldridge, M. 2002. An Introduction to MultiAgent
systems. Wiley, New York.

QITEKAT
Question Inference Tools Employing Knowledgeable Agent Technologies

Abstract
We present the QITEKAT Question-Answering system
based on the conceptual theory of Knowing About
Knowledge, which adopts an agent-based approach to
extract information from suitable corpora. The
components of the QITEKAT system entered by the
School of Informatics, University of Wales, Bangor, in
the 2003 Text Retrieval Conference are described in
detail. We describe PPM compression techniques for
Named Entity classification; distributed agent
technologies for developing a Knowledgeable Framework
and Knowledge Grid; and a Search Engine corroboration
system for generating confidence estimates for Question
Answering. We present favourable results for certain
question types in the TREC Question Answering Track,
and discuss future directions for the QITEKAT
architecture.

B.1. Introduction
In developing the QITEKAT system, we were aiming to
take a first step on the TREC road, providing a foundation
for future development within the School of Informatics,
at the University of Wales Bangor, for knowledge
representation, extraction and language processing
techniques. Agent technologies and techniques are a
popular tool in modern computer science, and have been
applied to a number of problems, including previous
TREC question and answering tracks (Chu-Carroll et al,
2002). As a secondary goal, we were aiming to use the
TREC Question Answering track as a benchmark to

evaluate a developing framework for Knowledgeable
Agents and Knowledge Grids (Cannataro and Talia,
2003), based on the concepts of ‘Knowing About
Knowledge’ (Teahan, 2003).

The short development time period (7 weeks) meant
that many of the core components of the QITEKAT
system were based on standard information extraction and
question/answering techniques, although we were able to
incorporate a number of interesting features, particularly
in Named Entity tagging and relevance ranking.

This report firstly describes the main components of
the UWB QITEKAT Question Answering System
(Section 2). Section 3 presents results obtained from
various experiments on past and current TREC Q&A
data, and is followed by a brief analysis of the
performance of the system (Section 4). The report
concludes with a discussion of possible future
enhancements (Section 5).

B.2. System Description
The QITEKAT system was designed not only to offer a
practical implementation for the theoretical concepts of
‘Knowing About Knowledge’, which are explained in
greater detail at the start of this paper, but to offer a
foundation for the future development of information
extraction and question answering techniques to enhance
the system for future use, either through the TREC forum,
or for practical applications. This need for extensibili ty,
and to be able to swap out various sections of the system
as new techniques were developed, leant itself to the use

of an object-oriented development platform. We decided
that the Java language would offer the greatest flexibility
for future development.

The knowledge framework proposed by Teahan
(Teahan, 2003), which is used as the basis for the
extraction of knowledge relations from suitable source
documents essentially relies on a reverse approach to
standard Q&A techniques. Rather than using the question
text to retrieve a subset of documents from the test
collection, which are then analysed to find an answer, the
QITEKAT system was designed to parse the entire
collection, forming a number of question/answer relations
before any actual questions are posed.

The TREC 2003 Q&A Track uses the AQUAINT
document collection as its source corpus, which consists
of over 1 million documents, totalling 375 million words.
Quite obviously, performing any kind of extensive
parsing or analysis of this size of document collection
would be computationally intensive, and not best suited to
the Java language.

With these considerations in mind we adopted a 2-
level modular approach to the system development, using
the Java language to facilitate extensibility, and C where
speed was of the essence, integrated using Java native
methods. The system was developed based around three
main stages:

• document normalisation and storage;
• knowledgeable agents;
• question analysis and answer ranking.
Figure B.2 shows the component make up, and how

each of the individual modules interacts with the rest of
the system, and a more detailed explanation of each of the
key components follows.

B.2.1 XML Document System
Although the TREC Q&A track was our main target
during the development of the QITEKAT system, it was
important that we consider its application to other areas
and document sources. With this in mind we developed a
rudimentary XML notation to normalise any source
documents, and store them in a consistent fashion for
analysis by the Knowledgeable Agents of the system.

Figure B.1 – Simple XML Notation

Figure B.2 – System Design

This means that the addition of a new corpora or

alternative source of information could be handled using a
simple Java based API, and plugged into the system as
details of the data source become available.

B.2.2 Speech Tagger
The speech tagger forms a major portion of the QITEKAT
development, as the part of speech and named entity tags
are used as the basis for extracting knowledge relations
from the AQUAINT documents.

