
MITRE’s Qanda at TREC-12
John D. Burger

The MITRE Corporation
john@mitre.org

Introduction
Qanda is MITRE’s TREC-style question answering
system. This year, we were able to apply only a small
effort to the TREC QA activity, approximately one
person-month. As well as some general improvements
in Qanda’s processing, we made some simple attempts
to handle definition and list answers.

1. TREC-12 system description
Catalyst architecture
Qanda uses a general architecture for human language
technology called Catalyst, (Burger & Mardis 2002,
Nyberg et al., to appear). Developed at MITRE for the
DARPA TIDES program, the Catalyst architecture is
specifically designed for fast processing and for
combining the strengths of Information Retrieval and
Natural Language Processing into a single framework.
Catalyst uses a dataflow architecture in which standoff
annotations are passed from one component to
another, with the components connected in arbitrary
(acyclic) topologies. The use of standoff annotation
permits components to be optimized for just those
pieces of information they require for their processing.

Major system components
Qanda has a by now familiar architecture—questions
are analyzed for expected answer types, documents are
retrieved using an IR system and are then processed by
various taggers to find entities of the expected types in
contexts that match the question. Below we describe
each of the major components in turn.

• Question analysis: This component is run after the
question has been subjected to POS and named
entity tagging. It uses a simple grammar, currently
hand-written, to identify important components of
the question—see Section 2 below for more detail.

• IR wrappers: Catalyst components have been
written for several IR engines, taking the results of
the question analysis and formulating an IR query.
For continue to use the Java-based Lucene engine
(Apache 2002). Lucene’s query language has a
phrase operator, and also allows query
components to be given explicit weights. Qanda
uses both of these capabilities in constructing

queries from the information extracted from the
question. For TREC-12, the top 25 documents
were retrieved.

• Passage processing: Retrieved documents are
tokenized, and sentence boundaries are detected.
Because some downstream components run more
slowly than the rest of the system, Qanda assigns a
preliminary score to each sentence by summing
the log-IDF (inverse document frequency) of each
word that overlaps with the question. Those
sentences with a low score are filtered out and not
processed by most of the system.

• Named entity tagging: Qanda uses Phrag (Burger
et al. 2002), an HMM-based tagger, to identify
named persons, locations and organizations, as
well as temporal expressions. Phrag is also used
as a POS tagger for question analysis.

• Numeric tagging: A simple pattern-based tagger
identifies measures, currency, percentages and
other numeric phrases.

• Specialized taggers: We have a simple facility for
constructing taggers from fixed word- and phrase-
lists. These were used to re-tag many named
locations more specifically as cities,
states/provinces, and countries. Qanda also
identifies various other (nearly) closed classes
such as precious metals, birthstones, various
animal categories, etc.

• Over lap : The question is compared to each
sentence, and a number of overlap features are
computed, some in terms of various WordNet
relations (see Section 3).

• Answer formation and ranking: Candidates are
identified and merged, a number of features are
collected, and a score is computed (Section 3).

For factoid questions, we simply use the top-scored
candidate. For definition and list questions, we apply
some other processing to generate answer strings, as
detailed in Section 4

2. Questions analysis
Phrag, our HMM-based tagger, first annotates
questions using separate models for part-of-speech and
named entities. Qanda also runs a simple lookup-
based tagger that maps head words to answer types in
Qanda’s ontology using a set of approximately 6000
words and phrases, some extracted semi-automatically
from WordNet, some identified by hand. Based on
these annotations, Qanda’s main question analysis
component uses a parser with a simple hand-optimized
grammar to identify the following aspects of each
question:

• Answer type: a type in Qanda’s (rather simple)
ontology, e.g., PERSON or COUNTRY.

• Answer restriction: an open-domain phrase from
the question that describes the entity being sought,
e.g., first woman in space.

• Salient entity: What the question is “about”.
Typically a named entity, this corresponds roughly
to the classical notion of topic, e.g., Matterhorn in
What is the height of the Matterhorn?

• Geographical restriction: Any phrase that seems
to restrict the question’s geophysical domain, e.g.,
in America.

• Temporal restriction: Any phrase that similarly
restricts the relevant time period, e.g., in the
nineteenth century.

These features are emitted as annotations on the
question, and are then available for other components
to use.

3 . Answer ranking with log-linear
models

Qanda only examines sentences that match the
question sufficiently, based on the IDF-weighted
overlap described above. It collects candidate answers
by gathering phrasal annotations from all of the
semantic taggers, and identifies a number of features.
These are combined using a conditional log-linear
model trained from past TREC QA data sets. This
approach has been used by several TREC participants,
e.g., Ittycheriah et al (2001).

