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Copy number variants (CNVs) are an important type of genetic variation that play a causal
role in many diseases. The ability to identify high quality CNVs is of substantial clinical
relevance. However, CNVs are notoriously di�cult to identify accurately from array-based
methods and next-generation sequencing (NGS) data, particularly for small (< 10kbp)
CNVs. Manual curation by experts widely remains the gold standard but cannot scale with
the pace of sequencing, particularly in fast-growing clinical applications. We present the
first proof-of-principle study demonstrating high throughput manual curation of putative
CNVs by non-experts. We developed a crowdsourcing framework, called CrowdVariant, that
leverages Google’s high-throughput crowdsourcing platform to create a high confidence
set of deletions for NA24385 (NIST HG002/RM 8391), an Ashkenazim reference sample
developed in partnership with the Genome In A Bottle (GIAB) Consortium. We show that
non-experts tend to agree both with each other and with experts on putative CNVs. We show
that crowdsourced non-expert classifications can be used to accurately assign copy number
status to putative CNV calls and identify 1,781 high confidence deletions in a reference
sample. Multiple lines of evidence suggest these calls are a substantial improvement over
existing CNV callsets and can also be useful in benchmarking and improving CNV calling
algorithms. Our crowdsourcing methodology takes the first step toward showing the clinical
potential for manual curation of CNVs at scale and can further guide other crowdsourcing
genomics applications.
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1. Introduction

Copy number variation is a type of structural variation that involves large-scale duplications
or deletions of parts of a chromosome. Copy number variants can have substantial e↵ects on
cell and organism phenotype and are associated with many kinds of human disease (Redon
et al., 2006) (Feuk, Carson, & Scherer, 2006) (Sudmant et al., 2015). Identifying CNVs is an
important component of clinical pipelines for assessing genetic mutations that contribute to
disease progression. Numerous algorithms have been developed to characterize these variants
from genotyping arrays and next-generation sequencing data (English et al., 2015) (Tattini,
D’Aurizio, & Magi, 2015) (Mills et al., 2011) (Kidd et al., 2008). However, these algorithms
often have poor concordance on both the location and the type of copy number variant, par-
ticularly for small-scale (< 10kbp) CNVs (Scherer et al., 2007) (Pinto et al., 2011), leading
experts to rely heavily on manual curation. One key challenge in further developing and as-
sessing these algorithms is the lack of a large set of ”gold standard” or reference copy number
variants.

Crowdsourcing has been used successfully to obtain gold standard labels in projects such as
Galaxy Zoo (Raddick et al., 2010), ClickWorkers (Ishikawa, ST and Gulick, 2012), FoldIt
(Cooper et al., 2010), and Zooniverse (Prather et al., 2013), but little investigation has been
done to understand how crowdsourcing can be best utilized to analyze genomic variation
(Haghighi et al., 2018). Basic questions include whether or not any domain expertise is truly
needed, how large the crowd should be, and how to best train and display genetic variation
to workers. We investigated the use of crowdsourcing platforms to classify copy number vari-
ants, focusing on deletions, and to address these basic questions. Google has developed the
Crowd Compute platform to facilitate large-scale crowdsourcing problems, and we developed
our framework with this platform to enable high throughput classifications. In this work we
show proof of principle in a well characterized reference genome, an essential first step before
deploying the method on more variable genomes such as from clinical samples. In a similar
vein, we focus on deletions as the most frequent and also likely easiest to classify type of
structural variation before focusing on more complex applications. CrowdVariant can be used
to develop high confidence CNV sets, to benchmark new CNV detection algorithms, and to
enable high throughput manual curation of CNVs using both experts and non-experts.

2. Results

2.1. The CrowdVariant Framework

The CrowdVariant framework uses a crowdsourcing platform to display putative copy number
variant sites to workers and aggregates classifications from a pool of workers to determine the
copy number state. Using this framework, we first ran an experiment to compare non-expert
and expert classifications on a pilot set of putative CNV sites and then expanded our classi-
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fications to curate a genome-wide set of high confidence CNVs [Figure 1].

