
Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 37 ―

Bootstrap Pattern Learning for Open-Domain CLQA

Hideki Shima
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213 USA

hideki@cs.cmu.edu

Teruko Mitamura
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213 USA

teruko@cs.cmu.edu

ABSTRACT
We describe Javelin, a Cross-lingual Question Answering
system which participated in the NTCIR-8 ACLIA evaluation
and which is designed to work on any type of question,
including factoid and complex questions.

The key technical contribution of this paper is a minimally
supervised bootstrapping approach to generating lexico-
syntactic patterns used for answer extraction. The preliminary
evaluation result (measured by nugget F3 score) shows that the
proposed pattern learning approach outperformed two baselines,
a supervised learning approach used in NTCIR-7 ACLIA and a
simple key-term based approach, for both monolingual and
crosslingual tracks. The proposed approach is general and thus
it has potential applicability to a wide variety of information
access applications which require deeper semantic processing.

Keywords
Pattern learning, minimally-supervised learning, bootstrapping.

1. INTRODUCTION
LTI’s Javelin is a Cross-lingual Question Answering (QA)
system for any type, of question, including factoid and complex
questions. Javelin has a pipeline architecture which consists of
four main modules:

• Question Analyzer: Responsible for analyzing the
question to determine the information need (question type,
answer type, key terms, etc.).

• Retrieval Strategist (RS): Responsible for extracting a
ranked list of answer-bearing documents, using a query
formulated using information provided by the Question
Analyzer.

• Information eXtractor (IX): Responsible for extracting
and scoring/ranking answer candidates from the answer
bearing documents.

• Answer Generator (AG): Responsible for removing
duplicates and selecting/filtering answers.

All the modules are designed to be language independent, and
utilize uniform interfaces to MT and NLP services to support
run-time loading of language-specific resources. This paper
mainly focuses on the IX module for answer extraction where
the key technical contribution has been made. To find more
details for other modules, see [13][14][25]. For the IR4QA task,
we used the Question Analyzer and RS modules. For the
CCLQA task, we take retrieved documents from the IR4QA
task, and subsequently run the IX and AG on them.

2. IR4QA
In this section, we describe our system for the IR4QA task [21].
The system basically works as follows. Given the question, the
Question Analyzer identifies the key terms used for retrieval,
then a Google translator translates the keyterms for the EN-JA
subtask.
Key term extraction The key term extractor is responsible for
creating a list of terms that will be useful for both retrieving
potentially relevant answer-bearing documents and
subsequently extracting answers from those documents. Using
NLP tools, the key term extractor identifies a set of noun
phrases, which is extended with any named entities (NEs) that
were recognized.
Because the tasks we participated in are not just ad hoc retrieval
tasks, any retrieval errors will affect the performance of later
modules. Thus we decided to design the RS module to favor
recall over precision, using the Indri retrieval engine (language
model + inference network) with fail-safe query formulation
and a character-based index.
Fail safe query formulation Basically, the strategy is to give
credits to queries from different approaches. In Indri query
language, queries look like:
• #weight(10 EXACT_PHRASE 1 PARTIAL_PHRASE)

• #weight(10 KEY_TERMS 1ALL_TERMS_IN_QUESTION)

In this way, we can retrieve passages even when all key terms
aren’t found.
Character based index Use of character-based indexing is
based on our error analysis of the word-level indexing approach
at NTCIR-7 ACLIA IR4QA; we found that morphological
boundary detection errors cause a mismatch between the query
and relevant documents, especially for NEs.

Evaluation Result We submitted three kinds of runs for each
monolingual and crosslingual task, where 03 runs are the simple
baselines with key phrases only, 02 runs used key phrases
(exact match) relaxed with key terms (partial match), and 01
runs used fail-safe query formulation where key phrases are
relaxed with question sentence terms. The result is shown in
Table 1.

Table 1. IR4QA run results (the revised version after the
bugfix [21])

Run ID Average Precision
LTI-EN-JA-01-T 0.3327
LTI-EN-JA-02-T 0.3293
LTI-EN-JA-03-T 0.3074
LTI-JA-JA-01-T 0.4356
LTI-JA-JA-02-T 0.4351
LTI-JA-JA-03-T 0.4293

Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 38 ―

3. CCLQA
In this section, we describe our system for the CCLQA task
[15], centering the focus on the answer extraction module.
Answer extraction is one of the core tasks in a question
answering system where the goal is to identify answer
candidates from retrieved passages, and then rank them
according to a confidence score. An ideal answer extractor
would satisfy the following desiderata:

• Coverage (recall): It must extract as many correct answers
as possible.