TREC
Corpu

s

Reuter
s

Corpus

Other
Corpor

a

Other
Parser

s

Reuter
s

Parser

TREC
Parser

<doc>
<ext erna l i d>
REUTERS_5565
</ex t ern al i d>
<tit l e>
MAGMA LOWERS COPPER 0. 75
CENT TO 66 CTS
</ti t le>
<tex t >
Magma Copper Co, a sub sidi ar y
of N ewmont Mi ni ng C orp , sa i d
it i s cu t t i ng i t s c opper
cath ode…
</t ext >
</do c>

XML
Notatio

n

The system is loosely based upon the Fastus system
(Hobbs et al, 1996), employing the architecture of a
cascading finite state automata in order to achieve usable
levels of performance. Each stage of the system was
developed as a switchable module, so it could be invoked
as required, depending on the document structure it is
being used to parse.

The system handles each document as a complete
entity, separating it into sentences, and then words, before
passing it on to first the POS tagger, and subsequently the
NE tagger. Again, XML is used extensively to provide
run-time modification of the rules and constructs used to
tag the portions of a sentence.

POS Tagger and Phrase Chunker
The Part of Speech (POS) tagger is a 2-phase tagger,
adopting ideas proposed by Brill (Brill, 1992). It uses a
frequency count, extrapolated from a pre-tagged version
of the Brown corpus to assign preliminary part of speech
tags to each word in a sentence, using the Penn Treebank
tagset. These pre-tagged words are then re-examined by a
transformation based tagger. The rules for this tagger
were developed through automatic examination of the
Brown corpus, with some minor manual modification.

Once tagging of individual parts of speech is
complete, the sentences are passed on to the phrase
chunking module, which adopts a three-stage approach.
A POS is tagged with one of three standard types

• Inside a chunk;
• Outside a chunk;
• Boundary of a chunk.

These are based solely on the POS tag assigned to the
particular word. This phase is succeeded by a
transformation based chunk, again based on rules
generated from the Brown Corpus.

Once the final chunking is complete, each phrase
chunk is examined to determine its content, and is
labelled accordingly (Verb, Proper Noun, Noun,
Punctuation, Other).

XML is used to store the transformation and
frequency rules for this portion of the speech tagging
system, offering a look-ahead/behind matching system on
three entity types:

• Words;
• POS Tags;
• Chunk Tags.

Figure B.3 shows an example of an XML rule

description for transforming a noun tag (NN) to a verb tag
(VB). We can see that the rule specifies that in order for
the transformation to take place the POS tag TO must be
found in the position before the tag being examined.
Multiple conditions can be applied for each rule. The
validity of the new tag is checked using the original tag
frequency information from the Brown corpus, to ensure
that the new tag is a suitable option for the current word.

Transformations are applied in frequency order and can
be cascaded to apply multiple transformations to the same
entity.

NE Tagger
Once phrase chunking and identification is complete the
system is aware of the phrases in a document that
correspond to Proper Noun phrases, and are therefore
candidates for Named Entity Tagging. Each of the phrase
chunks is passed to the NE tagger, which applies a
cascading series of modules to determine the type of
Named Entity that the chunk refers to: Currencies; Dates;
Times; Locations; Professions; Relations; Measures;
Organisations; Names (Pre/Post Honours).

Each of these types is defined by a series of rules,
again stored as XML for easy modification, which rely on
a combination of direct matching, designator matching
and sure-fire context rules

Direct matching
Certain named entity types fall into this category, in
particular dates and times, which follow a series of
standard word patterns. Regular expression matching is
used to identify matches, which are then tagged
accordingly. For example the regular expression below
can be used to match the initial portion of a date such as
23rd October.

((0?[1-9]|[1|2][\\d]|3[0|1])(st|nd|rd|th)?)

Designator Matching
This method is adopted to determine such NEs as
organisations and persons, and relies on common pre and
post entity word matches. For example if we have the NE
British Gas Plc, we can match the Plc designator, and tag
the phrase as an organisation. Other such designators that
the QITEKAT system relies upon are:

Mr Sr Corp
Dr Ltd Jr

Sure-fire context rules
Certain sentence constructs are used to determine the type
of Named Entity for a specific phrase, where the
surrounding context unambiguously denotes a specific
type. As an example, take the partial sentence:

Figure B.3 – XML Based Tag Transformation Rule

<rule>
<initialtag>NN</initialtag>
<newtag>VB</newtag>
<condition>POS</condition>
<operator1>TO</operator1>
<operator2>-1</operator2>
</rule>

Share s in XY Z ro se 5 4% on t he days tra din g…
The context Shares in ??? implies that ??? is an

organisation, and can be used as a suitable sure-fire rule to
tag that particular unknown NE.

A small number of these sure-fire rules were
manually created (again stored as XML constructs) in
order to tag these particular sentence contexts.

