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ABSTRACT  

In this paper, we describe our methods for the English and 

Chinese RITE-VAL tasks. We extracted relevant sentences 

from Wikipedia to verify the correctness of the query 

statements. Computational models that considered various 

linguistic features were built to select Wikipedia articles that 

contained these relevant sentences. We adopt Linearly 

Weighted Functions (LWFs) to balance the importance of 

every features and judge the answer of each query statement 

by the outputs of LWFs. 
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1. INTRODUCTION 

Applications of natural language processing techniques have 

sprung up in the recent years. To improve the performance, 

experts extract useful linguistic features from words, sentences, 

and even articles, trying to figure out the meanings of texts and 

speeches. If we can let computer know natural languages’ 

meanings, it will be helpful for teaching or even creating a 

more convenient tools. 

 

In RITE-VAL, the purpose is to determine whether a query 

statement is contradiction or entailment[13].  Contradiction 

means that the query statement is not true. In practice, we 

judge this by searching the Wikipedia [11]. If we find clues 

that go against the query statement, we would classify the 

statement as contradiction. In contrast, if we find clues that 

support the query statement, then the sentence will be 

classified as entailment. At last, if there is no obvious reasons 

to support to disapprove the sentence we tag the sentence as 

“Unknown”. 

 

We try to find relatively important words in query statement. 

By finding such information, we can extract some related 

articles and sentences in Wikipedia. After that, we employ 

some features to compute the weight for each of related 

sentence, and consider some semantic features for the final 

judgments. We also adopt the data provided by NTCIR to train 

the parameters and threshold for our LWFs. If the score for a 

query statement is higher than the threshold, then the sentence 

is “Entailment”, otherwise the sentence will be 

“Contradiction”.   

 

We explain our methods for extracting articles and 

sentences that are potentially related to a given query from 

Wikipedia in Section 2. We will then deliberate on further 

processing steps for the extracted materials in an attempt to sift 

those information that are really related to the query in Section 

3. In Section 4, we discuss our methods for entailment 

recognition.  

2. EXTRACT ARTICLES AND   SENTENCES 

In this section, we adopt two ways to extract related articles 

and sentences for English corpus and Chinese corpus 

respectively, we will show as below. 

 

For English corpus, as the picture in Figure 1, we 

disassemble query statement into word, phrase and strings. 

Extract those synonyms by accessing WordNet[12]. Then, we 

combine all the results we get as keywords to do request to 

Wikipedia. If there is a article title in Wikipedia that is match 

our keywords then we will extract whole article as our related 

articles. 

 

After that, we split all the articles into sentences. However, 

not entire sentences are related to the query statement, so we 

make a filter to choose the sentences those are relevant to 

query statement. Our strategy is to choose sentences those 

have greater than or equal to 2 words match to the query 

statement, and those words’ parts of speech must be noun, 

verb or adjective. Finally we can shrink the range into some 
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Figure 1.The flow of extracting article and sentences for English corpus. 

 

 
Figure 2. The flow of extracting article and sentences for Chinese corpus. 

 

sentences those are more related to query statement. 

 

For Chinese corpus, as the picture shown Figure 2, the 

approaches of retrieve correlated atricles from wikipedia 

corpus have two ways. 

 

One way is using wikipedia corpus to set a retrival system 

by Lucene[6]. Then, using the sentences as query to retrieve 

articles. The other is extract Nouns in sentences. Checking 

whether there are titles same as Nouns or not. If they are same, 

we also make it as  correlated article. Thus, we split article's 

paragraphs to sentences. After that we use the word overlapped 

and Bilingual Evaluation Understudy (BLEU)[1] measurement 

to calculate the correlation between argument and sentences in 

the articles, and take top 30 as related sentences. 

 
Figure 3. The method of calculating sentence relatedness. 

 

3. COMPUTE SENTENCE RELATEDNESS 

After section 2, every query statement can obtain their related 

sentences from Wikipedia’s article. But there is a question 

inside, how much relatedness between related sentence and 

input words. The degree of relatedness will greatly effect the 

 

recognition result, so we try to quantify the relatedness degree 

of each related sentences . 

 

In Figure 3, sentence relatedness is compose into two parts. 

One is related sentence itself, the other is the article where 

related sentence comes from. In the first part, we extract five 

features value between related and query statement. 

A. Word Overlap Ratio : 

Comparing query statement and related sentence. If there exist 

same words in both sentences, then we call it word overlap. 

Therefore, the more same words extist, the more ratio it will 

get. 

