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ABSTRACT 
We describe Javelin, a Cross-lingual Question Answering 
system which participated in the NTCIR-8 ACLIA evaluation 
and which is designed to work on any type of question, 
including factoid and complex questions. 

The key technical contribution of this paper is a minimally 
supervised bootstrapping approach to generating lexico-
syntactic patterns used for answer extraction. The preliminary 
evaluation result (measured by nugget F3 score) shows that the 
proposed pattern learning approach outperformed two baselines, 
a supervised learning approach used in NTCIR-7 ACLIA and a 
simple key-term based approach, for both monolingual and 
crosslingual tracks. The proposed approach is general and thus 
it has potential applicability to a wide variety of information 
access applications which require deeper semantic processing. 
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1. INTRODUCTION 
LTI’s Javelin is a Cross-lingual Question Answering (QA) 
system for any type, of question, including factoid and complex 
questions. Javelin has a pipeline architecture which consists of 
four main modules: 

• Question Analyzer: Responsible for analyzing the 
question to determine the information need (question type, 
answer type, key terms, etc.). 

• Retrieval Strategist (RS): Responsible for extracting a 
ranked list of answer-bearing documents, using a query 
formulated using information provided by the Question 
Analyzer. 

• Information eXtractor (IX): Responsible for extracting 
and scoring/ranking answer candidates from the answer 
bearing documents. 

• Answer Generator (AG): Responsible for removing 
duplicates and selecting/filtering answers. 

All the modules are designed to be language independent, and 
utilize uniform interfaces to MT and NLP services to support 
run-time loading of language-specific resources. This paper 
mainly focuses on the IX module for answer extraction where 
the key technical contribution has been made.  To find more 
details for other modules, see [13][14][25]. For the IR4QA task, 
we used the Question Analyzer and RS modules. For the 
CCLQA task, we take retrieved documents from the IR4QA 
task, and subsequently run the IX and AG on them. 

2. IR4QA 
In this section, we describe our system for the IR4QA task [21]. 
The system basically works as follows. Given the question, the 
Question Analyzer identifies the key terms used for retrieval, 
then a Google translator translates the keyterms for the EN-JA 
subtask.  
Key term extraction The key term extractor is responsible for 
creating a list of terms that will be useful for both retrieving 
potentially relevant answer-bearing documents and 
subsequently extracting answers from those documents. Using 
NLP tools, the key term extractor identifies a set of noun 
phrases, which is extended with any named entities (NEs) that 
were recognized.   
Because the tasks we participated in are not just ad hoc retrieval 
tasks, any retrieval errors will affect the performance of later 
modules. Thus we decided to design the RS module to favor 
recall over precision, using the Indri retrieval engine (language 
model + inference network) with fail-safe query formulation 
and a character-based index.  
Fail safe query formulation Basically, the strategy is to give 
credits to queries from different approaches. In Indri query 
language, queries look like: 
• #weight(10 EXACT_PHRASE 1 PARTIAL_PHRASE) 

• #weight(10 KEY_TERMS 1ALL_TERMS_IN_QUESTION)

In this way, we can retrieve passages even when all key terms 
aren’t found.  
Character based index Use of character-based indexing is 
based on our error analysis of the word-level indexing approach 
at NTCIR-7 ACLIA IR4QA; we found that morphological 
boundary detection errors cause a mismatch between the query 
and relevant documents, especially for NEs. 

Evaluation Result We submitted three kinds of runs for each 
monolingual and crosslingual task, where 03 runs are the simple 
baselines with key phrases only, 02 runs used key phrases 
(exact match) relaxed with key terms (partial match), and 01 
runs used fail-safe query formulation where key phrases are 
relaxed with question sentence terms. The result is shown in 
Table 1. 