Fig. 1. The experimental design was constructed to first evaluate a pilot set of sites with both
experts and non-experts before applying the same framework to a genome-wide set of sites using
non-experts only.

CrowdVariant displays pileup images of putative copy number variant sites using the Integra-
tive Genomics Viewer (IGV), showing all reads aligned to the site and the flanking regions
[Supplementary Figure 1] (Thorvaldsdóttir, Robinson, & Mesirov, 2013). Workers classify the
site, assess break point accuracy and report their confidence based on seeing one image at a
time.

We selected a set of 500 putative deletion sites for the pilot phase of our study. We first called
putative sites using an ensemble approach from multiple sequencing technologies (Illumina,
PacBio, Complete Genomics and BioNano) and corresponding algorithms (see Supplementary
Methods for details) (Abyzov, Urban, Snyder, & Gerstein, 2011) (Garrison & Marth, 2012)
(Mohiyuddin et al., 2015) (Hormozdiari, Hajirasouliha, McPherson, Eichler, & Sahinalp, 2011)
(Iqbal, Caccamo, Turner, Flicek, & McVean, 2012) (Mak et al., 2016) (Chaisson et al., 2014)
(Nattestad & Schatz, 2016) (Drmanac et al., 2010). We then randomly selected from all pu-
tative sites 500 pilot sites ranging from 100bp to 3000bp with varying levels of support from
existing algorithms [Supplementary Table 1].

We used aligned 10X Genomics (10X) and Illumina paired-end (Illumina) reads from the
reference Ashkenazim trio made available by the Genome In A Bottle (GIAB) Consortium
(Zook et al., 2016). For each putative copy number variant site, we generated an image for
each member of the trio (son/mother/father) using Illumina reads, one image for the son’s
diploid reads and one image for each haplotype of the son’s reads using 10X reads. Although
workers potentially saw multiple images of the same site, we did not disclose to workers the
experimental design, the sequencing technology, the individual or the site being shown in an
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e↵ort to most fairly compare experts and non-experts.

In our pilot study, 20 non-experts each classified all 6 images for the 500 pilot sites. We
launched a global recruitment for self-reported experts curators with over 110 individuals
from several dozen institutions signing up to classify variants. The participation rate was
highly variable with an average of 76 questions per expert [Supplementary Figure 2]. We
ensured that all 6 images for at least 100 sites were classified by 5 experts each.

2.2. Non-experts can curate high quality copy number variants

Both experts and non-experts agreed on a consensus classification for the majority of sites
[Supplementary Figure 3]. We visualized the responses for non-experts [Figure 2] and experts
[Figure 3] by weighting each copy number classification and clustering workers and sites to re-
veal performance di↵erences across sequencing platforms and individuals. We kept the identity
of each non-expert worker separate, but we merged the expert answers into artificial work-
ers 1 through 5 as experts did not answer enough questions individually to be meaningfully
compared. For 86% of images, at least 70% of non-expert workers agreed on the classification,
showing that non-experts can be trained to interpret copy number variants in a consistent
manner [Supplementary Table 2]. Non-experts primarily had di�culty classifying haplotype
images and systematically confused CN2s as CN1s for haplotype images only (see Fig. 8 haplo-
type heatmaps). Beyond these systematic errors, there were several non-experts that deviated
from the majority either from lack of e↵ort or understanding. Improving the documentation
by showing more than 2 examples of each copy number type could further improve non-expert
performance.

Agreement among workers was used to assign a final classification and confidence score to each
putative site. We defined the CrowdVariant score as the proportion of workers that voted in
favor of the most popular classification (CN0/CN1/CN2/None of the Above), with higher
scores reflecting more confident classifications. We incorporated worker classifications for all
images of the same site, but classified each site for each individual in the trio independently.
We counted all diploid classifications but only those haploid classifications where the pair of
haplotype images was consistent with a diploid classification [Supplementary Methods]. We
assign the most likely copy number state to each site by selecting the classification with the
largest proportion of votes.