• Reliability (precision): It must return correct responses
with less noise.

• Minimum human effort: It must be implementable with
minimum human effort, or with minimal/light supervision
for learning-based algorithms.

• Generality: It must be applicable to various types of
questions, whether complex or factoid.

• Efficiency: It must run efficiently in terms of speed, disk
space, and memory usage at run time (highest priority) and
batch training time.

• Portability: It must support inter-domain and inter-
language portability.

The QA community has investigated several approaches to
scoring answer-bearing passages and extracting answers. In
addition to lightweight bag-of-words representations and term
proximity based method, strategies can be categorized as
follows.

• Pattern based approaches [8][20][22][23][28]

• Sentence level similarity approach (between question and
answer-bearing-passage) based on:
o Syntactic structures [3][19][24]
o Semantic structures [17][26]
o Statistical machine-translation-inspired models [5][16][27]
o Textual entailment based model [7]

Sentence similarity approaches are theoretically sound, but have
two drawbacks in relation to our task. Firstly, these approaches
assume that question and answer-bearing passages share similar
or identical syntactic and semantic structures. This assumption
often holds for factoid questions, but does not hold for many
complex questions which have linguistically simple
representations such as “What is X?” or “Who is X?”. Secondly,
there is a practical issue in that the recall and precision of the
parsers used in sentence similarity approaches may not be good
enough to outperform simpler approaches. This led to the early
observation that “linguistically-impoverished systems have
generally outperformed those that attempt syntactic or semantic
analysis” [9]. Errors are seen particularly in parsing of
questions, due to lack of interrogative sentences in the parser’s
training data. Parsing errors can result in a failure to capture
answers even though answer-bearing documents can be
obtained (coverage issue); tools, resources and large-scale
tagged corpora aren’t necessarily available for all languages
(portability issue); and machine learning based tools can take a
lot of time in processing (efficiency issue).
One strategy that has been proven to work well on large scale
evaluation uses lexico-syntactic patterns (hereafter LSP) or
surface patterns [8]. It works in the following way: suppose the
given question is “When was Basho Matuo born?”, an LSP “x
was born in y” can be instantiated with the question term as

“Basho Matsuo was born in y” and used to identify the answer y
from the corpus.
An interesting research question is how to obtain useful LSPs
with minimum human effort given training data (questions and
gold standard answers) and unstructured text corpora Hand-
crafted patterns are generally very accurate, but there is a
coverage problem even when expanding expressions with
thesaurus data, and manual pattern creation generally requires a
substantial human effort. Given this background, an automatic
approach to generating patterns for QA is one of the active
research areas in the QA community, with promising empirical
results for large scale collections [20][22][28].
In this section, we present a minimally-supervised bootstrap
pattern learning algorithm with unique contributions to improve
coverage, reliability, batch-time efficiency, and inter-language
portability. In the rest of this section, we introduce our base
work on bootstrap learning in Subsection 4.1. Then, in
Subsection 4.2, we describe our method, addressing previously
unsolved issues. Finally we present the formal run settings and
results in Subsection 4.3.

3.1 Bootstrap Learning
We will briefly introduce a minimally-supervised bootstrap
learning framework called Espresso [18]. Basically, Espresso
takes small number (~10) of seed instances (in case of binary
relation learning, an instance is made of a pair of texts such as
“Basho Matsuo” and “1644”) and generates patterns that
capture instances. The algorithm is iterative; more instances are
found with the patterns, and new patterns are generated from
the newly found instances, and so on. Figure 1 visualizes the
iterative learning process.

Figure 1. Bootstrapping pattern learning overview

More detailed steps are described below.

1. Sentence retrieval: Let I denote a set of instances. For each
instance Ii ∈ consisting of two terms x and y (i.e i={x, y}),
retrieve all sentences iS each including the instance.

2. Pattern Induction: Extract substrings linking terms x and y
from iS to form a set of patterns P.

3. Reliability calculation on patterns: Score P according to
reliability scores based on approximated PMI statistics
using the formula (1) below, and adopt only “reliable”
patterns

4. Instance generation: Extract new instances I’ using adopted
P.

5. Reliability calculation on instances: Likewise in step 3,
calculate reliability scores for all instances in I’ using the
formula (2) below, and select only “reliable” instances.