Table 1. IR4QA run results (the revised version after the 
bugfix [21]) 

Run ID Average Precision 
LTI-EN-JA-01-T 0.3327
LTI-EN-JA-02-T 0.3293
LTI-EN-JA-03-T 0.3074
LTI-JA-JA-01-T 0.4356 
LTI-JA-JA-02-T 0.4351
LTI-JA-JA-03-T 0.4293
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3. CCLQA 
In this section, we describe our system for the CCLQA task 
[15], centering the focus on the answer extraction module. 
Answer extraction is one of the core tasks in a question 
answering system where the goal is to identify answer 
candidates from retrieved passages, and then rank them 
according to a confidence score. An ideal answer extractor 
would satisfy the following desiderata: 

• Coverage (recall): It must extract as many correct answers 
as possible.  

• Reliability (precision): It must return correct responses 
with less noise. 

• Minimum human effort: It must be implementable with 
minimum human effort, or with minimal/light supervision 
for learning-based algorithms. 

• Generality: It must be applicable to various types of 
questions, whether complex or factoid. 

• Efficiency: It must run efficiently in terms of speed, disk 
space, and memory usage at run time (highest priority) and 
batch training time. 

• Portability: It must support inter-domain and inter-
language portability. 

The QA community has investigated several approaches to 
scoring answer-bearing passages and extracting answers. In 
addition to lightweight bag-of-words representations and term 
proximity based method, strategies can be categorized as 
follows. 

• Pattern based approaches [8][20][22][23][28]  

• Sentence level similarity approach (between question and 
answer-bearing-passage) based on: 
o Syntactic structures [3][19][24] 
o Semantic structures [17][26] 
o Statistical machine-translation-inspired models [5][16][27] 
o Textual entailment based model [7] 

Sentence similarity approaches are theoretically sound, but have 
two drawbacks in relation to our task. Firstly, these approaches 
assume that question and answer-bearing passages share similar 
or identical syntactic and semantic structures. This assumption 
often holds for factoid questions, but does not hold for many 
complex questions which have linguistically simple 
representations such as “What is X?” or “Who is X?”. Secondly, 
there is a practical issue in that the recall and precision of the 
parsers used in sentence similarity approaches may not be good 
enough to outperform simpler approaches. This led to the early 
observation that “linguistically-impoverished systems have 
generally outperformed those that attempt syntactic or semantic 
analysis” [9]. Errors are seen particularly in parsing of 
questions, due to lack of interrogative sentences in the parser’s 
training data. Parsing errors can result in a failure to capture 
answers even though answer-bearing documents can be 
obtained (coverage issue); tools, resources and large-scale 
tagged corpora aren’t necessarily available for all languages 
(portability issue); and machine learning based tools can take a 
lot of time in processing (efficiency issue). 
One strategy that has been proven to work well on large scale 
evaluation uses lexico-syntactic patterns (hereafter LSP) or 
surface patterns [8]. It works in the following way: suppose the 
given question is “When was Basho Matuo born?”, an LSP “x
was born in y” can be instantiated with the question term as 

“Basho Matsuo was born in y” and used to identify the answer y 
from the corpus.  
An interesting research question is how to obtain useful LSPs 
with minimum human effort given training data (questions and 
gold standard answers) and unstructured text corpora Hand-
crafted patterns are generally very accurate, but there is a 
coverage problem even when expanding expressions with 
thesaurus data, and manual pattern creation generally requires a 
substantial human effort. Given this background, an automatic 
approach to generating patterns for QA is one of the active 
research areas in the QA community, with promising empirical 
results for large scale collections [20][22][28].  
In this section, we present a minimally-supervised bootstrap 
pattern learning algorithm with unique contributions to improve 
coverage, reliability, batch-time efficiency, and inter-language 
portability. In the rest of this section, we introduce our base 
work on bootstrap learning in Subsection 4.1. Then, in 
Subsection 4.2, we describe our method, addressing previously 
unsolved issues. Finally we present the formal run settings and 
results in Subsection 4.3. 

3.1 Bootstrap Learning  
We will briefly introduce a minimally-supervised bootstrap 
learning framework called Espresso [18]. Basically, Espresso
takes small number (~10) of seed instances (in case of binary 
relation learning, an instance is made of a pair of texts such as 
“Basho Matsuo” and “1644”) and generates patterns that 
capture instances. The algorithm is iterative; more instances are 
found with the patterns, and new patterns are generated from 
the newly found instances, and so on. Figure 1 visualizes the 
iterative learning process.  