Word Overlap Ratio = 
Word Overlap Number

Word Number Of Query statement
 (1) 

 

B. Longest Common String Similarity(LCSS): 

We extract query statement and related sentence’s Longest 

Common String (LCS)[5] as an important linguistic feauture, 

that is, if we have two sentence below :  

 

Sentence1: “ABCDEFGH” 

Sentence2: “ABIJDEFKLMN” 

 

Then, the LCS will be “ABDEF”. And according to the 

formula (2), we can compute that the LCSS in this example is 

0.375. 

LCSS = 
LCS

Length of Query Statement
                     (2) 
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C. Name Entity Overlap Ratio : 

We tag name entity[7] (PERSON, ORGANIZATION,  

LOCATION) on both query statement and related sentence by 

using Stanford NER. After that, we compare both sentence’s 

name entity, The more same name entity exist, the higher ratio 

it will get.  

 

D. Bilingual Evaluation Understudy : 

BLEU is an algorithm for evaluating the quality of text which 

has been machine-translated from one natural language to 

another. We use it to check two sentence’s similarity. 

E. Parse Tree Similarity  : 

In order to obtain sentence semantic structure, we use Stanford 

Parser[8] to parse query statement and related sentence. To 

extract sentence’s semantic structure similarity[3] there is a 

procedure as below: 

 

Step1:Compute LCS between related sentence and query 

statement. 

 

Step2:Compare the difference between the LCS and query 

statement, if there exist a token that LCS is different from 

query statement, then we record it into a table.  

 

Step3:We do insertion operation to insert some node into the 

LCS by cheking out the table. After the LCS becomes query 

statement, the node number we add is the cost of insertion 

operation. Therefore, if insertion operation is less, then it 

shows that the pair of sentence have less differences. After the 

procedure, we can obtain a value that can represent Parse Tree 

Similarity. 

 

To figure out related sentence weights, we set the features 

value above as a, b, c, d and e. We make them as a set of  

space vector. Therefore, after extracting the features, we can 

assume the starting point is (0,0,0,0,0) and corresponding 

related sentences coordinates  are (a,b,c,d,e). Hence, we can 

compute two sentences distance value. The higher value it get, 

the higher sentence weights it will obtain.  

 

The second part is related article weight. If we can find 

many related sentences in a article, then we can also say, that 

article have certain degree of representation. Therefore, we try 

to figure out the importance of each related article as below’s 

formula, and the related sentences’ weight will also be decided 

depends on each articles they come from. Let x = Total related 

sentence numbers of each relate articles; y = Total related 

sentence numbers of each query statement. 

 

Related Article Weight = 
 x

y
                      (3) 

 

Finally, we multiplied sentence weight and article weight as 

every sentence’s relatedness. And that value is represent that 

how related between query statement and related sentence. We 

will use it in  our following section. Let Sw = Related sentence  

 

weight;Aw = Related article weight. 

 

                Sentence Relatedness = Sw × Aw                    (4) 
 

4. ENTAILMENT RECOGNITION 

In this section, we use some semantic features to figure out the 

relations between related sentence and query statement. As  

 

the Figure 4, we also adopt Linearly Weighted 

Functions(LWFs)[4] to be our main method to validate our 

sentence.    

 

Here comes the introduction of each features : 

A. Antonyms, Negation Adverb and Negation 

Words Detection : 

To determine a pair of sentence which is entailment or 

contradiction, antonyms, negation adverb and negation words 

are important information to deduce it. In other words, even 

though two sentences have high value of Word Overlap Ratio, 

if there exist antonyms or negation words, the meaning will be 

entirely different. 

 

We compare query statement and related sentence. If there 

exist same words that is modified by antonyms, negation 

adverb or negation words, then we compute the relation that is 

positive or negative. If we get the relation is positive then the 

feature’s value is 1, else the value will be -1. 

B. Passive Detection : 

We compare query statement and related sentence. Detecing 

both sentences those are active or passive sentence. If those are 

the same, then we give 1 as feature’s value, else the value will 

be -1. 

C. Subject and Object Match Ratio: 

If there have same subject or object in query statement and 

related sentence, In other words, we can say both two 

 
Figure 4. The method of entailment recognition. 
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sentences are probably discribing same things or showing 

same information. As the formula below, the more same 

subject or object we get, the higher  feature value we can get. 

 

Subject and Object Match Ratio  

= 
Subject and Object Overlap Number

  Number Of Subject and Object in Query statement
        (5) 

D. Number Match Ratio : 

Number is important information to detect two sentences’ 

relationship. As the formula shown below, if two sentences 

have totaly same number, then they have high posibility as a 

positive entailment relationship. 

 

Number Match Ratio  

= 
Number word Overlap Quantity

Quantity Of Number word in Query statement
                (6) 

 

E. Typed Dependencies Similarity: 

Typed Dependencies[9] means the direct relationship between 

two words. We make two matrixes to put two sentence typed 

dependency sets inside. Then we multiply itself twice, three 

and four times to find its transition matrix. After that, we can 

obtain the matrix that appears the result of two, three and four 

steps of typed denpencies relations, it means, we have the 

indirect relationship between every words in every sentences. 

