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Faced with the need for human comprehension of any large collection of objects, a time 
honored approach has been to cluster the objects into groups of closely related objects. 
Individual groups are then summarized in some convenient manner to provide a more 
manageable view of the data. Such methods have been applied to document collections with 
mixed results. If a hard clustering of the data into mutually exclusive clusters is performed then 
documents are frequently forced into one cluster when they may contain important information 
that would also appropriately make them candidates for other clusters.  If a soft clustering is 
used there still remains the problem of how to provide a useful summary of the data in a 
cluster. Here we introduce a new algorithm to produce a soft clustering of document collections 
that is based on the concept of a theme. A theme is conceptually a subject area that is discussed 
by multiple documents in the database.  A theme has two potential representations that may be 
viewed as dual to each other. First it is represented by the set of documents that discuss the 
subject or theme and second it is also represented by the set of key terms that are typically used 
to discuss the theme.  Our algorithm is an EM algorithm in which the term representation and 
the document representation are explicit components and each is used to refine the other in an 
alternating fashion.  Upon convergence the term representation provides a natural summary of 
the document representation (the cluster). We describe how to optimize the themes produced 
by this process and give the results of applying the method to a database of over fifty thousand 
PubMed documents dealing with the subject of AIDS.  How themes may improve access to a 
document collection is also discussed.  

1   Introduction 

There are at least two reasons for interest in clustering a set of documents. One is to 
improve retrieval efficiency and the other is to improve human understanding of the 
data in the collection. The first of these goals proved elusive historically because 
the quality of the retrieval degraded due to the clustering.1, 2 With the much greater 
speed and memory of current computers the interest in clustering for efficiency has 
waned. However, the need for improved human understanding of large data sets has 
reached critical proportions with the advent of the Internet as well as the many large 
databases of documents that are now becoming available in different specialty 
areas. 

Improved human understanding of data through clustering may consist of 
graphical aids in visualizing the data3-5 as well as methods of examining textual 
summaries of cluster content. Given a predefined set of clusters there are many 
machine learning methods for inducing representations for the clusters.6-9 These 
methods play an important role in the human comprehension of information from a 
variety of points of view.  However, our interest is somewhat different from these in 
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that we desire to find a rich representation of the topics or themes that occur in a 
database and view document clusters as a means to this end. For example, in the 
AIDS data that we study here “blood transfusion” is an important theme. This 
theme is described by a rich terminology and it is this terminology that we refer to 
in using the word theme. There is also the cluster of documents in the database that 
discuss this theme and this cluster plays an essential role in discovering the theme, 
but the theme and the cluster are treated as of equal importance each helping to 
define the other.  

A number of methods have been proposed whereby topical groupings of terms 
are derived from a document collection in an effort to improve the representation of 
the documents. Such methods may or may not involve a clustering of the 
documents, but they are of interest since they address the problem of theme 
generation that is our interest. There are information bottleneck methods,10, 11 
probabilistic latent semantic indexing,12 and mixture models.13-15 The bottleneck 
approach produces term groupings that maximize the information relative to the 
document collection. This groups terms with a high mutual co-occurrence, but 
seems unsuited to produce the natural themes that occur in text.  Theme generation 
as we conceive it will be almost certain to reduce the information relative to the 
documents because of the large number of terms that are grouped together in a 
theme. We believe this is simply the wrong paradigm for theme generation.  
Probabilistic latent semantic indexing and most mixture models assume in principle 
that a document arises from a single source even if that source is not determined. 
Again this is theoretically unsuitable for our purposes as a document does not arise 
from a single theme. Rather a document often contains multiple themes. The one 
approach in the literature that seems theoretically most consistent with our goal is 
the Multiple Cause Mixture Model.15 While this approach solves the one document-
multiple theme problem, it along with the other methods mentioned here has 
another unfortunate property. It requires that all terms that occur in documents must 
be forced into some topical word group even if they are function words, etc.  

