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A significant challenge in metabolomics experiments is extracting biologically 
meaningful data from complex spectral information. In this paper we compare two 
techniques for representing 1D NMR spectra: “Spectral Binning” and “Targeted 
Profiling”. We use simulated 1D NMR spectra with specific characteristics to assess the 
quality of predictive multivariate statistical models built using both data representations. 
We also assess the effect of different variable scaling techniques on the two data 
representations. We demonstrate that models built using Targeted Profiling are not only 
more interpretable than Spectral Binning models, but are more robust with respect to 
compound overlap, and variability in solution conditions (such as pH and ionic strength). 
Our findings from the synthetic dataset were validated using a real-world dataset. 

1. Introduction 

Nuclear Magnetic Resonance (NMR) spectroscopy is a widely-
used tool in the rapidly growing field of metabolomics, where the 
measurement of small molecule metabolites provides a chemical 
“snapshot” of an organism’s metabolic state [1]. NMR is inherently 
quantitative and non-selective, thus a wealth of chemical 
information can be extracted from single NMR spectrum. 
Metabolomics studies often couple NMR spectral data with 
principal component analysis (PCA) and other pattern recognition 
techniques to uncover meaningful patterns in data sets [2]. Long-
term goals of such computational model building include 
automation of data analysis as part of an integrated diagnostics 
platform [3] and personalized therapies [4]. Building statistical 
models from NMR spectra can be problematic however, as spectral 
distortions present potentially confounding artifacts to techniques 
such as PCA [5, 6].  
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These distortions have an origin in the hardware [7], the type and 
nature of the sample, and choice of acquisition and processing 
parameters [8]. For example, pre- and post-processing algorithms 
and the signal-to-noise (S/N) in the time domain impact data 
quality. Metabolite signals in complex mixtures often span several 
orders of magnitude, thus requiring a significant dynamic range in 
the receiver. Furthermore, aqueous samples such as urine or 
plasma require suppression of the water solvent peak which is 7-8x 
more concentrated than the metabolites of interest, resulting in 
distortions of the baseline and intensity of metabolite signals. 
Metabolites’ resonance frequencies, lineshapes, and linewidths will 
vary between samples within an NMR metabolomics dataset 
irrespective of hardware considerations. Factors influencing these 
chemical modulations include sample pH, ionic composition, and 
inter-metabolite interactions [9]. As a result, statistical analyses 
require some form of pre-processing or data reduction to ensure 
that the variables of interest are representative of the underlying 
chemical data [10]. 
 
In this paper, the impact of spectral distortion on the quality of 
predictive statistical models built upon two alternative 
representations of NMR data is assessed. A simulated dataset is 
used to model various types of spectral distortion in a systematic 
manner, and two techniques for dimensionality reduction, spectral 
binning and targeted profiling, are used to represent these 
simulated spectra. The results are assessed using the 
regression/classification extension of PCA, partial least squares for 
discriminant analysis (PLS-DA) [11]. We validate our findings 
using a real-world data set of rat-brain extracts. 

2. NMR Data Representations 

An NMR spectrum is a linear combination of characteristic signals 
for each compound that is present in a given sample. As the 
concentration of a particular compound changes, the characteristic 
signal for that compound responds in a linear fashion. Thus, an 
NMR spectrum can be viewed from a theoretical perspective as 
follows: 
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where dobs is a [1xn] vector of the observed NMR data, c is a [1xk] 
vector representing the concentrations of k known compounds in 
the mixture, and s represents a matrix of the spectral signatures 
present in the solution. a is a spectrum calibration function that is 
applied to each row of s to account for changes in the sample’s pH, 
ionic strength, etc. u represents unknown contributions to the 
signal from unknown metabolites, lipoproteins, or any other 
contributions to the signal that are not explicitly modeled using s. 
Finally, the observed spectrum contains noise that is introduced by 
the NMR hardware and processing algorithms, n.  

2.1. Spectral Binning 

Spectral binning [2] is a widely-used technique where the spectrum 
is subdivided into a number of regions, and the total area within 
each bin is used as an abstracted representation of the original 
spectrum. The area encapsulated by a bin would ideally capture all 
of the area associated with a given resonance across all spectra in 
the dataset, thereby mitigating the effect of minor peak shift and 
line width variations for a compound across samples. A typical 64k 
NMR spectrum would be reduced using bin widths of 0.04 ppm, 
resulting in ~250 bin integral values. Spectral binning is agnostic 
of the underlying generative model described in Equation 1, 
however it is commonly used due to the ease of implementation 
and complete spectral coverage. 

