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Differential expression experiments or other analyses often end in a list of genes. Pathway 
enrichment analysis is one method to discern important biological signals and patterns 
from noisy expression data. However, pathway enrichment analysis may perform 
suboptimally in situations where there are multiple implicated pathways – such as in the 
case of genes that define subtypes of complex diseases. Our simulation study shows that in 
this setting, standard overrepresentation analysis identifies many false positive pathways 
along with the true positives. These false positives hamper investigators’ attempts to glean 
biological insights from enrichment analysis. We develop and evaluate an approach that 
combines community detection over functional networks with pathway enrichment to 
reduce false positives. Our simulation study demonstrates that a large reduction in false 
positives can be obtained with a small decrease in power. Though we hypothesized that 
multiple communities might underlie previously described subtypes of high-grade serous 
ovarian cancer and applied this approach, our results do not support this hypothesis. In 
summary, applying community detection before enrichment analysis may ease 
interpretation for complex gene sets that represent multiple distinct pathways.  
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1.  Introduction 

Researchers’ experiments that include high-throughput data generation often lead to a set of genes. 
These genes may be genes that are over- or under-expressed in a disease subtype, are upregulated 
in response to a drug, or contain variants associated with a disease. After potentially interesting 
genes are identified, the next challenge is to interpret the biological processes or pathways that 
underlie the set. Overrepresentation-based methods are commonly used to identify pathways that 
have more members in the identified set than would be expected by chance1. Typically, pathways 
or similar groups of genes are obtained from structured vocabularies outlined in curated ontologies 
such as KEGG, PID, GO, or Reactome2–5. Recently, computational researchers have sought to 
improve the power of such analyses by considering network interactions among pathway 
members6,7. We sought to evaluate overrepresentation analysis in a different setting: one where 
multiple pathways underlie a set of associated genes. In this situation, applying standard 
overrepresentation analysis to gene sets constructed by randomly selecting members of multiple 
pathways identifies many false positive pathways. We hypothesized that reducing the noise of the 
gene list input via community detection might decrease the number of false positive pathways. 

Functional networks are a type of network where genes are connected if they have a high 
probability of working together in the same pathway or process8–11. To address the challenge 
posed by multi-pathway gene sets, we developed an approach that incorporates information from 
functional networks to first partition gene sets into subsets, or communities, which are then 
analyzed for overrepresented pathways. To accomplish this, enrichment analysis is applied to each 
extracted community resulting from community detection preprocessing12,13 of the original gene 
set. Community detection has been applied to financial data, social media, and biological data12,14. 
To our knowledge, this is its first application to disambiguate the pathways associated with 
complex gene sets. We evaluate four community detection methods in this context: Fastgreedy, 
Walktrap, Multilevel, and Infomap. These algorithms all aim to identify groups/communities 
within a network: 
 
• Fastgreedy – This algorithm starts from a completely unclustered set of nodes and iteratively 

adds communities such that the modularity (score maximizing within edges and minimizing 
between edges) is maximized until no additional improvement can be made15.  

• Walktrap  – This algorithm performs random walks using a specified step size. Where densely 
connected areas occur, the random walk becomes “trapped” in local regions that then define 
communities16. 

• Multilevel – This algorithm is similar to fastgreedy, but it merges communities to optimize 
modularity based upon only the neighboring communities as opposed to all communities17. 
The algorithm terminates when only a single node is left, or when the improvement in 
modularity cannot result from the simple merge of two neighboring communities.  

• Infomap – This algorithm uses the probability flow of information in random walks, which 
occurs more readily in groups of heavily connected nodes. Thus, information about network 
structure can be compressed in maps of modules (nodes where information travels quickly)18. 
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Outside of the multi-pathway gene set challenge, there are a number of R packages that 
implement algorithms for network interpretation of experimental results including WGCNA19, 
EnrichNet20, pathDIP21, and CePa22,23. In this work, community detection algorithms are used to 
partition multi-pathway gene sets before overrepresentation analysis. By detecting these gene 
communities, we aim to provide cleaner inputs for overrepresentation analyses in the case of 
multiple underlying pathways – thereby reducing the number of identified false positives. In 
contrast with other methods that use network information as priors or as post-analysis 
visualization aides, we group genes before enrichment analysis. While we use the Integrative 
Multi-species Prediction (IMP) networks, our approach can be applied to a gene set from any 
source11,24. For example, a user may wish to use tissue-specific networks from the GIANT 
webserver9 if tissue specificity is important. Finally, our approach makes no assumptions about the 
covariance structure of the networks25 and is thus potentially more useful in real world 
applications where certain assumptions may not apply.  