Figure 1. Bootstrapping pattern learning overview 

More detailed steps are described below. 

1. Sentence retrieval: Let I denote a set of instances. For each 
instance Ii ∈ consisting of two terms x and y (i.e i={x, y}),
retrieve all sentences iS each including the instance.  

2. Pattern Induction: Extract substrings linking terms x and y
from iS to form a set of patterns P.  

3. Reliability calculation on patterns: Score P according to 
reliability scores based on approximated PMI statistics 
using the formula (1) below, and adopt only “reliable” 
patterns 

4. Instance generation: Extract new instances I’ using adopted 
P.  

5. Reliability calculation on instances: Likewise in step 3, 
calculate reliability scores for all instances in I’ using the 
formula (2) below, and select only “reliable” instances. 

(Repeat step 1-5 until convergence). 
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Note the symmetry in (1) and (2), where previous instance 
reliabilities are used to calculate pattern reliabilities, and vice 
versa. The reliability score is 1 for the seed instances. 
Note that the goal of most previous works with bootstrapping 
method [1][2][6][10] is to acquire instances from the seed, and 
patterns themselves are treated as a subsidiary outcome. In our 
task, we aim to acquire output patterns and discard the instances 
found. 

3.2 Proposed pattern learning approach 
We hypothesize that end-to-end QA metric scores improve if 
we can improve the pattern learning algorithm for answer 
extraction. By improving the algorithm, we mean to support 
minimal supervision to learn more from less resources, in order 
to realize better coverage and reliability by overcoming 
previously unaddressed issues. 

In the rest of this subsection, we will describe specific details in 
4.2.1 to 4.2.3, and practical implementation details in 4.2.4. 

3.2.1 Sentence generation 
In the pattern induction phase, we would like to find patterns P,
which can capture instance term(s), given instances I. The 
algorithm we adopted to find patterns among iS is called 
Longest Common Substring, or LCSubstr which finds the 
longest consecutive strings. For instance, let’s assume we 
retrieve sentences consisting of words s1 = {w1, w2, x, w3, w4, y, 
w5, w6} and s2 = {w7, x, w3, w4, y, w5, w8}. The pattern induced 
from s1 and s2 is {x, w3, w4, y, w5}, which is the longest 
consecutive words including i={x,y}.  

s1 w1 w2 x w3 w4 y w5 w6

s2  w7 x w3 w4 y w5 w8

Figure 2. LCSubstr example 

In order to have better opportunities for LCSubstr to work, 
sentence generalization is important. And it is especially 
important for languages such as Japanese where word order is 
relatively free1. Free word order makes the learning task more 
difficult, as we observe fewer matching substrings. To mitigate 
this data sparseness problem, we introduce two generalization 
techniques: one by finer-grained labeling with NEs, and another 
by rule-based constituent removal.  

Generalization by NE labels 

Retrieved sentences contain terminology which is too specific 
to generate general patterns. Espresso proposes to replace 
                                                                
1 SOV is the canonical order, but OSV is also often seen. 

terminological expressions with the TR label (e.g. In chemical 
domain, a sentence “Because HF is a weak acid and x is a y” is 
generalized into “Because TR is a TR and x is a y”), however, as 
Pantel and Pennacchiotti admit, generalized patterns are less 
precise [18]. Given that, we would like to introduce sentence 
generalization using NE labels, which represent an intermediate 
labeling somewhere between surface text and a more general 
TR label.  

The generalization process proposed here can be done with any 
NE recognizer. A sample from iS  and from generalized 

sentences iS ′  are shown below in (1a) and (1b) respectively 
with generalized strings underlined.

���������	
��
�������������������

 !"������#$�%&'�"(�

����)�� �*+,�-�.� � �*+/�01.� � � � ���� ����� �

���2-*3�"�����#$�%�4-03�"(�

The patterns are induced from the sentences 
ii SS ′∪ .