2.2. Targeted Profiling 

Targeted profiling [8] is a technique that leverages a reference 
spectral database to directly recover the concentration matrix c 
from Equation 1, which is then used as the input to pattern 
recognition techniques such as PCA or PLS-DA. Targeted profiling 
can be viewed as a method of recovering the latent variables in the 
form of underlying metabolite concentrations that generated the 
observed spectral data. Because of its reliance on a spectral 
database s, targeted profiling does not directly model or deal with 
the unknown term u in Equation 1. Since u may contain potentially 
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important latent chemical information, it can be calculated directly 
as the residual from Equation 1, and spectral database-agnostic 
techniques such as spectral binning can be applied to u for 
subsequent analysis. 
 

3.  Methods 

3.1.Synthetic Study 

Several synthetic data sets were generated with specific 
characteristics to simulate, in a systematically controlled manner, 
some of the key challenges inherent in working with NMR data. 
The data for the synthetic study was generated using Chenomx 
NMR Suite 4.5 (Chenomx Inc., Edmonton, Alberta, Canada) 
compound database entries. Varying mixtures of twenty 
compounds, with the addition of DSS at 0.5 mM, were simulated. 
Compound concentrations for the following compounds were 
sampled randomly from a normal distribution: 2-oxoglutarate, 
acetate, acetone, alanine, betaine, carnitine, citrate, creatine, 
dimethylamine, fumarate, glucose, lactate, maleate, myo-inositol, 
taurine, tryptophan, tyrosine, urea, π-methylhistidine, τ-
methylhistidine. Biologically viable population statistics of mean 
and standard deviation were used for each compound [Chang, 
Rankin, McGeer, Shah, Marrie, and Slupsky, submitted] and these 
concentrations remained fixed from simulation to simulation. 
 
Random uncorrelated noise was added to each spectrum in the 
frequency domain. Each spectrum was generated to have an 
equivalent amount of noise by an approximate signal to noise ratio 
(SNR) of 100:1. 
 
The effect of pH variability was simulated by randomly varying 
compound resonance frequencies within an empirically validated 
range. This range reflects the compound’s NMR frequency 
response to pH levels ranging from pH 4 to 9 as determined from 
pH curves of pure reference spectra. The magnitude of this range 
was controlled to test the effects of pH variation via a transform 
fraction parameter. A fraction of 1.0 allowed clusters to be 
transformed over the entire pH 4 to 9 range, while a fraction of 0.1 

Pacific Symposium on Biocomputing 12:115-126(2007) 



 

would allow for clusters to be transformed over 10% of the range, 
centered at pH 7.0. The actual pH range that this represents will be 
different for each compound depending on the relative pH 
sensitivity of the compound near pH 7.0. 
 
In order to generate two classes of spectra, the population statistics 
of one or more metabolites were changed for each simulation. The 
parameters used in each simulation are outlined in Table 1. 
 
Table 1. Simulation Parameters for Synthetic Study. 

Simulation # Parameters Value 
1 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 0.1 
 Group 1 Citrate/Tryptophan Mean ± Stdev (µmol) 2318 ± 1496 / 5 ± 2 
 Group 2 Citrate/Tryptophan Mean ± Stdev (µmol) 1031 ± 945 / 10 ± 2 
2 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 0.1 
 Group 1 Maleate Mean ± Stdev (µmol) 30 ± 15 
 Group 2 Maleate Mean ± Stdev (µmol) 60 ± 20 
3 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 1 
 Group 1 Citrate/Tryptophan Mean ± Stdev (µmol) 2318 ± 1496 / 5 ± 2 
 Group 2 Citrate/Tryptophan Mean ± Stdev (µmol) 1031 ± 945 / 10 ± 2 

3.2. Rat Brain Extracts 

This real-world dataset is based on a previously published [12] 
dataset and was kindly provided by Dr. Brent McGrath and Dr. 
Peter Silverstone (Department of Psychiatry, University of 
Alberta). Twelve adult male Sprague-Dawley rats brains were 
dissected into frontal (fcx) cortex, temporal cortex (tcx), occipital 
cortex (ocx) and hippocampus (hipp) regions according to 
stereotaxic demarcation [12]. For spectral binning, bins widths of 
0.04 ppm were used, with the following dark regions defined: DSS 
(the internal standard):  -0.1-0.1ppm, 0.6-0.7 ppm; methanol (a 
byproduct of the extraction process): 3.33-3.37 ppm; water: 4.5-
5.5ppm; imidazole (the pH indicator): 7.13-7.5, 7.82-8.68 ppm.  
 