 In summary, we propose an alternative gene enrichment approach for cases when multiple 
pathways are suspected to be implicated in a gene list. In this approach, candidate genes are 
overlaid onto a functional network and separated into communities of related genes via 
community detection. Communities are then subjected to an overrepresentation analysis 
independently and multiple testing corrections are applied. We compare four community detection 
approaches in simulated experiments and then apply the approach to identifying enriched 
pathways across high grade serous ovarian cancer (HGSC) subtypes. 

2.  Methods 

We conducted an experiment that contained a control and an experimental arm. The control arm 
was an overrepresentation analysis without community detection, and the experimental arm was 
an overrepresentation analysis with various community detection methods applied as a 
preprocessing step.  

2.1.  General Approach  

From the KEGG ontology, m randomly chosen pathways were selected to form a list of candidate 
genes. To help evaluate the impact of incomplete pathway discovery, only p percent of the genes 
in each pathway were randomly selected for inclusion in the final gene list. Finally, a percent of 
additional random genes selected without replacement from the ontology were added to the gene 
list to create noise. As to only consider genes that influence pathway analysis, genes that were not 
in both IMP and KEGG were excluded for a resulting set of 5195 genes. This procedure was 
performed for both control and experimental arms so that differences in results could be attributed 
to community detection preprocessing.  

We performed one hundred iterations for each parameter level combination of number of 
pathways (m = 2-8), percentage of genes included from each pathway (p = 30%, 47.5%, 65%, 
82.5%, and 100%), and percentage additional random genes from IMP (a = 10%, 32.5%, 55%, 
77.5%, and 100%) for a total of 105,000 individual runs. Over the 100 iterations of the specific 
parameter combination, we measured the number of seeded pathways correctly detected (true 
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positives), incorrectly detected (false positives), correctly missed (true negatives), and incorrectly 
missed (false negatives). The false positive proportion, false negative proportion, precision, recall, 
and F1 score were calculated for each parameter combination over the 100 iterations. The F1 score 
is the weighted average of precision and recall where precision is the number of true positives 
divided by all positives and recall is the number of true positives divided by the sum of true 
positives and false negatives.  

2.2.  Control Arm 

The control arm followed the steps outlined in General Approach. 

2.2.1.  Control All (CtrAll) 

For this method, we determined true positives, false positives, true negatives, and false negatives 
using all significantly enriched pathways and complete gene lists of seeded pathways. For 
example, if a gene list was seeded with three pathways and the enrichment analysis identified ten 
pathways (including correctly identifying the original three), then all ten pathways would be 
counted as positives with the seven unseeded pathways considered false positive.  

2.2.2.  Control M (CtrM) 

For this method, true positives, false positives, true negatives, and false negatives were determined 
using only the top m significant pathways where m is the number of seeded pathways. For 
example, if three pathways were seeded and there were ten significant pathways, then only the top 
three pathways in the significant enrichment results would be considered. Thus, if all three seeded 
pathways were in the top three significant results, the true positive would be three and false 
positive would be zero. If, however, only two of the three seeded pathways were in the top three 
significantly enriched pathways, then true positive would be two and false positive would be one. 
CtrM provides provides an upper bound on possible performance as it is unrealistic in practice for 
investigators to know a priori the correct number of pathways.  

2.3.  Experimental Arm 

For the experimental arm, the subgraph associated with each gene list described in the General 
Approach was extracted from IMP and subjected to community detection to provide community-
level gene sets before the overrepresentation analysis. Fastgreedy, Walktrap, Infomap, and 
Multilevel community detection algorithms were applied in the community detection step. The 
communities of genes detected by the algorithm were then used as separate candidate gene lists for 
overrepresentation analysis. True positive, false positive, true negative, and false negative were 
calculated for all pathways that remained statistically significant after Bonferroni multiple testing 
correction at α = .05 was applied. This correction was applied for each community if multiple 
were found.  

All simulation analyses were performed using Python 2.7.6 with the iGraph package (version 
0.71). Figures were produced using ggplot in R 3.3.1. Open source software to reproduce the 
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results of this paper is provided at https://github.com/greenelab/GEA_Community_Detection. 
Figure 1 provides an overview of both the control and experimental arms.    