(Repeat step 1-5 until convergence).

Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 39 ―

I

irpipmi

pr
Ii pmi
∑
∈

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

=

)(*
max

),(

)(
ι

π

(1)

P

prpipmi

pr
Pp pmi
∑
∈

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

=
'

)(*
max

),(

)(
π

ι

(2)

Note the symmetry in (1) and (2), where previous instance
reliabilities are used to calculate pattern reliabilities, and vice
versa. The reliability score is 1 for the seed instances.
Note that the goal of most previous works with bootstrapping
method [1][2][6][10] is to acquire instances from the seed, and
patterns themselves are treated as a subsidiary outcome. In our
task, we aim to acquire output patterns and discard the instances
found.

3.2 Proposed pattern learning approach
We hypothesize that end-to-end QA metric scores improve if
we can improve the pattern learning algorithm for answer
extraction. By improving the algorithm, we mean to support
minimal supervision to learn more from less resources, in order
to realize better coverage and reliability by overcoming
previously unaddressed issues.

In the rest of this subsection, we will describe specific details in
4.2.1 to 4.2.3, and practical implementation details in 4.2.4.

3.2.1 Sentence generation
In the pattern induction phase, we would like to find patterns P,
which can capture instance term(s), given instances I. The
algorithm we adopted to find patterns among iS is called
Longest Common Substring, or LCSubstr which finds the
longest consecutive strings. For instance, let’s assume we
retrieve sentences consisting of words s1 = {w1, w2, x, w3, w4, y,
w5, w6} and s2 = {w7, x, w3, w4, y, w5, w8}. The pattern induced
from s1 and s2 is {x, w3, w4, y, w5}, which is the longest
consecutive words including i={x,y}.

s1 w1 w2 x w3 w4 y w5 w6

s2 w7 x w3 w4 y w5 w8

Figure 2. LCSubstr example

In order to have better opportunities for LCSubstr to work,
sentence generalization is important. And it is especially
important for languages such as Japanese where word order is
relatively free1. Free word order makes the learning task more
difficult, as we observe fewer matching substrings. To mitigate
this data sparseness problem, we introduce two generalization
techniques: one by finer-grained labeling with NEs, and another
by rule-based constituent removal.

Generalization by NE labels

Retrieved sentences contain terminology which is too specific
to generate general patterns. Espresso proposes to replace

1 SOV is the canonical order, but OSV is also often seen.

terminological expressions with the TR label (e.g. In chemical
domain, a sentence “Because HF is a weak acid and x is a y” is
generalized into “Because TR is a TR and x is a y”), however, as
Pantel and Pennacchiotti admit, generalized patterns are less
precise [18]. Given that, we would like to introduce sentence
generalization using NE labels, which represent an intermediate
labeling somewhere between surface text and a more general
TR label.

The generalization process proposed here can be done with any
NE recognizer. A sample from iS and from generalized

sentences iS ′ are shown below in (1a) and (1b) respectively
with generalized strings underlined.

���������	
��
�������������������

 !"������#$�%&'�"(�

����)�� �*+,�-�.� � �*+/�01.� � � � ���� ����� �

���2-*3�"�����#$�%�4-03�"(�

The patterns are induced from the sentences
ii SS ′∪ .

Generalization by adjunct phrase removal

We remove adjunct phrases, or phrases whose removal does not
affect grammatical well-formedness of the sentence. More
specifically, we remove consecutive strings starting with a kanji
character and ending with a particle, except for the subject case
marking particle GA and the topic particle WA. In the example
below, underlined strings in (2a) match the adjunct phrase rules
mentioned above, and are removed.

������������5678�9:;<=>?@A�������B��

�C�7�(�

����)�������567=>?@A�������B���C�7�(

Following generalization, sentences ii SSS ′′∪′∪ are used as
a source for inducing patterns.

3.2.2 Leveraging non-word tokens
Non-word tokens (e.g. comma, parentheses, quotation marks
etc), play an important role, although previous work did not
fully address them. Incorporating non-words in patterns is
important when the target text (e.g., newswire articles) often
condenses information using symbols to attain conciseness.
Coverage can be enhanced if we can properly include non-word
tokens in LSPs, which parsing-based approaches cannot easily
accommodate (since they abstract away from surface
punctuation, for the most part). Another motivation to use non-
word information is to identify the proper boundary of the
instance to extract; e.g. book titles are usually very difficult to
identify, but if quotation symbols are included in LSPs we can
better detect the title boundaries.