Non-experts performed similarly to experts when comparing the rate of Mendelian violations
among the trio (classifications that would not plausible from Mendelian inheritance) for each
site [Supplementary Methods] [Table 1]. We found that 89% and 90% of all sites were classi-
fied without a Mendelian violation for experts and non-experts, respectively. The sites with
Mendelian violations had lower scores and could largely be filtered out of the high quality
set. The CrowdVariant scores discriminated Mendelian violations from genetically plausible
trio classifications with an AUC of 0.89 for non-experts and an AUC of 0.87 for experts [Sup-
plementary Methods] [Supplementary Figure 4]. For comparison, we randomized all answers
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Fig. 2. Non-expert classifications for 500 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a putative site using a particular
sequencing technology) and columns represent workers. Clockwise from top left: 10X son, 10X son
haplotype 1 only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.

Fig. 3. Expert classifications for 100 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a site using a particular sequencing
technology) and columns represent workers. Left to right: 10X son, 10X son haplotype 1 only, 10X
son haplotype 2 only, Illumina son, Illumina father, Illumina mother.

by re-sampling the entire worker by classification matrices for experts and non-experts and
re-computed the rate of Mendelian violations [Supplementary Table 3]. The AUCs for expert
and non-expert randomized answers were 0.47 and 0.50, respectively, and both 95% confidence
intervals overlapped a random AUC of 0.5.

We curated a high confidence set of CNVs for the son (NA24385) with high probability of
correctness and no Mendelian violations [Supplementary Materials]. We initially intended to
use self-reported confidence to filter lower quality classifications, but most non-experts consis-
tently reported medium to high confidence despite minimal training [Supplementary Figure
5]. To avoid relying on self-reported confidence, we ranked all 500 sites by their CrowdVariant
score and selected all sites with a higher score than the site with the first Mendelian violation.
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Metric
Data Set

Expert Non-expert

Percent of sites without violation 89/100 (89%) 448/500 (90%)

ROC AUC 0.87 0.89

ROC AUC 95% confidence interval [0.79, 0.95] [0.86, 0.92]

Average violation probability 0.15 0.14

This violation occurred at score 0.83 and resulted in discarding approximately half of the sites
for a total of 266 high confidence sites. The high confidence set of sites contains 122 CN0, 138
CN1, 5 CN2 and 1 ”None of the above” classification. 252 out of 266 are supported by at least
two other technologies. Importantly, for all sites in the high quality set that were classified by
both experts and non-experts, there was 100% agreement (n=56 sites) between experts and
non-experts.

2.3. CrowdVariant can classify CNVs with variable support or unclear
breakpoints

CrowdVariant agrees with consensus classifications from existing algorithms, while also clas-
sifying variants that are challenging for existing algorithms. CrowdVariant scores assigned to
each site are correlated with the number of technologies underlying the original calls [Figure
4]. CrowdVariant classifications also show strong agreement with svviz (Spies, Zook, Salit, &
Sidow, 2015), a semi-automated visualization tool that determines whether each read sup-
ports the reference allele, alternate allele, or is ambiguous. We used a preliminary heuristic
method to classify copy number variants based on the read counts supporting the reference
and alternate alleles as determined by svviz for each dataset, and required agreement across
all datasets that had clear support for a genotype [Supplementary Methods]. When comparing
all high confidence classifications, agreement with svviz was 82%. CrowdVariant was able to
resolve 26 sites that were uncertain for svviz, explaining part of the discrepancy. When we
removed sites that were classified as ”None of the Above” in CrowdVariant or uncertain in
svviz, agreement was 91% between the two methods. Agreement with svviz also increased
with the number of supporting technologies [Figure 5].

