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1. Abstract 
A key role of signal transduction pathways is to control transcriptional programs in the 
nucleus as a function of signals received by the cell via complex post-translational 
modification cascades. This determines cell-context specific responses to environmental 
stimuli. Given the difficulty of quantitating protein concentration and post-translational 
modifications, signaling pathway studies are still for the most part conducted one 
interaction at the time. Thus, genome-wide, cell-context specific dissection of signaling 
pathways is still an open challenge in molecular systems biology.  

In this manuscript we extend the MINDy algorithm for the identification of post-
translational modulators of transcription factor activity, to produce a first genome-wide 
map of the interface between signaling and transcriptional regulatory programs in human 
B cells. We show that the serine-threonine kinase STK38 emerges as the most pleiotropic 
signaling protein in this cellular context and we biochemically validate this finding by 
shRNA-mediated silencing of this kinase, followed by gene expression profile analysis. 
We also extensively validate the inferred interactions using protein-protein interaction 
databases and the kinase-substrate interaction prediction algorithm NetworKIN. 

2. Introduction 

A key role of signal transduction pathways is to control transcriptional programs 
in the nucleus as a function of signals received by the cell via complex post-
translational modification cascades, thus determining the cell’s response to 
environmental stimuli (see Figure S1 for a schematic description). Their 
understanding is increasingly crucial in the dissection of human disease and in 
the identification of therapeutic intervention targets [1], because signaling 
molecules (e.g., GPCR receptors or tyrosine kinases) are much more effectively 
targeted by small molecules than transcription factors. Unfortunately, cell-
context specific dissection of signaling pathways is still an open challenge 
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because of the inherent difficulties in the high-throughput measurement of 
protein concentration and post-translational modification. As a result, the 
dissection of signaling pathway is still, for the most part, proceeding one 
protein-protein interaction at a time [2]. 

Conversely, availability of large collections of gene expression profiles 
(GEP) [3] has fostered significant progress in the genome-wide dissection of 
transcriptional programs [4, 5]. Until recently, GEPs have not been broadly used 
in the dissection of post-translational interactions. Several GEP-based studies of 
yeast signal transduction networks have been limited to the identification of 
gene modules regulated by a small number of regulators, including some 
signaling proteins [3], or to the reconstruction of signaling pathways using 
known protein-protein interactions as a topological backbone [6]. In general, 
however, a cell-context-specific map of the interface between signaling and 
transcriptional regulatory programs is still an elusive target both in yeast and in 
higher eukaryotes.  

We recently introduced the MINDy algorithm (Modulator Inference 
by Network Dynamics) for the genome-wide identification of post-translational 
modulators of transcription factor (TF) activity [7]. MINDy tests whether the 
conditional mutual information (CMI), I[TF; t | M ], between a transcription 
factor TF and a target t, as a function of a modulator M is non-constant. In that 
case, M is inferred as a candidate post-translational modulator of the TF. Based 
on this analysis, MINDy can also determine whether the modulator protein will 
activate or repress the TF-target interaction, resulting in either a positive or 
negative mode of action (MoA). We have biochemically validated four inferred 
modulators of the transcription factor MYC, including a kinase (STK38), an 
histone deacetylase (HDAC1), and two transcription factors (BHLHB2 and 
MEF2B) by shRNA mediated silencing and other biochemical assays [8]. For 
full details on the MINDy algorithm, its applications as well as limitations, 
readers are referred to [7, 8] and the Methods section 5.2. In this manuscript, we 
extend the MINDy algorithm to the genome-wide exploration of the interface 
between signaling pathways and transcriptional networks in human B cells.  