Generalization by adjunct phrase removal 

We remove adjunct phrases, or phrases whose removal does not 
affect grammatical well-formedness of the sentence. More 
specifically, we remove consecutive strings starting with a kanji 
character and ending with a particle, except for the subject case 
marking particle GA and the topic particle WA. In the example 
below, underlined strings in (2a) match the adjunct phrase rules 
mentioned above, and are removed. 

������������5678�9:;<=>?@A�������B��

�C�7�(�

����)�������567=>?@A�������B���C�7�(

Following generalization, sentences ii SSS ′′∪′∪  are used as 
a source for inducing patterns. 

3.2.2 Leveraging non-word tokens 
Non-word tokens (e.g. comma, parentheses, quotation marks 
etc), play an important role, although previous work did not 
fully address them. Incorporating non-words in patterns is 
important when the target text (e.g., newswire articles) often 
condenses information using symbols to attain conciseness. 
Coverage can be enhanced if we can properly include non-word 
tokens in LSPs, which parsing-based approaches cannot easily 
accommodate (since they abstract away from surface 
punctuation, for the most part). Another motivation to use non-
word information is to identify the proper boundary of the 
instance to extract; e.g. book titles are usually very difficult to 
identify, but if quotation symbols are included in LSPs we can 
better detect the title boundaries.  

There is a practical challenge in learning patterns with non-
word tokens in Espresso. As a part of processing to estimate 
pattern reliability based on PMI, which is potentially the most 
time consuming part of the learning, we need to count how 
many times a pattern appears in the corpus. However, this is 
very challenging to do quickly, partly because standard search 
engine indexes do not contain symbol characters; a crude 
approach of counting expressions with regular expression 
matching could require a computationally intractable amount of 
time. In 0, we describe the solution to this challenge in detail.  

Example LSPs learned with the proposed method for the 
AUTHOR relationship are exemplified below. Notice non-word 

LCSubstr( s1 , s2 ) 
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symbol tokens such as quotation characters ‘�’, ‘�’, ‘�’, ‘�’, 
comma ‘ � ’, interpunct ‘ � ’ and bullet ‘D ’, which add 
informative context to the pattern, as well as indicating the 
variable boundary. 

EFE��������=��������

EFEEG������HI�JKLM��������

EFEEN���������OP"�������

EFEEN�QRS�����7�������

EFEEN���������������TU�

EFEEV�WXYLZM��������OP"������

EFEE[�������\]��������

EFEE[�D�����=��������

EFEE[�������^�����_�

Figure 3. AUTHOR patterns learned with the proposed 
algorithm 

3.2.3 Partial use of generic patterns 
Consider a generic pattern “x by y”. Since it is very general, 
there is not enough context to restrict the pattern to represent a 
specific relationship. For instance, it can capture an instance 
which consists of a movie name and its director, when what we 
want to find is a book name and its author. Reliability of 
generic patterns may be low as they can capture irrelevant 
instances; however, if they can be used in a smart way, we can 
expect much better coverage and added confidence in the 
correct instances. To this end, the use of generic patterns is a 
very interesting research topic in pattern learning; Pantel and 
Pennacchiotti [18] took advantage of generic patterns; other 
works have investigated the  “semantic drift” phenomena 
caused by the use of generic patterns [4][11].  

Pantel and Pennacchiotti reports two experimental settings with 
Espresso, one called ESP- where generic patterns are 
completely filtered out and another called ESP+ where all 
patterns are used, including generic ones. Experimental results 
on instance learning show that ESP- achieves high precision 
and low recall, and ESP+ achieves high recall and low 
precision. Low recall is problematic in our task because the low 
likelihood that patterns will fire in answer extraction implies a 
minimal impact on end-to-end results.  From that practical point 
of view, a middle ground solution between these two extremes 
is desirable. Given this background, we avoided using generic 
patterns in instance extraction, but did use them for calculating 
instance reliability and include them in the final pattern list. 

3.2.4 Engineering issues in practice 
There are many technical hurdles that prevent one from 
implementing the proposed pattern learner. For instance, it is 
not straightforward to retrieve sentences that contain a 
birthplace pattern “x (<YEAR> - ) was born in y”, or count the 
occurrences in a corpus using a standard search engine. We 
recommend Indri2 for its capability of retrieving and counting 
passages which match queries containing annotations and 
symbols, more details are provided below.  
Why use Indri 
The PMI calculation is one of the most important and time 
consuming components in the proposed algorithm. The PMI 
scores between two events are calculated in the following way.  