PROFESSION of ??? PERSON
RELATION of ??? PERSON
??? province LOCATION

Partial Matching
Natural language, and particular the construction of news
articles, which are the basis for the TREC Question &
Answering Track Corpora, often rely heavily human
memory and implicit definition. For example, in an
article about a particular person, they may be referred to
by their full name only once, early in the article, yet will
be referred to again on numerous occasions throughout
the text. This may be by some abbreviation of their name,
say their surname only, or some other means such as
anaphora (He said…). It is important for a successful
Named Entity tagging system to be able to handle this
cross-reference in a particular document in order to
correctly tag the unknown NEs present.

The QITEKAT system employs a simple partial
matching algorithm to solve these problems, and cross-tag
equivalent entities. This works by extracting all known
NEs from a particular document (which have been
identified previously, either by designator matching or
some other means) and creating partial orders of each.
These partial orders are then compared to the remaining
unknown NEs in the document, and should a match occur,
the new NE is tagged with the equivalent type.

As an example, take a document that discusses the
work of Dr . Bil l Teahan. This phrase would be
correctly identified as a PERSON, by matching of the Dr.
designator. Partial orderings of this phrase would then be
constructed (retaining word order to ensure correct cross-
matching):

Dr . Bi l l , Dr . Te ahan, Bi l l Teahan
Should these phrase constructs occur elsewhere in

this same document, they would be tagged according to
the original phrase (i.e. As a PERSON type).

PPM-Based Language Modelling
The final stage of the QITEKAT speech tagging system
focuses on labelling all remaining unknown NE phrases,
and adopts a compression-based language modelling
system to achieve this goal. Much research has been
carried out into the use of PPM compression systems for
the text classification (Teahan and Harper, 2003), whether
it be to identify languages, determine authorship or
otherwise.

We have adopted a PPM based compression system
to deal with unknown NE classification, by training PPM
models on various known data sets corresponding to the

available NE types in the QITEKAT system (PERSONS,
ORGANISATIONS, etc). Given a suitably large data set
of known phrases of each type, we have been able to train
compression models for each. These models are then
used in turn to compress unknown phrases from the
document set. The model providing the best compression
level (i.e. the shortest code length) is thus assumed to be
the most appropriate type for the unidentified phrase.

In initial tests on 200 Reuters news articles, this
compression system was able to produce very favourable
results, when applied as the final stage in the QITEKAT
tagging process.

Number of unknown NEs 141
Number of NEs correctly identified 132
Number of NEs incorrectly identified 9

B.2.3 Knowledgeable Agents
The theory of Knowledgeable Agents proposed in
Teahan, 2003, and outlined at the start of this paper is
used as the basis for the main document processing
component of QITEKAT. Each agent is capable of
running autonomously and analysing a given series of
XML documents to generate Knows and KnowsAbout
relations, which it then stores for the purpose of question-
answering.

B.2.3.1 Regular Expressions
In order to extract Knows relations from the AQUAINT
corpora, regular expressions were developed manually to
pattern match sentence construction for common question
types. These expressions were developed using the
TREC 2001 question text, and focus on the Who and
When question types only, due to time constraints.

It was important to make the best use of the tagged
documents, and to ensure that regular expressions used by
the system were not too specific as to require multiple
expressions for a single question construct. This led us to
develop a dynamic substitution system, whereby a generic
RE was populated at run-time using the tagged contents
of the sentence it was being applied to.

Again all rules are stored in an XML file, to enable
rapid updating and maintenance of the rule base, and a
typical entry looks as follows. The file denotes a basic
regular expression format, suitable substitution types, an
allowable answer type, and a question format for the
particular relation

• When did OBJECT1 die?
• Who was OBJECT1?

Figure B.4 – XML Based Regular Expression Rule

<questionpack>
<domain>PEOPLE</domain>
<answer>DATE</answer>
<object1>PERSON</object1>
<object2>NONE</object2>
<object3>NONE</object3>
<regexp>
(OBJECT1)\ sdi ed\ s((on|in|ar ound) \ s(A NSWER)
</regexp>
<format>When did OB JECT1 d i e?</format>
</questionpack>

By using the NEs already tagged in this sentence, the

system creates a number of regular expressions,
substituting suitable NE types into the ANSWER and
OBJECT locations. Given the sentence: John L ennon
di ed o n De cember 8th , 1 980 dur i ng a
publ ic dr amat i c i nte rp r et at io n of J . D.
Sal i nger ' s " Cat ch er i n t he R ye” , the
QITEKAT system would tag 1 DATE entity (December
8th, 1980) and 2 PERSON entities (John Lennon and J.D.
Salinger) the QITEKAT system would dynamically
produce 2 regular expressions:
1. (John Lennon) \ sdi ed\ s((on| i n| ar ound

) \ s(December 8th , 1 980)
2. (J . D. Sal i nger) \ sdi ed\ s((on| i n| ar ound

) \ s(December 8th , 1 980)

These would then be applied to the sentence to extract
any matches which would be transformed into Knows
relations. In this case, option 1 would match, resulting in
the following relation (given that the “knowledgeable”
agent who produced the document text referred to as A).