3. Results 

3.1. Network components 

In this work we define the signalome as the compendium of signaling proteins 
(SP) annotated as protein kinases, phosphatases or cell surface receptors in the 
Gene Ontology (GO) [9]. The term "transfactome" is borrowed from [10] and is 
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defined here as the compendium of proteins annotated as transcription factors 
(TF) in the GO. Only proteins expressed in a set of 254 GEPs from normal and 
tumor related human B cells were considered in the analysis (see 5.1). A total of 
772 SPs and 595 TFs were selected based on these criteria, see Table 1. 
 
Table 1.  Selection of signalome and transfactome genes. # indicates the number of genes selected 
in each category. MF: molecular function; BP: biological process; CC: cellular component 

Functional Category # GO Categories 

Signalome 

Kinases 421 Protein kinase activity (MF) 
Phosphatases 113 Phosphoprotein phosphatases (MF) 

Receptors 295 
Receptor activity (MF) 
Cell surface receptor linked signal transduction (BP) 
Integral to plasma membrane (CC) 

Transfactome Transcription Factors 595 Transcription factor activity (MF) 

3.2. Signalome-transfactome interaction inference 

SP-TF interactions were inferred by assessing whether one or more TF-target 
interactions were modulated by the SP using the CMI test (see 5.2). The 
complete set of TF-targets modulated by a SP is called the SP's regulon, while 
the set of all TFs modulated by a SP is called the SP's modulon (Figure S3). At 
the genome-wide statistical significance level of 5% (see 5.2), MINDy inferred 
44,349 SP-TF interactions. A summary of these results can be found in Table 2. 
Each SP modulates on average 29.6 TFs in human B cells, and a TF is 
controlled on average by 38.4 SPs. Some other interesting global properties of 
the signalome-transfactome interface are summarized in Figure 1 (and more are 
reported in the supplementary materials). These include: (a) The MoA is 
consistently inferred from each SP-TF-target triplet supporting a specific SP-TF 
interaction, even though they are independently tested. i.e., either the positive or 
the negative MoA is supported by the majority (95 - 100%) of the triplets. This 
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SMAD3 5 3 9 0 8 2 0 7 8 27 ... 0 0 0 0 0 0 0 0 0 0
CREM 0 2 1 2 19 1 0 3 5 5 ... 0 0 0 0 0 0 0 0 0 0
ZNF263 0 1 1 11 6 1 10 2 0 3 ... 0 0 0 0 0 0 0 0 0 0
MEF2D 4 1 10 3 0 0 4 1 0 0 ... 0 0 0 0 0 0 0 0 0 0
ETS1 0 16 1 5 4 4 63 0 0 1 ... 0 0 0 0 0 0 0 0 0 0
PHTF1 3 22 0 7 32 0 0 27 8 0 ... 0 0 0 0 0 0 0 0 0 0
NR4A1 0 2 0 8 3 0 2 16 0 28 ... 0 0 0 0 0 0 0 0 0 0
ATF3 0 3 0 13 5 1 0 1 8 8 ... 0 0 0 0 0 0 0 0 0 0
TAF7 12 0 1 0 3 0 7 0 0 3 ... 0 0 0 0 0 0 0 0 0 0
ZNF85 0 20 0 9 26 1 0 46 11 15 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
IRF7 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
NFIC 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
SHOX 0 0 0 0 0 0 0 0 0 1 ... 0 0 0 0 0 0 0 0 0 0
THRB 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
JARID1B 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
MDS1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
FOXI1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
HOXB1 0 0 0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
NKX2-2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
FOXJ1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