)()(
),(log),(
yPxP

yxPyxpmi =

                                                                
2 http://www.lemurproject.org/indri/

When we calculate PMI between instance and pattern, the 
traditional approach approximates it with document hits. 

|,**,||,*,|
|,,|log),(
pyx

ypxpipmi =

Suppose we have N instances to score M candidate prototypes, 
hits for N * M + N + M. In a realistic scenario where N=200, 
M=5000, the total number of hit calculations is over 200 * 500 
= 1 million per iteration3. Suppose the learning converges in 5 
iterations, and we have 20 relations to learn; then the total 
number of hit calculations is 1 million * 5 * 20 = 100 million. 
Given that, we cannot use an expensive technique to count 
expressions (such as using grep or regular expression matching). 
Instead of using these slower legacy approaches, fast 
computation with Indri is indispensable for the learning task to 
be computationally tractable. 
How to index a corpus with NE/sentence annotation 

One can index annotations with Indri off-the-shelf. Here are 
steps with examples in Indri 2.11.  

1. Format the corpus in TREC format, and encode the text in 
UTF-8. You can include extra tags between <DOCNO> and 
<TEXT>.  

2. For Japanese, Chinese, or any languages where the writing 
system does not have word boundaries with spaces, tokenize 
text with spaces. For example, in case of morpheme based 
indexing, insert spaces between morphemes.  

3. Create annotations. You can either insert annotation tags 
inline, or create a stand-off annotation file as shown in the 
second row in Figure 4. 

4. We recommend stand-off annotation as it can represent 
overlapping annotations. Each line corresponds with an 
annotation containing DOCNO, type (TAG), annotation id, 
annotation name, annotation begin position in byte offset, 
annotation length in bytes, optional field for TAG, parent 
annotation ID for structured retrieval, and any text for 
debug purpose.  

5. Create an index. In such a way as  
$ ./bin/buildindex parameter.txt

6. Verify the index with dumpindex or runquery tool. 

                                                                
3 Some portion of hit count can be reused in cache for later 

iterations though 
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Figure 4. Sample corpus in TREC format, offset annotation, 
and parameter file for buildindex  

How to index non-word tokens
In order to index non-word tokens, one needs to modify the 
source code src/UTF8Transcoder.cpp. In the source 
code, there are character categories declared in hexadecimal 
notation. For each non-word tokens to be indexed, for example: 
 {0xFE10, 0xFE19, indri::parse::CharClass::punctuation} 

Specify the CharClass to be letter such as: 
 {0xFE10, 0xFE19, indri::parse::CharClass::letter} 

After rebuilding the code, you will be able to treat non-word 
tokens as letters.
Query formulation 
To count how many times a pattern appears in the corpus, use 
the “expression count” option in dumpindex tool. Suppose 
we calculate a reliability score of a pattern: 

<NP1>%<YEAR><<NP2>`ab>?

We can calculate the number of times the pattern occurs within 
a certain span, using an ordered window query #odN and a 
typed wild card query #any: 

#od30( #od1( % #any:year <)  
       #od1( ` a b > ? ) ) 

In order to retrieve sentences containing two terms “����” 
and “��		
”, query with an extent restriction with a field 
sentence and an unordered window query #uw: 
#combine[sentence]( #uw(  
  #od1( c d e f ) #od1( g h i i j ) ) ) 

3.3 Evaluation Result  
In this subsection, we present experimental settings and the 
formal evaluation result on NTCIR-8 ACLIA CCLQA task.  

Seed generation We hand-crafted 10 to 20 seed instances 
where binary-argument pairs of question term and answer. As a 

result of batch time training, we obtained LSPs such as the 
examples shown in Table 2. 

Answering Factoid and complex questions Answers to 
complex questions must satisfy a complex information need. As 
inspired by the complex question decomposition method by 
Lacatusu et al [12], one can see a complex question as a set of 
factoid questions. For example, a complex question “Who is X” 
can be decomposed into “When was X born?”, “What award 
did X receive?” etc.  Using this analogy, we used multiple 
factoid patterns to answer a complex question. 