Many of the features used in the log-linear model
reflect particular kinds of overlap between the question
and the context in which the candidate answer is
found:

• Context IDF Overlap: Described above.

• Context Unigram Overlap: Raw count of words1 in
common with the question.

• Context Bigram Overlap: Raw count of word
bigrams in common with the question.

• Context Question Restriction Overlap: Raw count
of words from the restriction phrase of the
question (see Section 2).

• Context Salient Overlap: Raw count of words
considered especially salient by question analysis
(see Section 2).

• Context Synonym Overlap: Raw count of words
that could be synonymous with questions words.

• Context Antonym Overlap: Raw count of words
that could be antonyms of question words.

The synonym and antonym features are computed with
respect to WordNet (Fellbaum 1998).

Several features are computed based on the candidate
itself, or its location in the context sentence:

• Candidate Overlap: Raw count of words in
common between the candidate itself and the
question, to bias against entities from the question
being chosen as answers.

• Candidate Overlap Distance: Number of
characters between the candidate and the closest
(content) question word in the context.2

• Candidate Question Restriction Distance: Number
of characters between the candidate and a word
from the restriction phrase of the question.

The only document-level feature currently used is the
following:

• IR Ranking of the source document by the IR
system.

Candidates with similar textual realizations are
merged, with the combined candidate retaining the
highest value for each feature. Accordingly, an
additional feature is maintained:

• Merge Count

A number of boolean features are also computed that
compare the question’s expected answer type derived
by analysis with the semantic type of the candidate:

1All of the “raw count” features described in this section
omit stop words.
2Words would arguably be a more intuitive unit for this
feature.

• Type Same: Boolean, true if the candidate and
expected answer types are identical.

• Type Consistent: True if the candidate’s type is
“similar” to the expected answer type.

For the most part, candidates are only considered for a
question if their types are consistent. For example,
Where questions lead to an expected answer type of
LOCATION, which is consistent with COUNTRY
candidates; How much questions lead to QUANTITY,
consistent with PERCENTAGE.

Ideally, Qanda would consider all candidates for all
questions, but, if nothing else, performance
considerations justify limiting this. We do not even
represent all consistent pairs as explicit features.
Instead, a small set of approximately 20 combinations
was chosen by hand, as indicated in Figure 1. These
represent particular biases or preferences that we feel
justified in trying to acquire from the training data. In
addition, some of these pairwise features represent
exceptions to the consistency requirement, e.g.,
PERSON is not consistent with COUNTRY, but we
wish to consider such candidates anyway. Similarly,
we wish to consider certain named entity types as
candidates, even when question analysis was
unsuccessful in divining an expected answer type
(unknown).

Question expected
answer type

Candidate
type.

PERSON ORGANIZATION
PERSON COUNTRY
NAME PERSON
NAME ORGANIZATION
NAME LOCATION
CITY LOCATION
DATE YEAR
DATE YEAR
ORGANIZATION other
AMBIGLONG DURATION
AMBIGLONG LENGTH
AMBIGBIG LENGTH
AMBIGFAST SPEED
MEASURE MASS
MEASURE MONEY
MEASURE MISCMEASURE
MEASURE other
QUANTITY PERCENT
unknown LOCATION
unknown ORGANIZATION
unknown PERSON

Figure 1: Type-pair features used in evaluating
answer candidates

After all of the (merged) candidates have been
acquired, the raw feature values described above are
normalized with respect to the maximum across all
candidates for a particular question, resulting in values
between 0 and 1.3 Features normalized in this way are
more commensurate across questions, especially word
overlap and related features (Light et al. 2001).

The normalized features are then combined using the
weights assigned by the log-linear model during
training. This year, we trained the model using the
questions from TREC 1999 and 2000. We also used a
development test set composed of TREC 2002 factoid
questions, the 25 AQUAINT definition evaluation
questions, and the lists questions from 2001.

4. Special question types
This year, in addition to the usual factoid questions,
systems had to deal with two additional types of
questions, definition and list questions.

Definition questions
Qanda has no real facility for processing definition
questions as such. Instead, we attempted to leverage
our factoid question processing, which for the most
part only considers named and other entities as
candidate answers. Of course, very few definition
answers were named entities, per se, but we noticed
that certain kinds of named entities were involved with
some definition answers, as indicated in the example
below:

Who is Gunter Blobel?

Is at Rockefeller University
1999 Nobel prize in Medicine
was born in 1936
was born in Waltersdorf, Silesia, Germany

Qanda’s question analysis component could already
identify the semantic type of the definition target (e.g.,
PERSON, above). Since definition answers did not
need to be exact, we decided to allow Qanda to
consider certain entity types as “answers” to definition
questions, deriving the actual answer string by
extracting approximately 90 characters around the
putative candidate.