Knows(A, “ Domai n: P EOPLE” ,
“ When di d John Lennon di e?” ,
“ December 8 th , 1 980” , 1. 0) .

Further examples of extracted Knows relations:
K1 = Knows(A, “ Domai n: P EOPLE” , “ Who i s
Geor ge W. Bus h?” , “ Uni t ed St ate s
Pr esid ent ” , 1 .0) .
K2 = Knows(A, “ Domain : PEOPLE” , “ When
was Geor ge W. Bush bor n?” , “ Jul y 6t h
1946” , 1 .0) .

These Knows relations are then used to populate suitable
KnowsAbout relations such as the following:

KnowsAbout (A, “ Domai n: P EOPLE” ,
“ Georg e W. Bu sh” , { K1, K 2} ,
1. 0) .

KnowsAbout (A, “ Domai n: PE OPLE” ,
“ John Lennon” , Ka, 1. 0) .

A small number of broad domain types are used
(PEOPLE, GEOGRAPHY, HISTORY, SPORT, MISC),
and all relations are stored within the Knowledgeable
Agents using serialized vectors, in order to achieve
persistent data storage between executions.

B.2.3.2 Distr ibution
In developing the QITEKAT system, consideration was
given to its use as a prototype for a Knowledge Grid
(Cannataro and Talia, 2003), and for knowledgeable
agents to communicate effectively with one another. This
concept pointed toward the need for some kind of
distributed system where agents could show mobility, and

the ability to reside on a network, wherever there was data
to process.

In addition, the large amount of data that was being
handled for the Q&A task (1 million+ documents) lent
itself to exploiting distributed paradigms to share the
workload of examining this data and extracting suitable
relations.

The QITEKAT system uses a simple UDP based
system to handle communication between agents. This
allows each agent to determine what other resources are
available on the grid, and also inform others about the
knowledge it possesses. As more agents are added to the
grid, each becomes aware of what knowledge resources
are available, and where a certain domain of questions
may be best answered.

The system handles 5 message types:
Ping Ask an agent if they are active.
Broadcast Inform other agents in the grid
 that this agent is active.
Send_Question Post a question to a specific
 agent on the grid.
Send_Answer Send an answer back.
Send_KnowsAbout Tell another agent what this
 agent has information about.

This approach allows knowledge to propagate
through the system, as each question is sent from agent to
agent to discover answers. When an answer is found, the
response is returned, and the agents in the chain are each
able to ‘learn’ that fact. A user only needs to enquire of a
single agent in the grid, and that agent will be able to find
the other agents on the grid that may be capable of
answering the users query, and forward the question as
required. A typical interaction between Knowledgeable
Agents on this grid system is outlined below:

Figure B.5 – Typical Agent Interaction

Agent 1 st arts u p, load s Knows and K nowsAbout
rel ations and Age nt IPs an d sends a br oadcast
message on t he loc al netwo r k.

Receives r espons es f ro m other ag ent s and
updates it s K nowsAbout relat i ons .

Receives qu estion f rom use r .

Checks it s o wn Kno ws rela t ions f or a s uitable
ans wer – no ne found .

Checks i t s Knows About r ela t ions for anot her
agent t hat may have a n answer – one fou nd
(Agent 2) .

Tags the qu estio n a nd forwa r ds it t o Agent 2.

Agent 2 fin ds an answ er to the ques t ion and
sen ds it ba ck to Agent 1

Agent 1 updates it’s k nows r elations so it
now kno ws t he answer a nd w on’ t need t o ask
Agent 2 nex t time .

Agent 1 f orw ards t he an swer to the user , and
updates its loc al disk storage .

B.2.4 Confidence Ranking
In the specific area of question answering it is often the
case that systems are able to generate a number of
candidate answers for a particular query. In this year’s
TREC Q&A track for example, an entire section of
questions is devoted to returning multiple results for a
single query (the so called List questions).

This poses the problem of determining the best result
for a particular query, which is what is required by the
standard questions in the Q&A track, and is likely to be
the requirements of any practical application of a
Question-Answering system.

The way in which this is often achieved is through a
confidence ranking for an answer, reflecting the degree of
certainty the system places on the answer returned being
correct. The confidence ranking is often returned as a
decimal value in the range 0.0 (zero confidence that the
answer is correct) to 1.0 (completely confident that the
answer is correct).