Aside from the theoretical problems mentioned here there is the practical 
problem that previous methods require the whole database to be processed before 
any result is obtained. This is very computationally expensive and out of reach for 
large collections (even the AIDS data we study here). Our approach is unique in 
that it produces one theme and one document cluster at a time. Because of this 
simplicity our method is readily applied to very large collections (even millions of 
documents). Indeed a very large collection may yet take a long time for complete 
analysis, but one can produce useable collections of themes without a complete 
analysis. The approach we present here is related to earlier work,16, 17 but the 
model is different in its explicit treatment of themes, is simpler, and allows a much 
more efficient computation.  
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2.  Preliminaries 

Let  be a database of documents and let the set of all index terms that appear in at 
least one of the members of  be denoted by T . Let 

D
D R  denote the “occurs in” 

relationship between elements of T  and . Then it is customary to represent D R  as 
a subset of the product set of  and , i.e., T D R T D⊆ × . The set R  is known as a 
relation and if ( )t ,d R∈  we say t  occurs in  and may also write .  If U T  
and V  it is standard usage to define  

d tRd ⊆
D⊆

[ ] ( ){ }

[ ] ( ){ }1

R U d D | t U t,d R

R V t T | d V t,d R−

= ∈ ∃ ∈ ∋ ∈

= ∈ ∃ ∈ ∋ ∈ .
 (2.1) 

For a single point t  we write [ ] { }R t R t=     and for a single point  
likewise

d
[ ] { }1 1R d R− =  d−

  . 
By a theme we mean a particular subject area that is discussed by some subset 

of the documents in the database . Interestingly such a subject area is generally 
also characterized by a particular subset of index terms T  that are used to describe 
that subject area. Intuitively then a theme means nonempty sets U  and V D  
with the property that all the elements of U  have a high probability of occurring in 
all the elements of V .  We require not only that this be true, but that it be true in 
some optimal sense which we will make explicit. 

D

T⊆ ⊆

3. The Theme Generation Algorithm 

In order to apply the EM algorithm we will follow the notation of Little and 
Rubin.18  Our description will be in terms of the sets U  and V  which we have used 
to outline the concept of a theme. There is observed and missing data. 

 
{ }

obs

miss d d D

Y R

Y z
∈

=

=
 (3.1) 

The observed data is the relation R . The missing data is a set of indicator variables 
that are defined by 

 
1  
0  d

, d V
z

, d V .
∈

=  ∉
  (3.2) 

The parameters are 
 ( ) { } { } , U t t t tt U

U U n , p ,q rΘ T∈∈
= = .   (3.3) 

Here  is a constant positive integer and the size of the set U  (number of 
elements).  For any ,  is the probability that for any d

Un
t U∈ tp V∈ , , and  is tRd tq
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the probability that for any d D V∈ − , tR .  For any td T∈ ,  is the probability that 
for any , .  Constants in the process in addition to the integer  are the 
set of prior probabilities {

tr
d D∈ tRd Un

}d d D
pr

∈
that are the prior probabilities that the elements  

belong to V .  
d

)V R∩

t T

tu
,
, U
∈

=  ∉

tdδ


= 


1     
0  

, t
, t¬

}( ) }( )d dz , dz | p R |Θ Θ=

{ } ) ) dzz
d D

pr
∈d |Θ ∏ d

−p z

{ )

( )( )td

t tp p 1 δ−  
 
  

1 1td
tqδ δ− −

d
t t

z
 
  

dz
td

trt ,d

p R | z =

∏

)| R,Θ

{ }( )( ) ( ) )

(( )

)

t

t

n

r

  

  

          

          

E ln P

    

    

z

             

              

,

1nq

δ δ1

t d

t d

u

1

td

td

d t

p

nr

= + +

−

−− +

∑ ∑

∑ ∑

In order to develop the EM algorithm approach we will need to make an 
independence assumption about the statistical properties of R . This kind of 
assumption is common in many contexts for the purpose of facilitating the 
mathematical analysis of complicated data: 

Independence Assumption. Within T V R× ∩  all the atomic events tR  are 
independent of each other and likewise for 

d
(T D× − .  

Finally to facilitate the writing of mathematical formulas we will use the 
indicator variables { }tu

∈
 defined by 

 
1  t
0  t

U
  (3.4) 

and the delta notation 

   (3.5) 
Rd
Rd.