There is a practical challenge in learning patterns with non-
word tokens in Espresso. As a part of processing to estimate
pattern reliability based on PMI, which is potentially the most
time consuming part of the learning, we need to count how
many times a pattern appears in the corpus. However, this is
very challenging to do quickly, partly because standard search
engine indexes do not contain symbol characters; a crude
approach of counting expressions with regular expression
matching could require a computationally intractable amount of
time. In 0, we describe the solution to this challenge in detail.

Example LSPs learned with the proposed method for the
AUTHOR relationship are exemplified below. Notice non-word

LCSubstr(s1 , s2)

Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 40 ―

symbol tokens such as quotation characters ‘�’, ‘�’, ‘�’, ‘�’,
comma ‘ � ’, interpunct ‘ � ’ and bullet ‘D ’, which add
informative context to the pattern, as well as indicating the
variable boundary.

EFE��������=��������

EFEEG������HI�JKLM��������

EFEEN���������OP"�������

EFEEN�QRS�����7�������

EFEEN���������������TU�

EFEEV�WXYLZM��������OP"������

EFEE[�������\]��������

EFEE[�D�����=��������

EFEE[�������^�����_�

Figure 3. AUTHOR patterns learned with the proposed
algorithm

3.2.3 Partial use of generic patterns
Consider a generic pattern “x by y”. Since it is very general,
there is not enough context to restrict the pattern to represent a
specific relationship. For instance, it can capture an instance
which consists of a movie name and its director, when what we
want to find is a book name and its author. Reliability of
generic patterns may be low as they can capture irrelevant
instances; however, if they can be used in a smart way, we can
expect much better coverage and added confidence in the
correct instances. To this end, the use of generic patterns is a
very interesting research topic in pattern learning; Pantel and
Pennacchiotti [18] took advantage of generic patterns; other
works have investigated the “semantic drift” phenomena
caused by the use of generic patterns [4][11].

Pantel and Pennacchiotti reports two experimental settings with
Espresso, one called ESP- where generic patterns are
completely filtered out and another called ESP+ where all
patterns are used, including generic ones. Experimental results
on instance learning show that ESP- achieves high precision
and low recall, and ESP+ achieves high recall and low
precision. Low recall is problematic in our task because the low
likelihood that patterns will fire in answer extraction implies a
minimal impact on end-to-end results. From that practical point
of view, a middle ground solution between these two extremes
is desirable. Given this background, we avoided using generic
patterns in instance extraction, but did use them for calculating
instance reliability and include them in the final pattern list.

3.2.4 Engineering issues in practice
There are many technical hurdles that prevent one from
implementing the proposed pattern learner. For instance, it is
not straightforward to retrieve sentences that contain a
birthplace pattern “x (<YEAR> -) was born in y”, or count the
occurrences in a corpus using a standard search engine. We
recommend Indri2 for its capability of retrieving and counting
passages which match queries containing annotations and
symbols, more details are provided below.
Why use Indri
The PMI calculation is one of the most important and time
consuming components in the proposed algorithm. The PMI
scores between two events are calculated in the following way.

)()(
),(log),(
yPxP

yxPyxpmi =

2 http://www.lemurproject.org/indri/

When we calculate PMI between instance and pattern, the
traditional approach approximates it with document hits.

|,**,||,*,|
|,,|log),(
pyx

ypxpipmi =

Suppose we have N instances to score M candidate prototypes,
hits for N * M + N + M. In a realistic scenario where N=200,
M=5000, the total number of hit calculations is over 200 * 500
= 1 million per iteration3. Suppose the learning converges in 5
iterations, and we have 20 relations to learn; then the total
number of hit calculations is 1 million * 5 * 20 = 100 million.
Given that, we cannot use an expensive technique to count
expressions (such as using grep or regular expression matching).
Instead of using these slower legacy approaches, fast
computation with Indri is indispensable for the learning task to
be computationally tractable.
How to index a corpus with NE/sentence annotation

One can index annotations with Indri off-the-shelf. Here are
steps with examples in Indri 2.11.

1. Format the corpus in TREC format, and encode the text in
UTF-8. You can include extra tags between <DOCNO> and
<TEXT>.

2. For Japanese, Chinese, or any languages where the writing
system does not have word boundaries with spaces, tokenize
text with spaces. For example, in case of morpheme based
indexing, insert spaces between morphemes.