Past Q&A systems have used a number of means for
determining a confidence measure from answers.
Weighting based on matching NE types from the answer
to that expected by a specific question type (i.e. A where
type question expects a LOCATION type answer, and so
a corresponding answer gets a higher weighting) is
popular. Other popular measures include keyword
densities in the answer document, and vector matching of
question and answer pairs.

We adopted a new approach based on corroboration
with external data sources (popular search engines)

B.2.4.1 Search Engine Corr oboration
Search engines provide a large document base – Google
for example currently claims to index over 3.3 billion
Web pages, and as a result are likely to contain many
examples of the correct answer to any query likely to be
posed to a Q&A system. Although this offers scope to
use Web search results as a source corpora for practical
Q&A applications, the TREC Tracks require that all
answers are found in the AQUAINT document collection.
This does not preclude, however, the use of web search
results to aid in the Q&A process, and we have adopted a
novel approach for confidence ranking of answers, based
on the results of an appropriate Web search query.

The fact that a suitable query to a search engine,
based on the original question, is likely to result in many
examples of the correct answer means that we can use the
proportion of each possible answer within these search
results to determine a relevance rank for that answer.

The QITEKAT system achieves this through a simple
search API, developed in Java, which queries a number of
popular search engines. Noun and verb phrase chunks
from the question text are used to form a suitable search
query, and the abstracts of the first 1000 results are
retrieved from the search engine. These results are then
scanned to determine the frequency of each of the
possible results as produced by the Q&A system. The

proportion of these frequencies are then used to calculate
a relevance ranking.

This is better explained using a simple example:
• Given the question:

When did John Lennon die?
• We extract the noun and verb phrases

John Lennon
Die

• These are then passed as a search query to Google
“J ohn Lennon” + “ die”

• The first 1000 abstracts are retrieved
• The Knowledgeable Agents return three possible

answers
8th December
15th August
19th July

• Thus we find frequency matches for each of these
answers in the Google abstracts, and calculate a
relevance rating:

ANSWER FREQ CALC RELEVANCE
8th December 462 462/533 0.87
15th August 28 28/533 0.05
19th July 43 43/533 0.08

Table B.1 – Relevance Ranking Calculation

So we have a corroborated relevance for each of the
answers, and the Q&A system is able to return the answer
8th December as the most favourable.

B.3. Results
Preliminary testing of the QITEKAT system showed
positive results on previous TREC question sets, and
these are confirmed by the TREC 2003 evaluations.

B.3.1 Trained Question Types
In developing the regular expression rules to extract
Knows relations from source corpora we used the question
data supplied as part of the TREC 2001 Question-
Answering track. We constructed 400 regular expression
rules, although time constraints meant we were unable to
construct rules for all question types.

B.3.2 TREC 2002
Initial testing of the QITEKAT system was carried out on
TREC 2002 Q&A Track questions in order to provide an
indication of how the system would perform under typical
application. Manual examination shows that of the 500
questions provided, rules have been constructed that
should be able to find answers to 122 of them, assuming
those answers exist within the AQUAINT source
documents.

The system registered 107 correct answers, of which
4 were NIL answer questions, as no answer existed in the
AQUAINT corpus. 15 incorrect answers were registered,
of which 2 should have been NIL answers.

.

88%

12%
Correct

Incorrect

Figure B.6 - Results on TREC 2002 Questions

B.3.3 TREC 2003
Manual evaluation of the TREC 2003 question set showed
that the system should have been able to answer 124 of
the 500 questions made available with its current regular
expression definitions. Evaluation of the TREC 2003 run
showed 107 completely correct answers and 6 answers
judged as being inexact. 11 incorrect answers were
registered, which included answers that were judged as
being unsupported answers.

85%

10%

5%
Correct

Incorrect

Inexact

Figure B.7 - Results on TREC 2003 Questions

B.4. Analysis
The results produced by the QITEKAT system, both from
in-house tests on previous Q&A data, and on the current
TREC Q&A track questions are promising, particularly
given the timescale of the development process. With
levels of correct answers exceeding 80% in both tests, this
implies a positive first step on the Q&A ladder, and a
solid foundation to build on the work in Knowledgeable
Agents and the concepts of ‘Knowing About Knowledge’ .

B.4.1 Question Types
The results gained by the QITEKAT system need to be
considered in the context of the question types that were
addressed in order to gain a more accurate indication of
the performance of the system.

It could be argued that the When and Who question
types are the simpler of the main types used in the TREC
evaluations, offering a definite answer type, and often
more simple sentence constructs where an answer may be
found. We felt this to be the case in this respect, and
deliberately chose these types in order to aid the speed of

system development in order to meet the deadline for run
submission. We hope, however, that the underlying
concepts of the system that we have adopted should be
able to achieve similar results on all of the major question
types, given suitable Regular Expressions on which to
match.