The following compounds were identified and quantified using the 
targeted profiling technique [8] as implemented in Chenomx NMR 
Suite 4.5: 4-aminobutyrate,  acetate,  adenosine , alanine,  aspartate, 
 betaine , choline,  citrate , creatine , creatinine , formate,  fumarate , 
glutamate , glutamine,  glycerol,  glycine, hypoxanthine,  isoleucine,  
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lactate , leucine, lysine , methanol ,  N-acetylaspartate , serine, 
 succinate , taurine,  threonine, tyrosine,  valine , xanthine, and  myo-
inositol. 

3.3. Multivariate Statistical Modeling 

All multivariate modeling was performed using SIMPCA-P+ 11.0 
from Umetrics Inc. Permutations tests were performed using 100 
permutations. R2X and R2

Y are calculated as the fraction of the sum 
of squares of all X and Y that the model can explain using the 
latent variables. Q2 is the fraction of the total variation in Y that 
can be predicted using the model via seven-fold cross-validation. 

4. Results 

4.1. Synthetic Data 

By systematically varying key properties of the synthetic data sets, 
several aspects of building statistical models on NMR data 
representations were assessed. The first issue assessed was the 
effect of noise on the spectra. Specifically, noise was added to the 
spectrum to see how robust both spectral binning and targeted 
profiling methods were at being able to recover the latent 
information in the data in the presence of noise. What was 
observed was that if the noise was completely uncorrelated, then 
both methods are very robust to varying noise levels. (Data is 
available from supplementary materials.) 
 
The next issue we examined was the choice of variable scaling and 
normalization methods, since this can have a large impact on the 
quality of results obtained from multivariate statistical methods 
such as PLS-DA. Normalization for all spectral binning data was to 
the total area of the NMR spectrum. No normalization was 
necessary for the targeted profiling results, since direct 
quantification can be obtained with the addition of an internal 
standard. Both the spectral binning data and targeted profiling data 
were mean centered and were scaled using unit variance (UV) or 
Pareto scaling. UV scaling involves weighting each of the variables 
by the variables’ group standard deviation, and has the advantage 
of not biasing statistical models towards large concentration 
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compounds or high area bins. Pareto scaling involves the weighting 
each of the variables by the variables’ group variance, which 
minimizes the impact of noise. Data from simulation #1 was used 
to evaluate the effects of these two scaling procedures. This 
simulation encoded class differentiation through citrate, present at 
relatively high concentrations, and tryptophan, present at relatively 
low concentrations. Figure 1a demonstrates that PLS-DA on UV 
scaled data can recover differences in both tryptophan and citrate, 
while the loadings plot of Pareto-scaled data (Figure 1b) is only 
able to distinguish the intense citrate signal. UV scaling was 
superior to Pareto scaling in recovering a model that accurately 
reflected the variables of interest (both low- and high-concentration 
metabolites) for both targeted profiling and spectral binning data. 
 
Overlap of NMR resonances from different metabolites is another 
issue hampering the analysis of complex biofluid spectra. Further 
complications arise from compound overlap with dominant peaks 
such as urea, where low intensity peaks are often lost in traditional 
analyses due to the overwhelming magnitude of the urea signal. 
Simulation #2 generated a dataset in which a single metabolite, 
maleate, differentiates the two classes and overlaps with the high 
concentration urea signal, which varies randomly (i.e. urea does 
not encode class discrimination). Figure 2 shows the scores, 
loadings, and permutations tests for spectral binning and targeted 
profiling methods. One can see from the loadings plot in Figure 2b, 
that targeted profiling methods identify maleate as a significant 
metabolite even under severe overlap conditions, while spectral 
binning shown in Figure 2a fails. Spectral binning is also prone to 
generating highly overfit models as shown by the permutation test 
in Figure 2, whereas targeted profiling models show no signs of 
overfitting. Permutation tests help assess overfitting by randomly 
permuting class labels and refitting a new model with the same 
number of components as the original model. An overfit model 
will have similar R2 and Q2 to that of the randomly permuted data. 
Well fit models will have R2 and Q2 values that are always higher 
than that of the permuted data. 
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Figure 1. PLS-DA models (scores plot left, loadings plot right) of targeted profiling data using a) 
unit variance scaling b) Pareto scaling. 

 

 
Figure 2. PLS-DA models (scores plot left, loadings plot center, permutation plot right)  for a) 
spectral binning and b) targeted profiling methods under conditions of large overlap. 
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Sample matrix conditions such as pH and ionic strength can have 
profound effects on metabolites’ NMR resonance frequencies. 
These shifts can directly influence the quality of the models that 
are generated using NMR data, and were modeled with simulation 
#3. Both spectral binning and targeted profiling gave rise to models 
that were able to separate the data in the latent variable space. 
However, the quality of the model generated with the spectral 
binning data was low and resulted in overfitting as shown in 
permutation plots (Supplementary Figures). This is due to the large 
number of variable weights used in the loadings. A large number of 
variables share similar weights because the same significant 
resonances are now migrating over adjacent bins due to pH/ionic 
strength variation.  Models built on targeted profiling data, which 
accounts for the shifts in resonance locations directly in the 
modeling process, are able to separate the two groups and do not 
overfit the data. 
 