Signalome

Transfactom
e

Table 2. Summary of MINDy 
results in the signalome-
transfactome inference. Signaling 
proteins are shown on the 
columns and sorted in decreasing 
order with respect to the number 
of TFs each SP modulates. TFs 
were shown on the rows and are 
also sorted in decreasing order 
with respect to the number of SPs 
they are under control of. Each 
cell indicates the number of TF-
target interactions modulated by 
the SP. 
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is highly biologically consistent, since a given SP is expected to either activate 
or repress a TF’s activity but not to do both at the same time. (b) MINDy-
inferred TF-target interactions exhibits the previously observed scale-free like 
degree distribution [11]. However, while previously inferred regulatory 
networks included only static (i.e. not SP-modulated) TF-target interactions, 
MINDy inferred network includes conditional interactions as well. 
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Figure 1. Properties of the signalome-transfactome network inferred by MINDy. (a) Histogram of 
the proportion of dominant MoA for all SP-TF interactions. Plotted on the x-axis is the percent of 
MINDy inferred SP-TF-t triplets supporting the dominant MoA for a SP-TF interaction. If all 
triplets support a positive MoA, for instance, the fraction would be 1; if 50% of the triples support 
a positive MoA and 50% a negative one, the fraction is 0.5. (b) Degree distribution of the MINDy 
inferred TF-targets network. 

3.3. In-silico validation 

To benchmark the accuracy of MINDy inferences, a set of gold standard SP-TF 
interactions in human B cells would be required. Compiling such a reference set 
is relatively difficult because: (a) experimentally validated protein-protein 
interactions in databases are still very sparse, especially for transient interactions 
(e.g., kinase-substrate); (b) MINDy-inferred modulators can be either direct (i.e. 
a physical SP-TF interaction), or pathway-mediated (i.e. SP upstream of the TF 
in a signaling pathway). While the former could be represented in existing 
databases, the latter are poorly characterized; and (c) while MINDy inferred SP-
TF interactions are highly cell–context specific (to human B cells), human 
protein-protein interactions have been validated in highly heterogeneous or even 
artificial (e.g., yeast two-hybrid, Y2H) cellular contexts. To address (a) and (b) 
we benchmarked MINDy with the following datasets: 
Protein-protein interactions (PPIDB): We collected all known human PPIs 
from high-quality public databases including HPRD [12], BIND [13], DIP [14] 
and IntAct [15]. These have been experimentally assessed, either in single 
biochemical assays, or by high throughput techniques such as Y2H. Compared 
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to the 772 SPs and 595 TFs analyzed by MINDy, these datasets cover 428 SPs 
and 141 TFs (i.e., 13.1% of the MINDy search space). 
Kinase-substrate interactions (KSIDB): We also included kinase-substrate 
interactions inferred by the experimentally-validated algorithm NetworKIN [16]. 
This algorithm utilizes information from consensus motifs on the kinase 
catalytic sites, substrate phosphorylation sites assessed by Mass Spectrometry, 
as well as cellular context and curated pathways. Such information is completely 
orthogonal to that used by MINDy (i.e. strictly GEP). Therefore enrichment of 
their common predictions can be used to assess MINDy's validity, as false 
positives from the two methods should not be correlated if either of them makes 
random predictions. Due to the limited number of kinase families for which 
consensus motifs are known, NeworKIN covers only 74 of 772 MINDy SPs and 
240 of 595 MINDy TFs (i.e., 3.9% of the MINDy search space). 

Table 3 offers a comparative view of MINDy inferred SP-TF interactions as 
well as those from PPIDB and KSIDB. Due to the higher coverage of GEP, 
MINDy covers a much larger space (~7-fold) than the other two data sources 
combined and may thus provide important information for SP-TF interactions 
that cannot be studied using other methods.  

 
Table 3. Summary of predictions made by MINDy, PPIDB interactions and KSIDB predictions. 
 MINDy PPIDB KSIDB PPIDB + DSIDB 
Interactions 9017 434 1105 1506 
No. SPs 772 428 74 439 
No. TFs 595 141 240 291 
% Coverage 100% 13.1% 3.9% 15.8% 
% Prediction 2.0% 0.7% 6.2% 1.2% 

 
We first tested the hypothesis that modulator sets affecting the same TF 

should be more physically inter-connected than random genes (as they are more 
likely to cluster within signaling pathways). This was done by counting the 
number of PPIDB and KSIDB interactions among MINDy-inferred SPs that 
modulate the same TF, compared to that among the same number of SPs chosen 
at random. Of 595 tested TFs, 400 (67.2%) show significant enrichment among 
their inferred modulator SPs by Fisher's Exact Test (FET) (i.e. p-value < 
0.05/595). This suggests that SPs modulating the same TF tend to cluster in 
physical pathways.  