Therefore we can compare both related sentence and query 

statement’s transition matrixes. If there exist same typed 

denpencies relations then we can say those two typed 

dependencies are somehow interconnected to each other. 

 

After extracting the features above, we combine those 

features and all related sentences’ weight. Putting those value 

into Linearly Weighted Functions as below. Hence we can 

train every feature’s parameter(α, β, γ, δ, ε) and observe that 

which linguistic feature is much useful to help us validate the 

sentence. 

 

    Linearly Weighted Functions(LWFs)  is the formula as 

below. We assume one query statement has 30 related 

sentences and F1 to F5 are the features we introduce above. 

Moreover, α, β, γ, δ, ε are parameters of each features and  

𝑤𝑆 , 𝑤𝐴 are sentence weight and article weight respectively. 

 

      𝑤𝑆30*𝑤𝐴30（α  𝐹1𝑆30 +β 𝐹2𝑆30 +γ𝐹3𝑆30 +δ𝐹4𝑆30 +ε𝐹5𝑆30）(7) 

 

We can obtain LWFs Score by the LWFs formula and 

validate the query statement whether it is “Entailment”, 

“Contradiction” or “Unknown” as formula (8). Besides, the 

value of Threshold1 and Threshold1 are trained by RITE-2 and 

Table 1. Formal run result 

Task Accuracy Macro-F1  

RITE-VAL EN Run 01 51.06 49.41 

RITE-VAL EN Run 02 50.53 49.64 

RITE-VAL CN Run 01 36.70 30.88 

RITE-VAL CN Run 02 35.89 31.07 

RITE-VAL CS Run 01 36.70 30.88 

RITE-VAL CS Run 02 35.89 31.07 
 

RITE-VAL training data, so we validate our query statement 

according to the value of threshold1 and threshold2. Finally if 

LWFs Score >= Threshold1, then the sentence will be tagged 

into “Entailment”. If LWFs Score <= Threshold2, then the 

sentence will be tagged into “Contradiction”. If Threshold2< 

LWFs Score < Threshold1, then the sentence will be tagged 

into “Unknown”. Let Threshold 1 = t1; Threshold 2 = t2. 

 

𝑄𝑢𝑒𝑟𝑦 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛

= {

𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡            𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 >= 𝑡1                              
𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛      𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 <= 𝑡2                          (8)

𝑈𝑛𝑘𝑛𝑜𝑤𝑛               𝑡2 <  𝐿𝑊𝐹𝑠 𝑆𝑐𝑜𝑟𝑒 < 𝑡1                    
       

 

5. EVALUATION 

The table 1 shows the formal run results of  RITE-VAL “EN”, 

“CN”, and “CS” tasks. The parameter sets of each run, we pick 

better performance set in training data. In RITE-VAL EN task, 

we can see the accuracy and macro-f1 falls on about 50%. It is 

not as good as our anticipation, but we get the second place in 

the task.  

 

In RITE-VAL CN and CS tasks, our best performance is 

36.7% of accuracy and 30.88% of marco-f1. In our training 

data performance, we can get about 48% of accuracy. The 

reason why we get large of difference between training set and 

formal run set is,  the data’s differences is large. The training 

data’s content, is describe about common sense knowledge, 

the difficulties is about the test of elementary school. And the 

formal run data is much harder than training data, so that is the 

main reason for causing the differences. 

 

6. DISCUSSION 

This paper reports our system in the NTCIR-11 RITE-VAL 

EN, CT, CS sub-tasks. The results were not as good as we 

expected, and we thought that there are three possible ways to 

make our performance better. 

 

First is about features, we should build more features 

concerning semantic level, that can help us know more about 

meaning. Second, we should try different ways to filter our 

related sentences, that is, a more considerate procedure is in 

need to identify those really relevant sentences in Wikipedia. 

 

Currently, we chose linearly weighted functions to be our 

method to judge the answer. We should try more advanced 

     LWFs Score =  
     𝑤𝑆1*𝑤𝐴1（α  𝐹1𝑆1 +β 𝐹2𝑆1 +γ𝐹3𝑆1 +δ𝐹4𝑆1 +ε𝐹5𝑆1）+ 

      𝑤𝑆2*𝑤𝐴2（α  𝐹1𝑆2 +β 𝐹2𝑆2 +γ𝐹3𝑆2 +δ𝐹4𝑆2 +ε𝐹5𝑆2）+ 
                                                            …                                                                

                                                            …                                                                
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methods like SVM[10] for the task. We probably should 

compare different methods, so that we may have a better 

performance. 
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