The final effect studied is the impact of limited sample sizes on 
predictive capacity, a typical problem in metabolomics studies. The 
effect of sample size was shown using a subset from Simulation 
#3. The size of the dataset was reduced from 100 to 20 samples in 
each class. Even with a limited sample size, the targeted profiling 
approach resulted in well fit PLS-DA models, as assessed by the 
permutations tests.  While the descriptive features of tryptophan 
and citrate are not as clearly distinguished in the loadings plot, the 
permutation plot indicates that even with a small number of 
samples the data is not overfit.  The results for spectral binning, 
however, are quite deceptive, as the PLS-DA model shows very 
good separation of classes in the scores plot. However, the model 
generated has an extremely high degree of overfitting – the 
majority of the randomly permuted models generate Q2 values 
higher than that of the non-permuted model (Supplementary 
Figures). 

4.2. Rat Brain Extract 

The rat brain extract dataset is a real-world dataset that exhibits 
many of the phenomena we have seen in the synthetic dataset. The 
spectra contain noise, have metabolite resonances that shift due to 
pH, and have low-concentration metabolites that are important in 

Pacific Symposium on Biocomputing 12:115-126(2007) 



 

differentiating the different brain regions, thus making it a suitable 
model dataset to validate our findings from the synthetic dataset. 
This dataset was acquired at high resolution (800MHz) and 
contains ~30 NMR-visible compounds. We did not find that the 
choice of variable scaling affected the quality of the generated 
models for this dataset. We therefore used unit variance scaling for 
the results shown below.  
 
We found that using spectral binning generated a model with lower 
predictive accuracy than targeted profiling data: Q2 for spectral 
binning was 0.468, whereas Q2 for targeted profiling was 0.522.  
 
As in our synthetic dataset, we found that spectral binning-based 
results were prone to overfitting. To test for overfitting, we 
randomly permuted the class labels for the PLS-DA analysis 100 
times. With the spectral binning dataset, we found that some of the 
models generated with random permutations of the data had higher 
Q2 and R2 values than the non-permuted data. This is illustrated in 
Figure 3a. Internal validation of the model based on the targeted 
profiling representation of the NMR data do not exhibit any 
characteristics of an overfit model, as shown in Figure 3b. The 
targeted profiling representation uses only 27 variables to represent 
the latent information in the dataset, thereby restricting the degrees 
of freedom available in the construction of a model, and reducing 
the capacity of the model to overfit the data. 
 

 
Figure 3. a, Internal validation of spectral binning, showing clear evidence of overfitting with 
random permutations of the data generating better R2 and Q2 values than the non-permuted data. b, 
Internal validation of targeted profiling, showing clear decrease in performance on permuted data. 
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5. Conclusion 

We have demonstrated how the inherent properties of NMR 
spectroscopy can impact the predictive ability of models built upon 
spectral binning and targeted profiling representations of NMR 
data by using a novel method for synthetically generating NMR 
spectra. The quality of predictive models built was quantitatively 
assessed, as was the relative robustness of these two methods. 
Under the experimental design chosen, both methods are very 
robust with respect to noise. In contrast, variable scaling methods 
can affect both the quality and interpretability of the models 
generated. W found for targeted profiling data, unit variance 
scaling generates a more robust data representation. Targeted 
profiling was also found to be  an effective dimensionality 
reduction technique that, overall, is more robust with respect to 
spectral distortions and high dynamic range metabolites than 
spectral binning, and is less prone to overfitting than spectral 
binning models. These findings were validated on a real-world 
dataset of rat-brain extracts consisting of ~30 NMR detectable 
metabolites, in which statistical models were less prone to 
overfitting based on a spectral profiling representation of the data. 
Spectral binning is a common method for data reduction due to the 
speed of analysis, while current targeted profiling implementations 
require interactive input and are relatively time-intensive. While 
the rat-brain extract study represents a relatively simple dataset, 
targeted profiling has successfully been applied to extensive 
studies of serum [Weljie, Dowlatabadi, Miller, Vogel, Jirik, 
submitted] and urine [Chang, Rankin, McGeer, Shah, Marrie, and 
Slupsky, submitted]. As increasingly automated methods for 
quantitative profiling of NMR data become available, we expect 
database-driven targeted profiling to become the data-reduction 
method of choice. 

6. Supplementary Information 

Supplementary Figures and Data is available at 
http://www.chenomx.com/publications/PSB2007 
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