3. Create annotations. You can either insert annotation tags
inline, or create a stand-off annotation file as shown in the
second row in Figure 4.

4. We recommend stand-off annotation as it can represent
overlapping annotations. Each line corresponds with an
annotation containing DOCNO, type (TAG), annotation id,
annotation name, annotation begin position in byte offset,
annotation length in bytes, optional field for TAG, parent
annotation ID for structured retrieval, and any text for
debug purpose.

5. Create an index. In such a way as
$./bin/buildindex parameter.txt

6. Verify the index with dumpindex or runquery tool.

3 Some portion of hit count can be reused in cache for later

iterations though

Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 41 ―

Figure 4. Sample corpus in TREC format, offset annotation,
and parameter file for buildindex

How to index non-word tokens
In order to index non-word tokens, one needs to modify the
source code src/UTF8Transcoder.cpp. In the source
code, there are character categories declared in hexadecimal
notation. For each non-word tokens to be indexed, for example:
 {0xFE10, 0xFE19, indri::parse::CharClass::punctuation}

Specify the CharClass to be letter such as:
 {0xFE10, 0xFE19, indri::parse::CharClass::letter}

After rebuilding the code, you will be able to treat non-word
tokens as letters.
Query formulation
To count how many times a pattern appears in the corpus, use
the “expression count” option in dumpindex tool. Suppose
we calculate a reliability score of a pattern:

<NP1>%<YEAR><<NP2>`ab>?

We can calculate the number of times the pattern occurs within
a certain span, using an ordered window query #odN and a
typed wild card query #any:

#od30(#od1(% #any:year <)
 #od1(` a b > ?))

In order to retrieve sentences containing two terms “����”
and “��		
”, query with an extent restriction with a field
sentence and an unordered window query #uw:
#combine[sentence](#uw(
 #od1(c d e f) #od1(g h i i j)))

3.3 Evaluation Result
In this subsection, we present experimental settings and the
formal evaluation result on NTCIR-8 ACLIA CCLQA task.

Seed generation We hand-crafted 10 to 20 seed instances
where binary-argument pairs of question term and answer. As a

result of batch time training, we obtained LSPs such as the
examples shown in Table 2.

Answering Factoid and complex questions Answers to
complex questions must satisfy a complex information need. As
inspired by the complex question decomposition method by
Lacatusu et al [12], one can see a complex question as a set of
factoid questions. For example, a complex question “Who is X”
can be decomposed into “When was X born?”, “What award
did X receive?” etc. Using this analogy, we used multiple
factoid patterns to answer a complex question.

Table 2. Sample of seed instances, or pairs of award
recipient and award name, and patterns actually learned.

������ ���	
��������	
��

������������������

��� !��"#$%��

&'()��*+,-�./012���

3456��*+,-�./012���

78+2�9+���:;<=>�,��

?@AB��CDEF���

GHIJK��L+M,NOP���

�?QG��RS"P���

TUV��:WX����

@YZ��[\���

]^�_+�`a.��L+M,"P���

bcdefg�hibcdjf�
bcdefkg�lmbcdjfi�
nbcdefopbcdjfq�
bcdefprstuibcdjfvwx�
ybcdjfvz{|}bcdef~����
�bcdefg�hibcdjf�
bcdefpbcdjfvq����
�"P{�ibcdefqbcdjf����
bcdefkg�lmbcdjf�
�bcdefg�hibcdjf�
bcdefg�h�bcdjf�

As a source for extracting answers, we used the Mainichi
corpus only. As a baseline, we used the NTCIR-7 algorithm in
01 runs and a simple key term overlap approach in 03 runs to
compare against the 02 runs with the answer extraction module
using LSPs learned in bootstrapping. The following table shows
the summary of results where the proposed approach
outperforms baseline runs in both EN-JA and JA-JA.

Table 3. CCLQA run results (preliminary) [15]
Run ID Nugget F3

LTI-EN-JA-01-T 0.1074
LTI-EN-JA-02-T 0.1130
LTI-EN-JA-03-T 0.1045
LTI-JA-JA-01-T 0.1069
LTI-JA-JA-02-T 0.1443
LTI-JA-JA-03-T 0.1438

4. DISCUSSION AND CONCLUSION
The proposed approach is general enough that it has potential
applicability to wide variety of information access applications.
For instance, a set of patterns learned for each relationship can
be used as templates for textual entailment or paraphrasing
detection tasks. For further applications, the work can be used
in automatic QA evaluation, where patterns are used to identify
nuggets and system responses where surface texts differ but
have equivalent meaning.