The true power of incorporating many data types is clear when all 6 images of the same site are
viewed together [Figure 6]. We find in multiple cases the crowd is able to resolve copy number
state where other methods cannot, particularly when the boundary points are incorrect or
ambiguous [Figure 7, Supplementary Figure 7]. While non-experts make some mistakes, we
find that they do so in a consistent manner, such as mistaking a di�cult-to-sequence region
for a deletion, and they could likely be trained to recognize other features in the image that
would clarify these mistakes. Phased data is particularly powerful for classifying heterozygous
CNVs that are otherwise ambiguous and provides visual confirmation of the CrowdVariant
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Fig. 4. CrowdVariant scores determined by
non-expert workers stratified by the number
of supporting technologies from existing CNV
callers.

Fig. 5. Agreement (within each bin) with svviz
classifications for sites with varying support from
orthogonal technologies. We only compare sites
with CN0, CN1 or CN2 classifications from both
methods.

results in conjunction with all other images for the site.

Fig. 6. Viewing all image types together shows the power of combining familial and phasing in-
formation in di↵erent sequencing platforms. This variant (chr15:36160125-36162210) was classified
as copy number 1 in the son with CrowdVariant score 1.0 and is part of the high quality set. The
variant is visible in the mother, both diploid son images and one of the haplotype images. Clockwise
from top left: Illumina mother, 10X son, 10X son haplotype 1, 10X son haplotype 2, Illumina son,
Illumina father.
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Fig. 7. Viewing all image types together shows the power of combining familial and phasing infor-
mation in di↵erent sequencing platforms. This variant (chr19:57111292-57111809) was classified as
CN1 in the son with score 0.89 and is part of the high quality set. Svviz classified this example as
CN2 due to the imprecise breakpoints. Clockwise from top left: Illumina mother, 10X son, 10X son
haplotype 1, 10X son haplotype 2, Illumina son, Illumina father. Mother appears to share CNV with
the son, while the father is wildtype. Visualizations produced by default IGV settings.

2.4. CrowdVariant can be used to curate a genome-wide high quality set of
copy number variants

Having demonstrated that we can use non-expert workers to curate a high quality set of copy
number variants, we expanded our classifications genome-wide. We took all putative CNV
sites that were supported by GIAB callsets from at least 2 technologies and had not been
classified in the pilot set (n=2271) and recruited 20 non-expert classifications for each site for
all 6 image types. Due to the larger volume of images, not every worker classified all images
in the genome-wide set. Consistent with the pilot study, we observed strong agreement among
non-expert workers in the genome-wide set. Again, the primary inconsistencies were classifi-
cations for the haplotype images [Figure 8].

We scored each site by the proportion of workers voting for each classification and applied the
threshold determined by the first 500 sites to curate high quality genome-wide classifications.
This resulted in 1,515 new high confidence sites for the son (NA24385). The CrowdVariant
scores for these sites correlate with the number of supporting technologies [Figure 9]. Likely
due to requiring 2 supporting technologies, these sites were in even stronger agreement with
svviz with 97.2% agreement among sites given CN0/CN1/CN2 classifications with both meth-
ods [Figure 10]. The high quality genome-wide set includes calls for 93 sites that svviz found
uncertain. The additional genome-wide set includes 959 CN1, 552 CN0, 3 CN2 and 1 None of
the Above. The CrowdVariant scores for the genome-wide set of CNVs also demonstrate sim-
ilar concordance with orthogonal technologies [Figure 9] and classify Mendelian violations in
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Fig. 8. Non-expert classifications for genome-wide sites in Phase 3 were color coded, weighted and
clustered. Rows represent a question (i.e. an image of a particular site using a particular sequencing
technology) and columns represent workers. Clockwise from top left: 10X son, 10X son haplotype 1
only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.

the trio with auROC 0.94 [Supplementary Figure 8]. Above the threshold for high confidence
determined from the pilot study, there was only one Mendelian violation in the genome-wide
set occurring at a score of 0.94 [Supplementary Figure 9]. Combining with the 266 high quality
sites from the pilot set, we finalized a set of 1,781 high confidence CNVs.