We must work with the quantity 
 { { ) { }(p R, p z |Θ .   (3.6) 

Computing from the right side we obtain 

 ( ( 11d
d pr= −   (3.7) 
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It is next necessary to take the expectation of the log of (3.6) over the distribution 
{ }( dp z . In this we may ignore (3.7) because it will yield a constant and have 

no influence on the subsequent maximization. Thus we may compute 
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(3.9) 
In order to complete this calculation it is necessary to compute  based on dpz R  and 
Θ . This we do from Bayes’ theorem 
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Individual probabilities on the right side are given by 
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Because of the common factor in these expressions it is convenient to write 
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1
1d

d

pz
exp score C

=
+ − +

  (3.12) 
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The final step is to carry out the maximization of (3.9) over Θ . Too accomplish this 
we note that we may begin by choosing the values of , , and  so that the 
individual sums on the right in (3.9) are maximal if in the case of  and ,  
and if in the case of , u .  This is straightforward and yields 

tp tq tr
tp tq 1tu =

tr 0t =

   (3.14) ( ) (1 1
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Here we have defined 
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Now for each  we define a quantity which is the difference between the 
contribution coming from  in the sum (3.9) depending on whether u

t
t 1t =  or .  0tu =
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In addition to (3.15) we here employ the definitions 

s dd

st tdd

n pz

n pδ

=

= dz .

∑
∑

 (3.17) 

The maximization is completed by choosing the  largest Un tα ’s and setting u  
for each of them and  for all others. If there is ambiguity due to equal 

1t =

t0tu = α ’s 
choices are made arbitrarily to obtain the number .  Un

4. A Practical Algorithm 

Our interest is in a practical algorithm for applications. With that objective we will 
outline here our approach first as a series of steps and then give more detail in how 
to begin the computation and how to control it. 
Input: R, the number , and the set of prior probabilities Un { }dpr . 

d D∈
Step 1: Compute the probabilities { }d d

pz  through the use of (3.13). 
T∈

D∈
Step 2: Compute , , and , all ttp tq tr  from (3.14) and (3.15). 

α ∈Step 3:  Compute the t , all t T  from (3.16) and (3.17). 
∈Step 4: Select the  points tUn T  for which tα  is the greatest to define the set U  

and the indicator values { }tu . 
t T∈

Step 5: Test for convergence and if not converged return to Step 1. 
By examining the steps listed it is evident that if we can obtain the probabilities 
{ }dpz

d D∈
 in Step 1, the remaining steps are relatively straightforward to perform 

(we will discuss convergence below).  As a general approach we have found it quite 
satisfactory to restrict the values  to either 0 or 1.  This is simply accomplished 
by setting a cutoff value and using (3.13) to compute 

dpz

 .  (4.1) 
1  
0  

d
d

d

, score cutoff
pz

, score cutoff
>

=  ≤

In practice we find that the number of d’s for which 1dpz =  can have a large 
variation from one iteration to the next if we use a fixed cutoff. We have found 
improved stability by defining an integer we term the stringency.  The stringency 
must be positive and not greater than . We then set Un

 ( )
( )
1
1

t t
t U

U t

p qstringencycutoff ln
n q∈

 −
=  − 

∑
tp
 .  (4.2) 
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When (4.1) and (4.2) are used to implement Step 1 we will refer to the result as the 
binary form of the algorithm.  The algorithm begins by assigning the values  to 
be 0 or 1 depending on some preliminary guess as to what V might be.  This allows 
the first iteration through Steps 1-5. On the second and all subsequent iterations the 
equations (4.1) and (4.2) are used in Step 1.  In Step 5 convergence is tested by 
observing when all quantities become fixed.  In practice this is easily ascertained by 
observing when the value of C in (3.13) takes the same identical value on 
successive iterations.  

dpz

Control of the algorithm is important in that it generally has the potential to 
converge to a local maximum in many different ways. Such control could be 
exerted through the choice of the values { }dpr

d D∈
. However our approach is 

generally to set these values all to 0.5 so that they have no influence in (3.13). We 
only exert control by the initial choice of the { }dpz

d D∈
as binary values reflecting 

some estimate of V.  Occasionally this is not satisfactory and we wish to force the 
algorithm to converge with certain  included in V. Then we set the values of the 
corresponding  close to 1 or equivalently the values of 

d
dpr ( )( )1dpr / pr− dln  large so 

that these particular  become locked into V.   d

5. Focusing a Theme 

The binary form of the theme generation algorithm described in the foregoing 
works well in that it is successful in producing a large number of different themes 
on a database.  The difficulty is that one must decide on the value  prior to 
generating a theme and this may not be optimal. If it is too small it will not allow 
the full theme to develop and if it is too large it will allow extraneous material to be 
pulled in to be part of the theme. In order to deal with this problem we have 
developed a method of focusing a theme to the optimal size. The method works by 
starting with a value of  that is too small and running the algorithm to stability or 
near stability and then increasing the size of  by a small amount to  and again 
running the algorithm close to stability. Let U  and U