B.4.2 Speed
Analysis of the AQUAINT documents which formed the
source corpora for the TREC 2003 Q&A evaluation
demonstrated the benefits of the distributed design
adopted as the basis for the QITEKAT system, but also
indicated a need for further speed improvements.

The final evaluation was carried out using a
distributed network of 8 Pentium III computers, each
using a 128Mb of local memory, and approximately
500Mb of local storage. The parsing and analysis of the 1
million documents took approximately 72 hours on this
configuration. Although this level of performance is
manageable, it would need to be improved if the system
were to be applied to practical applications, or larger
corpora, such as Web search results.

B.5. Future Directions
As a foundation for future Q&A and language processing
research, the QITEKAT system has performed well,
although a number of areas have been targeted as areas
for improvement. In particular it is important that we are
able to handle a greater number of question types in order
to perform a more accurate evaluation of the systems
performance, and allow for a direct comparison to other
research systems participating in the TREC tracks.
Further additional features that we feel may improve
system performance, both in terms of speed of execution,
and the ability to determine answers are outlined below.

B.5.1 Improved NE Classification
Although the NE classifier developed as part of the
QITEKAT system performs well, for the purposes of
Q&A it is important to broaden the scope of the system,
and introduce further NE types in order to allow for more
accurate answer matching. Sekine et al present a system
offering a far greater number of NE classifications
(Sekine et al, 2002), which we feel would be a beneficial
addition to the QITEKAT architecture.

B.5.2 Synonym substitution
The present system architecture offers no methods for
word substitution, which is a limiting factor, both in terms
of matching questions with appropriate knowledge
relations, and also extracting relations from document
texts. The addition of a synonym system, such as
WordNet (Miller, 1990) would enable a greater number of
sentence constructs to be identified and extrapolation of
questions to form multiple queries, offering a far greater
chance of successful responses.

As an example, take the question text

When di d C har l es Br onson di e?
In the present QITEKAT system, this will match only
those relations with an equivalent question construct,
which may result in no answer being found. With
synonym substitution, however, the query would be
reformulated as:

When di d C har l es Br onson pass away?
which may provide a positive match.

B.5.3 Past Participle Determination
In a similar vein to synonym substitution, it would be
useful to develop a feature within the system to
automatically generate past participles of verbs,
particularly for Search Engine Corroboration.

When querying a search engine, the system passes the
main subjects of a question, so for example, given the
question:

When di d C har l es Br onson di e?
The system forms a query using Charles Bronson and

Die. It is likely however that in any documents retrieved
by a search engine, the information that we are interested
in would be described using the past participle (died), i.e.

Char le s B r ons on di ed o n …. .

Substituting the past participle may result in a more useful
query string, and ultimately a greater number (or more
accurate) results.

B.5.4 Automate RE Production
Manual production of Regular Expressions to extract
information from document texts was one of the more
time consuming aspects of the initial QITEKAT
development, and as a result meant we were only able to
focus the tool at a limited number if question types in
order to meet the TREC deadline. A key idea for future
development of the system is to implement an automated
system, capable of producing generic expressions which
could then be used to extract further information. Initial

thoughts are that this issue may lend itself to a
transformation based system, similar to that found in
Brill-type POS tagging systems (Brill, 1992), where it
would be possible for the system to learn a set of rules,
based on existing, manually produced REs.

B.6. References

E. Brill. 1992. “A simple rule -based part-of-speech
tagger” In Proceedings of ANLP-92, pp 152–155, 1992.

M. Cannataro and D. Talia. 2003. “The Knowledge
Grid”. In Communications of the ACM Vol 46, Number 1,
pp 89-93.

J. Chu-Carroll, J. Prager, C. Welty, K. Czuba and D.
Ferrucci. 2002. “A Multi -Strategy and Multi-Source
Approach to Question Answering”. In TREC 2002
Proceedings.

J. Hobbs, D. Appelt, J. Bear, D. Israel, M.
Kameyama, M. Stickel, and M. Tyson. 1996. “Fastus: A
Cascaded Finite-State Transducer for Extracting
Information from Natural-Language Text” In Finite State
Devices for Natural Language Processing. MIT Press,
Cambridge MA.

G. Miller. 1990. “Word Net: An On-Line Lexical
Database” In International Journal of Lexicography.

S. Sekine, K. Sudo, and C. Nobata. 2002 “Extended
Named Entity Hierarchy” In Proceedings of the LREC-
2002 Conference, pp 1818–1824, 2002.

W. Teahan and D. Harper. 2003. “Using
Compression-Based Language Models for Text
Categorization” Language Modelling for Information
Retrieval, Chapter 7, pp 141-165. Kluwer Academic
Publishers.