Table 2. Sample of seed instances, or pairs of award 
recipient and award name, and patterns actually learned. 

������ ���	
��������	
��

������������������

��� !��"#$%��

&'()��*+,-�./012���

3456��*+,-�./012���

78+2�9+���:;<=>�,��

?@AB��CDEF���

GHIJK��L+M,NOP���

�?QG��RS"P���

TUV��:WX����

@YZ��[\���

]^�_+�`a.��L+M,"P���

bcdefg�hibcdjf�
bcdefkg�lmbcdjfi�
nbcdefopbcdjfq�
bcdefprstuibcdjfvwx�
ybcdjfvz{|}bcdef~����
�bcdefg�hibcdjf�
bcdefpbcdjfvq����
�"P{�ibcdefqbcdjf����
bcdefkg�lmbcdjf�
�bcdefg�hibcdjf�
bcdefg�h�bcdjf�

As a source for extracting answers, we used the Mainichi 
corpus only. As a baseline, we used the NTCIR-7 algorithm in 
01 runs and a simple key term overlap approach in 03 runs to 
compare against the 02 runs with the answer extraction module 
using LSPs learned in bootstrapping. The following table shows 
the summary of results where the proposed approach 
outperforms baseline runs in both EN-JA and JA-JA. 

Table 3. CCLQA run results (preliminary) [15] 
Run ID Nugget F3

LTI-EN-JA-01-T 0.1074
LTI-EN-JA-02-T 0.1130 
LTI-EN-JA-03-T 0.1045
LTI-JA-JA-01-T 0.1069
LTI-JA-JA-02-T 0.1443
LTI-JA-JA-03-T 0.1438 

4. DISCUSSION AND CONCLUSION 
The proposed approach is general enough that it has potential 
applicability to wide variety of information access applications. 
For instance, a set of patterns learned for each relationship can 
be used as templates for textual entailment or paraphrasing 
detection tasks. For further applications, the work can be used 
in automatic QA evaluation, where patterns are used to identify 
nuggets and system responses where surface texts differ but 
have equivalent meaning. 

In this work, we proposed to use NEs to replace specific terms 
with an abstract label for increasing opportunities to learn more 
with smaller resource. Another direction of using NE 
Recognizer would be to restrict instance anchor terms with a 
NE category in order to add more constraint on patterns with a 
hope to improve reliability.  

To conclude, we presented the LTI system participated in 
NTCIR-8 ACLIA where we addressed monolingual and 
crosslingual QA challenge on any types of questions. 

As the key technical contribution of the paper, we described a 
minimally supervised bootstrapping approach to generating 
LSPs for answer extraction. The preliminary evaluation result 
(measured by nugget F3 score) shows that the proposed 
approach outperformed two baselines in both monolingual and 
crosslingual tasks. The proposed approach is general and thus it 

corpus.txt 
<DOC>
  <DOCNO>DOC001</DOCNO> 
  <TEXT> 
��k�l�m�����Q���"�c�d�e�f���g�h�i�i�n�
o�i�j�������p�O���q���r�s�����
�t�t�t
</TEXT> 

</DOC> 
<DOC> 
: : :

annotation.txt
D001 TAG 1 SENTENCE  41  420 0 0  
D001 TAG 2 PERSON    65  15  0 1  
D001 TAG 3 DATE      117 15  0 1  
D001 TAG 4 DATE      137 11  0 1  

parameter.txt
<parameters>
  <memory>1g</memory> 
  <index>corpus.index</index> 
  <corpus> 
    <path>corpus.txt</path> 
    <annotations>annotation.txt</annotations> 
    <class>trectext</class> 
  </corpus> 
  <metadata><forward>docno</forward></metadata>
  <field><name>sentence</name></field> 
  <field><name>person</name></field> 
  <field><name>date</name></field> 
   : : : 
</parameters>
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has potential applicability to wide variety of information access 
applications which require deeper semantic processing. 
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