HGSC Application 

Based on the results of the 
simulation study, we applied the 
top performing community 
detection algorithms to lists of 
genes characterizing high-grade 
serous ovarian cancer (HGSC) 
subtypes. The gene lists were 
previously identified by a one 
cluster versus all differential 
expression analysis26 of cluster 
specific genes in common to 
four HGSC datasets27–30. While 
previous reports have described 
four HGSC subtypes, the multi-
population study suggested that 
the number was three or 
fewer26. Given these conflicting 
results, we applied community 
detection to HGSC subtype-
specific gene lists previously 
derived from results classifying 
2, 3, and 4 subtypes26. Because 
this is an analysis of cancer 
genomics data, we used cancer 
pathways from the Pathway 
Interaction Database (PID)5.  
	

3.  Results and Discussion 

3.1.  Simulation Study 

In general, community detection methods reduced the number of false positive associations in the 
multi-pathway setting. When seeding a gene list with four random pathways, all community 
detection methods had higher F1 scores than the standard enrichment analysis, CtrAll (Figure 2). 
In cases where pathways were incompletely seeded, the community detection methods often 
outperformed CtrM, which only considers the top m pathways as statistically significant (Figure 
2). These findings are consistent when using the top 2-8 pathways (pathway numbers 2, 3, 5, 6, 7, 

Fig. 1. In standard enrichment analysis, the full gene list is 
subjected to enrichment analysis and all significantly enriched 
pathways are returned. In the proposed experimental 
community detection enhanced method, the full gene list is 
first subjected to community detection to parse the gene list 
into sub-gene lists. Enrichment analysis is then performed for 
each gene list associated with each “discovered” community. 
Only the most significant pathway is returned for each 
community.  
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and 8 are Supplementary Figures S1-6). Performance was robust to the number of genes taken 
from each seeded pathway over a broad range of values, and the relative performance of methods 
was largely unaffected by the proportion of genes sampled from the seeded pathways (i.e, 30% or 
all 100%) to make the gene lists. Thus, our approach may be more useful than standard enrichment 
techniques in situations where one is presented with a long, heterogeneous, and incomplete gene 
list and one wishes to find a set of robust pathways for further investigation. The Walktrap and 
Multilevel methods demonstrated the most success in this context as they resulted in high F1 
scores and relatively low false negative and false positive proportions. Compared to other 
community detection methods, Fastgreedy appeared to have a broader range of performance 
values, with higher variability and increased outliers. The performance of community detection 
algorithms may be network-specific; users may wish to apply our open source code to perform a 
new simulation study if different networks are selected. 

 

 
 

Fig. 2.  F1 scores for the controls (using all (CtrAll), or only the top 4 (CtrM), 
statistically significant pathways) and the community detection methods: Fastgreedy, 
Infomap, Multilevel, and Walktrap for various percentages of genes in each pathway 
(top axis) and percentages of additional genes (right side axis) for simulations using 4 
random pathways. The percentage of genes indicates the percentage of random genes 
selected from each pathway. The percentage of additional genes indicates how many 
unrelated genes are randomly added to the analysis to represent increasing amounts of 
noise. Each comparison includes 100 iterations. 
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The combination of community detection and enrichment was designed to filter false positives 
in the multi-pathway setting. When we evaluated the proportion of false positives, we observed 
that the F1 score improvements were driven by successful filtration. In particular, all community 
detection methods outperformed standard enrichment analyses for false positive proportions 
(Figure 3). As expected, when the number of seeded pathways increased, the proportions of false 
positives steadily increased for control runs that included all statistically significant pathways. The 
standard enrichment analysis approach was well suited to identifying a single pathway. The more 
pathways that were present in a single genelist, the worse standard enrichment-based methods 
performed. 

 

 
 

Fig. 3.  Proportions of false positives for the controls (using all (CtrAll), or only the top 
4 (CtrM), statistically significant pathways) and the community detection methods: 
Fastgreedy, Infomap, Walktrap, and Multilevel for various percentages of genes in each 
pathway (top axis) and percentage of additional genes (right side axis) for simulations 
using 4 random pathways. 

All community detection methods other than CtrAll usually miss some portion of the true 
positives using 4 seeded pathways (Figure 4). In general, Walktrap, Infomap, and Multilevel tend 
to have greater variability in the number of pathways missed compared to CtrAll and Fastgreedy. 
It is not surprising that the community detection and CtrM methods have higher proportions of 
false negatives than CtrAll since they were designed to reduce false positives. Thus, a traditional 
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enrichment approach may be more appropriate in sitatuions where false negatives are more of a 
concern, such as when investigating a relatively small gene list or conducting an exploratory 
analysis.  