W. Teahan. 2003. “Knowing About Knowledge:
Towards a Framework for Knowledgeable Agents and
Knowledge Grids”. Artificial Intelligence and Intelligent
Agents Tech Report AIIA03.2, School of Informatics,
University of Wales Bangor.

Generating GeneRIFs for a Multi-Agent-based Biomedical Information Retrieval System

Abstract
This section describes work that was done for the 2003
Text Retrieval Conference (TREC) Genomics Track
second task. It also describes preliminary work on
implementing a multi-agent Biomedical information
retrieval system. The proposed multi-agent system will
apply knowledgeable agents using a logic-based question
and answering framework. Part of this work requires the
specifying of context for the questions and answers, and
one means of doing this is to generate GeneRIFs for each
biomedical document, where a GeneRIF is a MEDLINE
standard for describing the contents of the biomedical
document in terms of gene function. Various methods are
explored to generate the GeneRifs automatically.

C.1 Introduction
The Text Retrieval Conference (TREC) Genomics Track
was started to provide a forum for information retrieval in
the genomics area. The Secondary Task for this year' s
track is to analyse automatic methods to reproduce the
GeneRIF notation for biomedical papers. Below shows
the official definition of what a GeneRIF should be:

A concise phrase describing a function or functions
(less than 255 characters in length, preferably more
than a restatement of the title of the paper.)
(www.ncbi.nlm.nih.gov/LocusLink/GeneRIFhelp.html)

The GeneRIF annotation is designed to allow the
contents of a bioscience paper to be summarised in such a
way as to show the function of the gene, which is the
subject of the bioscience paper. An analysis by Mork and
Aronson (2003) of NLM found that 95% of GeneRIF
snippets contained some text from the title or abstract of
the article. About 42% of the matches were taken directly
from the title or abstract, 25% contained significant runs
of words from pieces of the title or abstract.

The data provided for the Secondary Task consists of
139 GeneRIFs representing all of the articles appearing in
five journals – Journal of Biological Chemistry, Journal
of Cell Biology, Nucleic Acids Research, Proceedings of
the National Academy of Sciences, and Science – during
the latter half of 2002.

C.2 Methodology
The main objective of our research is to design and
implement a multi-agent based system for knowledge-
based retrieval to biomedical literature. The purpose is to
provide easy-to-use and seamless interfaces to biomedical
literature both for the expert and for the layperson. The
main components of the multi-agent systems we envisage
will consist of peer-to-peer based communicating agents
which are knowledgeable about biomedical resources.
The biomedical information retrieval systems will provide
scientists in the biomedical community with better
support for searching the latest literature, therefore
enabling them to be better informed about the latest
developments in the biomedical field. The systems will
also serve the wider community that will enable
researchers, whether they are experts or non-specialists, a
seamless and natural interface that will require minimal
training.

C.3 Knowledgeable Agent Framework
We are in the process of designing and developing a novel
logic-based framework for implementing knowledgeable
agents that will become the core components for our
multi-agent biomedical information retrieval system. The
logic is based on three relations that describe whether an
agent is “knowledgeable” or not (Teahan, 2003; also see
the first part of this paper).

C.3.1 Context modelling
We feel that context has a very important role to play in
specifying knowledge. For example, for an agent to
answer the question “What is entropy?' ” in a
knowledgeable way, the agent must first appreciate the
context in which the question is asked. A different answer
is required to this question depending on whether the
context concerns the domain of physics or the domain of
information theory. If neither domain is apparent given
the context, then it might be appropriate for an agent (if it
wishes to be knowledgeable) to inform the person asking
the question that more than one answer is possible to the
question. We feel that different representations of context

are required in different applications depending on the
nature of the knowledge that needs to be specified and/or
manipulated.

C.3.2 GeneRIF as a context
For the application that we investigate in this paper, we
explore the possibility of using GeneRIF-based annotation
for specifying the context of biomedical documents in the
Genomics domain. Importantly, in this “context” , we
consider the MEDLINE GeneRIFs as provided in the
training data for the TREC 2003 Genomics Secondary
Task experiments as only a representation of the “true”'
GeneRIF. By “true” , we mean what a correct annotation
of the article might be if it was performed by a group of
experts, rather than the GeneRIFs encountered in the
MEDLINE database. Note that some of the MEDLINE
GeneRIFs in the training data evidently fall short of what
a group of experts might assign to the “correct” or “true”
GeneRIF, if they had been allocated this task.