Next, we measured the overlap between MINDy-inferred interactions and 
those in PPIDB and KSIDB. Since interactions predicted by MINDy include 
both direct and pathway-mediated interactions, we expanded the interactions in 
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our reference databases with additional ones for which a linear chain of PPIDB 
(undirected) and/or KSIDB (directed) interactions exists between a SP and a TF, 
as first proposed in [6]. We plotted the precision of MINDy (i.e. percent of 
MINDy predictions in the extended database) as a function of the MINDy p-
value threshold (i.e. the threshold that controls the MINDy false positive rate). 
As expected (Figure 2), MINDy precision and number of predictions 
respectively increase and decrease as the p-value threshold becomes more 
stringent. Based on this plot, we selected the inflection point, corresponding to 
the MINDy p-value of 77.5 10−×

890−

, as an optimal p-value cutoff, resulting in 9,017 
inferred interactions. Of these, 3,739 (41.5%) are supported by either direct or 
pathway-mediated PPI interactions. The probability that such an overlap occurs 
by chance is  by FET. A similar analysis using KEGG [17] and 
GenMAPP [18] annotated pathways also yielded statistically significant 
enrichment (results reported in the supplementary materials). These highly 
significant enrichments suggest that MINDy is able to recapitulate known 
interactions at the signalome-transfactome interface.  
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Figure 2. MINDy benchmarking using 
PPIDB and KSIDB interactions. X-axis 
shows the –log10 of MINDy p-value. 
Precision of MINDy as a function of p-
value cutoffs is plotted using the solid 
line on the left y-axis. The dashed line 
plots the number of MINDy predictions 
at each p-value cutoff on the right y-axis. 
Dotted lines indicate the optimal p-value 
cutoff selected in the text. 

3.4.  Experimental validation 

Given the exceedingly large set of MINDy prediction space, a systematic 
experimental validation plan is clearly impractical. Instead, we decided to 
validate the candidate modulator controlling the largest number of TFs. This is a 
serine-threonine kinase STK38 [19] that is poorly characterized in the literature, 
a rather surprising fact since MINDy infers it as a modulator of 303 TFs. We 
silenced STK38 by lentiviral-vector mediated shRNA expression in the ST486 
Burkitt’s line, and verified that the STK38 protein level significantly decreased 
at 60h after transduction (Figure 3a). 
MINDy regulon analysis: We first tested whether the 1219 TF-targets that were 
inferred as STK38 modulated via the 303 TFs (the STK38 regulon) were indeed 
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affected by STK38 silencing. Gene Set Enrichment Analysis (GSEA) [20] 
confirmed a very significant enrichment ( 410p −< ) of the STK38 regulon in 
genes that were differentially expressed after silencing (Figure 3b). Moreover, 
the set of 303 STK38 modulated TFs (the STK38 modulon) was not enriched in 
differentially expressed genes (Figure 3c), suggesting that the differential 
regulation of the STK38-regulon is not mediated by transcriptional 
activation/repression of the TFs in its modulon, consistent with the MINDy 
model which is designed to identify post-translational interactions. 
 

 
(a) (b) (c) 

Figure 3. (a) STK38 and β-actin immunoblot on total cell lysates from ST486, at 60h after 
lentiviral vector-mediated non-target control (NTshRNA) and STK38 shRNA expression. (b) 
GSEA enrichment of STK38 regulon and (c) STK38 modulon among differentially expressed 
genes, following STK38 silencing. GSEA test is performed as in [20] using default parameters. 
Genes were ranked along the x-axis based on their differential expression p-value based on two-
sample t-test. The "bar code" on top indicates the position of STK38 regulon (for panel b) and 
modulon (for panel c) genes in the ranked list. The black intensity of each bar is proportional to 
the local density of surrounding bars. False positive rate is estimated by permutation test, in 
which 104 null scores were obtained by selecting at random the same number of genes as STK38 
regulon (for panel b) and modulon (for panel c).  