 
 
 

Fig. 4.  Proportions of false negatives in the controls (using all (CtrAll), or only the top 4 
(CtrM), statistically significant pathways) and the community detection methods: 
Fastgreedy, Infomap, Walktrap, and Multilevel for various percentage of genes in each 
pathway (top axis) and percentage of additional genes (right side axis) for simulations 
using 4 random pathways. 

3.2.  HGSC Results 

To examine the biological applicability of community detection, we independently applied the 
community detection approach to previously defined, HGSC subtype-specific gene lists for when 
2, 3, and 4 subtypes are assigned. We previously derived these gene lists from a differential 
expression analysis across HGSC subtypes that were concordant across different populations26. 
We selected only the top performing algorithms from our simulation study, Walktrap and 
Multilevel. Applying these methods to PID pathways, we found that most clusters mapped to 
either Beta1 integrin cell surface interactions or IL12-mediated signaling events (Table 1). 
Community detection methods was able to separate upregulated and downregulated genes coming 
from the same pathway into different communities (Table 1).  
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While many pathways were implicated in the original pathway analysis (see Supplementary 
Table S6 of Way et al. 201626), our community detection approach only implicated two distinct 
pathways consistently, for 2-4 subtypes. This did not support our hypothesis that HGSC subtypes 
are driven by differences across multiple pathways that are captured in differentially expressed 
gene lists. HGSC subtypes are known to be primarily characterized by a mesenchymal gene 
signature and immunoreactivity. Our analysis suggested that up- and down-regulation of beta 1 
integrin signaling, and down-regulation of IL12 signaling, primarily define the subtype-specific 
signatures. However, the lack of PID pathway enrchiment in the presence of community structure 
may indicate novel biological pathways driving subtype separation.  Beta 1 integrin signaling is a 
well characterized indicator of metastasis31 and its high expression is associated with poor survival 
in ovarian cancer patients32. IL12 is an important immune system process with many coordinated 
functions33.  Importantly, administration of intraperitoneal IL12 is being explored as a therapeutic 
agent in ovarian cancer34. The community detection approach pointed to specific HGSC subtypes 
that were aligned with this characterization, but did not identify multiple pathways for any specific 
subtype. We often observed that pathways that were highly expressed for one subtype would be 
underexpressed for another, which was consistent with a model that HGSC subtypes exist along a 
continuum of underlying pathway or cell type content. These results are also generally consistent 
with those found previously27, 28,35 ,36.  
 
Table 1.  The statistically significantly enriched pathways found by Walktrap and Multilevel 
community detection methods and the number of genes in each pathway that are either 
upregulated (more highly expressed) or downregulated (less expressed) in HGSC26. We 
identified statistically significant pathways in communities defined by only k = 4 in cluster 1 
(k4c1), cluster 2 (k4c2), and cluster 4 (k4c4). The id number of the enriched community is 
also provided. Clusters 1, 2, 3 and 4 correspond to mesenchymal, proliferative, 
immunoreactive, and differentiated subtypes as previously defined by TCGA27.   

 

4.  Conclusion 

In summary, we developed an alternative enrichment method that uses community detection to 
group genes based on network connectivity prior to enrichment analyses. This approach is 
designed for situations where a researcher hypothesizes that multiple pathways contribute to a 
gene set. It trades an increase in false negatives for a dramatic reduction in false positives. The 
standard enrichment approach may be more appropriate in exploratory stages of research when 
high power is more desired than false positive control. Applying this method to gene sets that 
characterize HGSC subtypes did not reveal multiple pathways underlying any of the previously 
described subtypes. These results are consistent with a model where factors other than the activity 
of multiple pathways are responsible for the difficult to discern HGSC subtypes. 

Cluster Community Method Pathway3Name p6value Downregulated Upregulated
k4c1 0 Walktrap Beta13integrin3cell3surface3interactions3integrin1_pathway 8.01E606 0 23
k4c4 1 Walktrap Beta13integrin3cell3surface3interactions3integrin1_pathway 2.87E606 12 0
k4c1 2 Multilevel Beta13integrin3cell3surface3interactions3integrin1_pathway 8.47E605 0 23
k4c2 0 Multilevel IL126mediated3signaling3events3il12_2pathway 1.99E604 22 0
k4c4 1 Multilevel Beta13integrin3cell3surface3interactions3integrin1_pathway 2.30E605 12 0
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