In this work, we proposed to use NEs to replace specific terms
with an abstract label for increasing opportunities to learn more
with smaller resource. Another direction of using NE
Recognizer would be to restrict instance anchor terms with a
NE category in order to add more constraint on patterns with a
hope to improve reliability.

To conclude, we presented the LTI system participated in
NTCIR-8 ACLIA where we addressed monolingual and
crosslingual QA challenge on any types of questions.

As the key technical contribution of the paper, we described a
minimally supervised bootstrapping approach to generating
LSPs for answer extraction. The preliminary evaluation result
(measured by nugget F3 score) shows that the proposed
approach outperformed two baselines in both monolingual and
crosslingual tasks. The proposed approach is general and thus it

corpus.txt
<DOC>
 <DOCNO>DOC001</DOCNO>
 <TEXT>
��k�l�m�����Q���"�c�d�e�f���g�h�i�i�n�
o�i�j�������p�O���q���r�s�����
�t�t�t
</TEXT>

</DOC>
<DOC>
: : :

annotation.txt
D001 TAG 1 SENTENCE 41 420 0 0
D001 TAG 2 PERSON 65 15 0 1
D001 TAG 3 DATE 117 15 0 1
D001 TAG 4 DATE 137 11 0 1

parameter.txt
<parameters>
 <memory>1g</memory>
 <index>corpus.index</index>
 <corpus>
 <path>corpus.txt</path>
 <annotations>annotation.txt</annotations>
 <class>trectext</class>
 </corpus>
 <metadata><forward>docno</forward></metadata>
 <field><name>sentence</name></field>
 <field><name>person</name></field>
 <field><name>date</name></field>
 : : :
</parameters>

Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010, Tokyo, Japan

― 42 ―

has potential applicability to wide variety of information access
applications which require deeper semantic processing.

5. REFERENCES
[1] Bellare, Kedar, Partha Pratim Talukdar, Giridhar

Kumaran, Fernando Pereira, Mark Liberman, Andrew
McCallum, and Mark Dredze. 2008. Lightly-Supervised
Attribute Extraction for Web Search. In Proceedings of
NIPS 2007 Workshop on Machine Learning for Web
Search.

[2] Carlson, Andrew, Justin Betteridge, Richard C. Wang, and
Estevam R. Hruschka Jr. and Tom M. Mitchell. 2010.
Coupled Semi-Supervised Learning for Information
Extraction. In Proceedings of WSDM 2010.

[3] Cui, Hang, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question Answering Passage Retrieval
using dependency relations. In Proceedings of SIGIR
2005.

[4] Curran, James R., Tara Murphy, and Bernhard Scholz.
2007. Minimising Semantic Drift with Mutual Exclusion
Bootstrapping. In Proceedings of PACLING 2007.

[5] Echihabi, Abdessamad and Daniel Marcu. 2003. A Noisy-
channel Approach to Question Answering. In Proceedings
of ACL 2003.

[6] Hagiwara, Masato, Yasuhiro Ogawa, and Katsuhiko
Toyama. 2009. Bootstrapping-based Extraction of
Dictionary Terms from Unsegmented Legal Text. New
Frontiers in Artificial Intelligence: JSAI 2008 Conference
and Workshops, Revised Selected papers, Lecture Notes in
Computer Science, Vol. 5447, pp. 213-227.

[7] Harabagiu, Sanda and Andrew Hickl. 2006. Methods for
Using Textual Entailment in Open-Domain Question
Answering. In Proceedings of COLING-ACL 2006.

[8] Jijkoun, Valentin, Maarten de Rijke, and Jori Mur. 2004.
Information Extraction for Question Answering:
Improving Recall Through Syntactic Patterns. In
Proceedings of COLING 2004.

[9] Katz, Boris and Jimmy Lin. 2003. Selectively Using
Relations to Improve Precision in Question Answering. In
Proceedings of the EACL-2003 Workshop on Natural
Language Processing for Question Answering.

[10] Komachi, Mamoru and Hisami Suzuki. 2008. Minimally
Supervised Learning of Semantic Knowledge from Query
Logs. In Proceedings of IJCNLP-08.