 
Modulator comparison: When compared to the GSEA enrichment of the other 
SP regulons, the STK38 regulon scored 8th out of 772. Additionally, the most 
significantly enriched MINDy regulon was that of the SP having the highest 
overlap with the STK38 regulon (CDC2L5, with 506 common regulon genes out 
of 1039), further suggesting that STK38 silencing affects the MINDy-inferred 
STK38 regulon in a highly specific way. Indeed, based on this high overlap, we 
hypothesize that CDC2L5 is directly downstream of STK38 so that the higher 
enrichment is justified by a more specific regulon (1039 for CDC2L5 vs. 1219 
for STK38). Further experimental data are required to confirm this hypothesis. 
STK38-TF interaction validation: To test MINDy’s ability to infer individual 
SP-TF interactions, we selected 257 TFs in the STK38 modulon with more than 
150 STK38 modulated targets. The 150-target threshold was chosen to ensure 
sufficient statistical power of the GSEA test. We then tested whether the 
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MINDy inferred targets of each TF were enriched in differentially expressed 
genes after STK38 silencing. The analysis shows that 78 out of 257 target-sets 
(30%) are significantly enriched at 5% false positive rate, corresponding to a 
false discovery rate of 16% (i.e. 257×0.05/78). This is a very high percent 
because (a) STK38 is so pleiotropic that individual TFs may not be affected at 
all due to combinatorial regulation effects, and (b) modulation was not inferred 
by MINDy in the ST486 cell line but rather from a collection of 17 distinct B 
cell phenotypes (see 5.1). Hence, some TF’s targets may not be affected because 
key co-factors, signals, or effectors are missing.  

3.5.  Signalome-transfactome interaction network 

Table 4 and Figure S8 summarize the first genome-wide in silico map of direct 
and pathway mediated SP-TF interactions. The SPs are clustered based on their 
modulon overlaps (see 5.4). As expected, the interactions are sparse in general, 
but tightly clustered into modules representing functionally coherent SP-sets 
associated with known biological processes. This further validates MINDy’s 
ability to characterize the modulon of arbitrary signaling genes and to annotate 
their functions. 
 

 

# N Annotation p 

1 26 Protein biosynthesis 2.6×10-3

  Cell homeostasis 2.6×10-3

2 23 Cell cycle 3.9×10-5

  Apoptosis 2.1×10-2

3 21 Cell surface receptor linked signal transduction 2.8×10-4

4 20 G1 to S cell cycle reactome 1.9×10-3

5 14 Cell-cell adhesion 9.0×10-4

  Cell motility 1.3×10-3

6 12 G-protein coupled receptor class B 8.0×10-3

  G-protein coupled receptor class C 8.0×10-3

7 11 Gap junction 6.6×10-3

  Integrin-mediated cell adhesion 1.4×10-2

8 10 G-protein coupled receptor class A 7.3×10-5

Table 4. Modules of SPs 
identified by clustering the 
signalome. N: module size; 
p: fisher's exact test p-value. 
Only top 8 modules with 
size equal to or greater than 
10 are listed. Significant 
pathways were selected 
using p-value cutoffs 
specified in 5.4.  