We used the type-pair features described in Section 3
to license certain combinations of definition target
type and candidate type, as shown in Figure 2.

3The normalized values are computed so that the intuitively
“best” feature value is 1, the worst 0—this is primarily for
the developers’ convenience, but also so weights are all
positive, and more easily reasoned about.

Definition
target type

Candidate type.

PERSON DATE
PERSON YEAR
PERSON PERSON
PERSON LOCATION
PERSON COUNTRY

PERSON fragment
ORGANIZATION LOCATION
ORGANIZATION COUNTRY
ORGANIZATION PERSON
ORGANIZATION fragment
unknown fragment

Figure 2: Type-pair features used in evaluating
answer candidates

Additionally, we injected some non-entity candidates
using crude heuristics for identifying short fragments
occurring in appositional contexts. Our hope was that
the type-pair features, as well as the candidate count
feature, would allow the system to find some
definition answers. As training data, we used 24
questions from TREC 1999 and 2000 that we
determined were essentially definition questions.

We had some limited success with this approach. In
the following examples, we indicate with underlining
the actual “core” candidates that Qanda considered:

2112: Who is Antonio Coello Novello?

general, as New York's health commissioner on
Thursday, drawing cries of betrayal from the
abortion.

2385: What is the Kama Sutra?

the famous Indian manual of sexual knowledge,
and his pursuit of Lalita is a kind of realization

These answers are hardly well-formed, but apparently
relevant. It remains to be seen whether such a crude
approach can be refined sufficiently to be useful, or if
more sophisticated approaches are necessary.

List questions
Qanda currently treats list questions no differently
from factoid questions, except that more than one
answer is generated. We might have simply picked
some fixed cutoff, say 3, and generated exactly three
answers to every list question. We decided to attempt
something slightly more sophisticated.

Since Qanda’s candidate evaluation mechanism is
probabilistic in nature, we decided to choose how
many answers to generate dynamically, based on the
expected value of the score we might receive. Each

list question was to be scored using F-measure, the
harmonic mean of precision and recall:

†

F =
2PR

(P + R)
=

2c
(n + r)

Here, n is the number of answers we choose to
generate, c is the number of correct answers we
generate, and r is the total number of correct answers
possible. We do not know in advance whether an
answer is correct, but we can use Qanda’s probabilistic
score for the answers as the basis for an expectation of
c. We have no real hope of estimating r, the number
of correct answers possible, so we simply fixed this at
the magic number 3.

Thus, our algorithm for generating list answers was to
add each of the candidates to the answer set in turn,
increasing n by one each time, and calculating the
following expectation:

†

E[F] ª

2 si
i=1

n

Â
(n + r)

Here, si is the score assigned to candidate i. We stop
generating candidates when this expectation begins to
decrease. On this year’s evaluation, this admittedly
crude mechanism performed slightly better than
simply generating one candidate per list question
(F=0.07 vs. 0.05).

5. Conclusion
As well as the requisite description of this year’s
system architecture, we have discussed Qanda’s
question analysis and our use of log-linear models for
answer selection. We intend to improve the latter with
better features, feature combination, and more
sophisticated models. We also presented some initial
results with crude mechanisms for generating
definition and list answers. We intend to improve
these components substantially as well.

References
Apache Software Foundation, 2002. “Jakarta
Lucene—Overview”. http://jakarta.apache.org/lucene/.

John D. Burger, John C. Henderson, William T.
Morgan, 2002. “Statistical named entity recognizer
adaptation”, Proceedings of the Conference on
Natural Language Learning. Taipei.

John D. Burger, Scott Mardis, 2002. “Qanda and the
Catalyst architecture”, AAAI Spring Symposium on
Mining Answers from Texts and Knowledge Bases.

Christiane Fellbaum, ed. WordNet: An Electronic
Lexical Database. MIT Press, 1998

Abraham Ittycheriah, Martin Franz, Salim Roukos,
2001. “IBM's statistical question answering system”,
Proceedings of the Tenth Text Retrieval Conference
(TREC-10).

Marc Light, Gideon S. Mann, Ellen Riloff, Eric Breck,
2001. “Analyses for elucidating current question
answering technology”, Natural Language
Engineering 7(4).

Eric Nyberg, John D. Burger, Scott Mardis, David
Ferrucci, to appear. “Software Architectures for
Advanced Question Answering”, in New Directions in
Question Answering, ed. Mark Maybury. AAAI Press.