[11] Komachi, Mamoru, Taku Kudo, Masashi Shimbo, and
Yuji Matsumoto. 2008. Graph-based Analysis of Semantic
Drift in Espresso-like Bootstrapping Algorithms. In
Proceedings of EMNLP 2008.

[12] Lacatusu, Finley, Andrew Hickl, and Sanda Harabagiu.
2006. The Impact of Question Decomposition on the
Quality of Answer Summaries. In Proceedings of LREC
2006.

[13] Lao, Ni, Hideki Shima, Teruko Mitamura, and Eric
Nyberg. 2008. Query Expansion and Machine Translation
for Robust Cross-Lingual Information Retrieval, In
Proceedings of NTCIR-7 Workshop.

[14] Mitamura, Teruko, Frank Lin, Hideki Shima, Mengqiu
Wang, Jeongwoo Ko, Justin Betteridge, Matthew Bilotti,
Andrew Schlaikjer and Eric Nyberg. 2007. JAVELIN III:
Cross-Lingual Question Answering from Japanese and

Chinese Documents. In Proceedings of NTICIR-6
Workshop.

[15] Mitamura, Teruko, Hideki Shima, Tetsuya Sakai, Noriko
Kando, Tatsunori Mori, Koichi Takeda, Chin-Yew Lin,
Ruihua Song, Chuan-Jie Lin, and Cheng-Wei Lee. 2010.
Overview of the NTCIR-8 ACLIA Tasks: Advanced
Cross-Lingual Information Access. In Proceedings of
NTICIR-8 Workshop.

[16] Murdock, Vanessa and W. Bruce Croft. 2005. A
Translation Model for Sentence Retrieval. In Proceedings
of HLT-EMNLP 2005.

[17] Narayanan, Srini, and Sanda Harabagiu. 2004. Question
Answering based on Semantic Structures. In Proceedings
of COLING 2004.

[18] Pantel, Patrick, and Marco Pennacchiotti. 2006. Espresso:
Leveraging Generic Patterns for Automatically Harvesting
Semantic Relations. In Proceedings of COLING/ACL-06.

[19] Punyakanok, Vasin, Dan Roth, and Wen-Tau Yih. 2004.
Mapping Dependencies Trees: An Application to Question
Answering. In Proceedings of the 8th International
Symposium on Artificial Intelligence and Mathematics,
2004.

[20] Ravichandran, Deepak. and Eduard. H. Hovy. 2002.
Learning Surface Text Patterns for a Question Answering
System. In Proceedings of ACL 2002.

[21] Sakai, Tetsuya, Hideki Shima, Noriko Kando, Ruihua
Song, Chuan-Jie Lin, Teruko Mitamura, and Miho
Sugimoto. 2010. Overview of NTCIR-8 ACLIA IR4QA.
In Proceedings of NTCIR-8 Workshop.

[22] Schlaefer, Nico, Petra Gieselmann, Thomas Schaaf, and
Alex Waibel. 2006. A Pattern Learning Approach to
Question Answering within the Ephyra Framework. In
Proceedings of the Ninth International Conference on
TEXT, SPEECH and DIALOGUE (TSD) 2006.

[23] Schlaefer, Nico, Jeongwoo Ko, Justin Betteridge, Guido
Sautter, Manas Pathak and Eric Nyberg. 2007. Semantic
Extensions of the Ephyra QA System For TREC 2007. In
Proceedings of the TREC 2007.

[24] Shen, Dan and Dietrich Klakow. 2006. Exploring
Correlation of Dependency Relation Paths for Answer
Extraction. In Proceedings of the ACL 2006.

[25] Shima, Hideki, Ni Lao, Eric Nyberg and Teruko Mitamura.
2008. Complex Cross-lingual Question Answering as
Sequential Classification and Multi-Document
Summarization Task, In Proceedings of NTCIR-7
Workshop.

[26] Sun, Renxu, Jing Jiang, Yee Fan Tan, Hang Cui, Tat-seng
Chua, and Min-yen Kan. 2005. Using Syntactic and
Semantic Relation Analysis in Question Answering. In
Proceedings of the TREC 2005.

[27] Wang, Mengqiu, Noah A. Smith, and Teruko Mitamura.
2007. What is the Jeopardy Model? A Quasi-Synchronous
Grammar for Question Answering. In Proceedings of
EMNLP 2007.

[28] Zhang, Dell and Wee Sun Lee. 2002. Web Based Pattern
Mining and Matching Approach to Question Answering.
Proceedings of the Text REtrieval Conference 2002.