In light of this, we can also partially ignore the
differences between the MEDLINE provided GeneRIF
and the candidate GeneRIFs we are automatically
generating, since we are only interested in finding a
GeneRIF description that encompasses some notion of a
true GeneRIF. Hence, providing GeneRIF strings that are
potentially longer than the MEDLINE GeneRIF, but have
a much greater chance of encompassing the “true”
GeneRIF description makes sense, as our goal is to ensure
as comprehensive description as possible is generated for
information retrieval purposes. Our contention is this will
make it more likely that a relevant document is retrieved
when the GeneRIF is used in an IR system – in our case,
within the distributed IR framework that we are
developing based on Knowledgeable Agents.

The consequence of this is that we feel that a
modified co-efficient is more suitable for our purposes to
evaluate the “goodness” of the generated GeneRIF. This
modified co-efficient is a measure of the percentage of
words in X that occur in Y, so we are effectively ignoring
the extraneous words in Y. The equation below is for the
modified measure:

() XZD BA ='
, [1]

as opposed to the original DICE co-efficient:

() ()YXZD BA +×= 2'
, [2]

where A is the MEDLINE GeneRIF, B is the generated
GeneRIF, Z is the number of words that occur in both A
and B, X is the number of words in A, and Y is the number
of words in B.

Changing the DICE co-efficient in this way shows
that we are only interested in the following questions:
“Does the generated GeneRIF contain the MEDLINE
GeneRIF?” or “ How much of it does it contain?” These
questions are noticeably different to what the standard,
unmodified DICE co-efficient measures which is: “How
similar are the MEDLINE and generated GeneRIFs?”

C.3.3 Experimental Results
Table C.1 shows the results for the secondary task
experiments, using both the standard DICE co-efficients
(Classic DICE (see equation [2]), Modified Unigram
DICE, Modified Bigram DICE, and Modified Bigram
Phrases DICE), and the modified measure (see equation
[1]). The table is divided into sections by experimental
run, and these sections are divided further by the co-
efficient used to generate the average result for the
particular run. The runs processed the following data:
uwb2 used a concatenation of the document titles and the
last line of the document abstracts as input data, uwb3
used the document titles as input data, uwb4 used the last
line of the document abstracts as input data, and
clairvoyant used pre-calculated DICE co-efficients to find
the best possible generated GeneRIF from a choice of
document title, first line of document abstract,
penultimate line of the document abstract, and last line of
document abstract. The clairvoyant run is therefore a
measure of the best possible result that the chosen
generated GeneRIF selection technique could produce,
but used data that would not be available to the system
when it operates autonomously. Due to this, only runs
uwb2, uwb3, and uwb4 were submitted to TREC for
evaluation. The use of the modified measure in the
clairvoyant run is justified as the run produces the best
standard DICE co-efficient results and the second best
modified measure result.

The result the modified measure achieved (61.48%)
indicates the better coverage of the input data of run
uwb2. This is unsurprising, as the input data for this run
was a concatenation of two strings; so the modified
measure had more data to work with. However, incorrect
data for run uwb2 was sent to TREC, but this did not have
an effect on the results for the classic DICE, the modified
unigram DICE, or the modified measure in this run. Our
own analysis of the corrected data gives the results shown
in table C.2.

The best run using the standard DICE co-efficients
was the Modified Unigram DICE co-efficient in run
uwb3, which produced 48.25%. This result is interesting
as it shows that document titles do contain pertinent data
for generating GeneRIFs. However, this advantage is lost
when document titles are combined with other parts of the
document, such as the last line of the document abstracts
in run uwb2.

Table C.1: Experimental Results

CO-EFFICIENT TYPE Average %
uwb2

Classic DICE 44.41
Modified Unigram DICE 44.07
Modified Bigram DICE 2.33
Modified Bigram Phrases DICE 1.80
Modified Measure 61.48

uwb3
Classic DICE 46.48
Modified Unigram DICE 48.25
Modified Bigram DICE 29.53
Modified Bigram Phrases DICE 32.82
Modified Measure 42.74

uwb4
Classic DICE 36.28
Modified Unigram DICE 35.21
Modified Bigram DICE 22.73
Modified Bigram Phrases DICE 24.52
Modified Measure 38.80

clairvoyant
Classic DICE 58.16
Modified Unigram DICE 59.61
Modified Bigram DICE 45.04
Modified Bigram Phrases DICE 47.94
Modified Measure 54.43

Table C.2: Corrected Results for uwb2

CO-EFFICIENT TYPE Average %

uwb2
Classic DICE 44.53
Modified Unigram DICE 40.08
Modified Bigram DICE 29.20
Modified Bigram Phrases DICE 31.80
Modified Measure -

C.4 References

J. Mork and L. Aronson. July 2003. medir.ohsu.edu/
~genomics/protocol.html.

W. Teahan, 2003. “Knowing about knowledge:
Towards a framework for knowledgeable agents and
Knowledge Grids”, Tech Report AIIA 03.2, School of
Informatics, University of Wales, Bangor.