Fig. 9. CrowdVariant scores for all genome-
wide sites determined by non-expert workers
stratify by the number of supporting technolo-
gies from existing CNV callers.

Fig. 10. Agreement with svviz classifications for
genome-wide sites with varying support from or-
thogonal technologies. We only compare sites with
CN0, CN1 or CN2 classifications from both meth-
ods.
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3. Discussion

We show that individuals with no background in genomics can be trained to accurately clas-
sify and thereby curate copy number variants. This is possible because the classification of
CNVs based on images of aligned NGS reads is ultimately a pattern recognition problem, and
even non-experts with limited training can excel at recognizing these patterns. As soliciting
expert participation is prohibitively more di�cult than non-expert participation (evident in
the small amount of expert data we were able to collect), the ability to use non-experts en-
ables crowdsourcing on a substantially larger scale. Deployment of manual curation on the
ever growing body of clinical samples would likely require this adaptation as the volume will
quickly exceed the capacity of experts. In this study, the larger scale a↵orded by non-expert
workers allowed us to curate thousands of putative CNVs across the entire genome of a single
individual from the Genome In A Bottle reference collection.

We are able to use non-expert classifications by using confidence scores to recognize the limit
of their abilities. For many applications, such as deriving gold standard labels to improve ma-
chine learning methods, it is more critical to determine which classifications are trusted than
to classify everything correctly. As machine learning approaches are increasingly adopted to
solve genomic problems, crowdsourcing can provide an avenue to derive trusted training sets
at high throughput for low cost.

While we have shown that crowdsourcing can be used to generate high confidence labels for
CNVs, there are several limitations to our study. First, the set of CNVs we present is not a
complete set for the GIAB Ashkenazim son (NA24385), but instead a set of the highest confi-
dence sites. Further, we only know that a CNV is segregating at the site, but we do not know
its exact position or size. One broader limitation of crowdsourcing is that people can be consis-
tent but wrong, however this limitation is shared by other approaches such as ensemble-based
computational methods. In the current framework, our high confidence classifications are also
enriched for sites that are overall easier to classify. However, there are many ways to increase
confidence for more di�cult questions by scaling the number of workers, augmenting training
schemes, improving confidence metrics or considering alternative experimental designs such as
those that incorporate both experts and non-experts depending on the particular question’s
di�culty. Nevertheless, we are confident that our crowdsourced, genome-wide set of curated
CNVs will prove valuable to methods developers working to improve CNV calling algorithms.

Many possibilities exist for improving and expanding on this proof-of-concept study demon-
strating the crowdsourcing curation of genomic variants. Incorporating images from additional
technologies, such as long-read sequencing, could likely identify additional high confidence sites
and remove some errors from using only short reads. Additional work might also use input
from users about the precision of breakpoints. Other types of images could also be used, such
as dot plots from assembly-assembly alignments and svviz images with reads mapped to ref-
erence and alternate alleles. These additional methods may help non-experts classify more
di�cult types of structural variants, like complex changes, insertions, inversions, and translo-
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cations, as well as variants in di�cult, repetitive regions of the genome.

We use Google’s high throughput crowdsourcing platform, but as additional crowdsourcing
platforms become available at low cost, soliciting participation from the crowd will become
progressively easier. By using strategic experimental design, crowdsourcing can be a produc-
tive avenue to compete with and improve upon computational methods in di�cult areas of
genomics. Copy number variation, a domain where many experts still use manual inspection,
is just one of these many areas. We provide a resource of high quality copy number variant
classifications for a reference genome as a result of our study but ultimately see the potential
expand far beyond these results.

Data Access

All Supplementary Methods, Figures and Data are available at ftp://ftp-trace.ncbi.nlm
.nih.gov/giab/ftp/technical/CrowdVariant SupplementaryInfo/. We provide the scores
for each putative copy number variant site and label the high quality sites. All raw worker
answers for both non-experts and experts are available as well.
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