 
Finally, the most likely topology of the interface between SPs and TFs in 

human B cells, supported by significant physical evidence from both literature 
and novel biochemical assays, was obtained by mapping the MINDy predictions 
onto direct interactions in PPIDB and KSIDB, producing a hybrid network 
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depicted in Figure 4. The connectivity of nodes in this network follows a power-
law distribution (see Figure 4 inset), suggesting that the network is scale-free. 
MINDy-inferred signaling interactions supported by KSIDB appear to be more 
pleiotropic than those supported by PPIDB, perhaps due to the nature of the two 
evidence sources: NetworKIN makes predictions on well-studied kinases (with 
known consensus motif), whereas high-throughput PPI measurements in the 
database, e.g. Y2H, tend to have less selection bias and a high false negative rate. 

 
  TF

Signaling molecules

TF & Signaling molecules
MINDy prediction supported 
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MINDy prediction supported 
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Figure 4. Visualization of the signalome-transfactome network by integrating MINDy predictions 
with PPIDB and KSIDB interactions. Two types of interactions are represented in the network: 1) 
MINDy predicted SP-TF interactions supported by PPIDB or KSIDB (i.e. modulatory 
interactions predicted by MINDy that have physical interaction evidence); 2) MINDy predicted 
SP-SP interactions supported by PPIDB or KSIDB (i.e. between modulators predicted by MINDy 
of the same TF, and are supported by physical interaction evidence). Depending on the source of 
evidence, these interactions can be either un-directed (supported by known PPIs), or directed 
(supported by NetworKIN, i.e. kinase substrate). The inset figure shows the degree distribution 
of this network, with a linear fitting in the log-log space indicating a scale-free topology. 
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4. Discussion 

In this manuscript we have provided both computational and experimental 
evidence suggesting that the MINDy algorithm can be effectively used to map 
physical and pathway-mediated post-translational interactions between signaling 
proteins and transcription factors, using only large GEP datasets. Due to lack of 
appropriate high-throughput technologies, such as microarray expression 
profiles and ChIP-Chip/Seq assays, dissection of post-translational interactions 
is lagging significantly behind that of their transcriptional counterpart. As a 
result, algorithms providing high-accuracy, cell-context specific hypotheses for 
biochemical validation may significantly improve our ability to elucidate post-
translational processes and their effect on transcriptional networks. Specifically, 
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we have shown that MINDy predictions are highly enriched in experimentally 
validated interactions and that silencing the most pleiotropic modulator, STK38, 
produces expression profiles that are highly consistent with the inferred STK38 
modulon and regulon.  

Such a network topology can be interrogated to address specific biological 
questions, such as (a) what are the signaling proteins that control a specific 
transcriptional program (i.e. TF)? (b) What are the shortest paths through which 
a signaling protein may affect the activity of a TF? And (c) what signaling 
proteins are upstream/downstream of other signaling proteins. Taken together, 
this represents the first genome-wide computational analysis of the interface 
between signaling and transcriptional networks. The combination of these 
results and those from in vivo experiments may significantly improve our 
understanding of the role of cellular signaling in the regulation of transcriptional 
programs and provide new targets for therapeutic intervention. 

Lastly, another insight that can be gleaned from the signalome-transfactome 
network reconstructed by MINDy is the specificity of the signaling genes in 
terms of their ability to regulate the transcriptional response of a cell. In Table 2 
shown earlier, signaling genes on columns to the left are more pleiotropic, 
whereas those to the right are more specific, with respect to the number of TFs 
(i.e. distinct transcriptional programs) they control. Similarly, TFs on top rows 
are controlled by broader signaling pathways than those on the bottom rows. 
Since signaling proteins are often selected as drug target (e.g. by small molecule 
compound), these results can provide guidance to the selection of intervention 
point that has the least side effect. Specifically, one may want to target a kinase 
that is very specific, so that it causes less cross-talk with other transcriptional 
programs not intended to be affected by the drug molecule.  

5. Methods 

5.1. Gene expression profile dataset 

254 GEP were generated using the Affymetrix HG-U95Av2 GeneChip® System (~12,600 probe sets) 
from a collection of normal and tumor related B cell samples. Probe sets with expression mean 

50μ < and standard deviation 0.3σ μ< , were excluded as non-informative, leaving 8680 probe 
sets. Further details on the GEP dataset can be found in the supplementary materials.  

5.2. MINDy Analysis 

Given a triplet ( , with (), ,TF M t t TF≠ and t M≠ ), MINDy assesses whether the CMI, 

[ ]; |I TF t M , is constant as a function of M. Assuming that the CMI is a monotonic function of M, 
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⎤this can be efficiently tested by measuring ; | ; | 0m mI I TF t M L I TF t M L+ −⎡ ⎤ ⎡Δ = ∈ − ∈⎣ ⎦ ⎣ ≠⎦ , where 

mL+  and mL−  represent two subsets including the 35% of the samples where M is respectively most 
and least expressed. The p-value corresponding to a specific IΔ is obtained by permutation tests, and 
Bonferroni corrected for the total number of tested modulator-target pairs. Significant triplets are 
further pruned if there exists a third gene, x , such that [ ] [ ]; ;I TF x I TF t≥  and [ ] [ ]; ;I t x I T≥ F t  in 
both mL± , indicating an indirect relationship between TF  and t , mediated by x , as suggested by the 
Data Processing Inequality [11]. Readers are encouraged to refer to the supporting online materials 
and [7, 8] for more details on MINDy. 

For each TF in the transfactome, MINDy first identifies the set of candidate modulators among 
all SPs whose expression profiles are independent of that of the TF. All other genes are then tested 
as candidate targets t of the TF. Each TF-SP-t triplet is then analyzed by the MINDy test at a 5% 
statistical significance level, after asymptotic Bonferroni correction for multiple testing (i.e. using a 
p-value cutoff , where is the number of candidate modulators and the 
number of candidate target genes). The analysis was run at the Affymetrix probe set level, and 
duplicated probe sets mapping to same gene were merged a posteriori. 

(0.05 / m tN N= × ) mN tN

5.3. Lentiviral mediated STK38 knock-down 

Human embryonic kidney 293T and Burkitt’s lymphoma cell line ST486 were maintained in DMEM 
and IMDM, respectively. All cell culture media were supplemented with 10% FBS (Invitrogen) and 
antibiotics. Supernatants for the lentiviral vector containing the STK38 shRNA (TRCN0000010216, 
Sigma) and non-target control shRNA (SHC002, Sigma) were produced in 293T cells. 5 independent 
samples of ST486 cells (2x106 cells/ml) were transduced with viral supernatants for either STK38 
shRNA or non-target control shRNA. Transduction was performed by centrifugation at 450xg for 2h 
with supernatants supplemented with 8 μg/ml polybrene. Total RNA was extracted 60h after 
transduction and prepared for gene expression profiling according to Affymetrix's protocol.  

5.4. Signalome clustering 

Signaling proteins are clustered based on the similarity of their modulon inferred by MINDy. 
Specifically, each signaling protein is associated with a vector { }1 2, ,...,j NT t t t=  where 

 is the number of targets of TF i  modulated by the signaling protein ,it i 1= , 2,..., N j , and N is 
the total number of TFs in the transfactome. We then performed hierarchical clustering of the 
signaling genes using average linkage method and Pearson correlation between these vectors as the 
distance metric. Signaling genes were assigned into modules when linkage stopped at 70% of the 
maximal linkage score. Modules consisting of more than 10 genes are subsequently queried for over-
represented pathways against the background of all SPs. Only pathways with ≥5 SPs are searched, 
including 286 GO biological process categories and 44 KEGG/GenMAPP pathways. Enrichment is 
calculated using FET with p-value cutoff set to 1/286 for GO and 1/44 for KEGG/GenMAPP.  
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5.5. Supporting online materials 

Supplementary materials, including lists of PPIDB and KSIDB interactions, MINDy predictions and 
MINDy software are available at: http://wiki.c2b2.columbia.edu/califanolab/PSB2009/.  
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