Un

U ′

Un
Un n

′  denote the two term sets 
corresponding to the two themes obtained at these two successive points. At each 
such step we check two things.  First, are the two themes close together? To 
measure closeness let tα   represent the value from (3.16) corresponding to a t U  
and likewise 

∈

tα′  for t . We may then define a Dice coefficient of similarity 
between the two themes by  

U ′∈

 ( ) ( ) ( )t t t tt U U t U t U
Dice U ,U /α α α

′∈ ∩ ∈ ∈
′ ′= + +∑ ∑ ∑ α

′
′ .  (5.1) 

We require that  
 ( ) 0 9Dice U ,U .′ >   (5.2) 
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at each successive increment of  to Un Un ′  This is a continuity condition that is 
necessary because during expansion a theme my become unstable and suddenly in a 
single step metamorphose into a completely different theme or into one that is only 
distantly related to the theme from the previous step.  If such a sudden change in the 
theme takes place we halt the process of focusing at the previous step.  Our second 
concern is that the theme actually improves at each step. In order to measure 
improvement we require a fixed integer smaller than the number of terms in the 
theme. We will call this number the focal size of the theme and denote it by f .  
Then we define the focus of a theme  to be the average of the U f  largest tα , 

. We denote the focus of a theme U  by t U∈ ( )U , fα .  Then we consider a step in 
focusing to be an improvement provided 

 ( ) ( )U , f U , fα α ′≤ .  (5.3) 

Thus if the process of focusing the theme does not end because of a violation of 
(5.2) it will eventually end because of a violation of (5.3) when we have reached at 
least a local maximum in the focus possible for that theme. 

6. Themes from the AIDS data 

In February of 2001 we extracted all documents in PubMed that had assigned the 
MeSH® term “Human Immunodeficiency Syndrome”. This comprised 52,970 
documents consisting of title, abstract (when present), and MeSH terms. This set is 
the database  for the thematic analysis presented here. We used as the index term 
set  all MeSH terms (with and without qualifiers assigned in the documents and 
with and without stars) as well as terms from the titles and abstracts.  Title and 
abstract were broken into single word and two word terms and any term containing 
a stop word was discarded. No stemming was performed and no punctuation is 
allowed in the terms.  

D
T

Our first step was to generate a set of themes with stringency 10 and  equal 
to 30. These parameter settings tend to give undersize themes. We attempted to 
generate such an initial theme for each document in .  For each d

Un

D D∈  we used a 
vector document retrieval algorithm to obtain the 100 documents, { } 1i=

, in  
most similar to d .  We then set  to 1 for all the 

1i

100
id D

dpz { }100
id

=
 and 0 for all other 

documents. With this initialization we then attempt to generate a theme. We 
succeeded in generating a theme in 42,395 of the 52,970 attempts. In some cases 
the set of documents { } 1i=

 has insufficient similarity within the set to produce a 
theme.  When duplicates were removed the 42,395 themes resulted in a set of 7,311 
unique themes. These themes provided the seeds for the focusing process described 
in the previous section. 

100
id
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For the focusing process we chose a focal size f  of 10. Beginning with each 
of the 7,311 seed themes we carried out the focusing process and obtained a set of 
5,236 unique focused themes. In a significant number of cases different seed themes 
produced the same focused theme. While the 5,236 themes are unique, there are 
many pairs of themes that are closely related to each other. We processed all pairs 
of the 5,236 themes and marked a pair ( )U ,U ′  as equivalent if they satisfied  

)′ ≥ ( 0 9Dice U ,U . .  (6.1) 

We generated the equivalence relation based on the marked pairs and chose one of 
the largest themes from each class. This yielded a set of 1164 unique themes with a 
certain distance between any two themes in the set.  These 1164 themes provide a 
picture of the AIDS literature in PubMed. 

While one can view each of the 1164 themes, this is still a relatively large 
number of themes to examine. In order to facilitate browsing the data we performed 
single link clustering of the 1164 themes with different thresholds according to  

 ( )Dice U ,U threshold′ ≥   (6.2) 

to obtain clusters of themes that could be examined by a human. We performed the 
clustering at five levels beyond the baseline of 0.9 and obtained the numbers of 
clusters shown in Table 1. 

Table 1. An analysis of the 1164 themes by single link clustering.  As the 
threshold decreases there are fewer clusters of larger size. 

Level Threshold Clusters 

1 0.9 1164 

2 0.8 772 

3 0.7 477 

4 0.6 287 

5 0.5 171 

6 0.4 92 

We have developed a web interface to allow browsing of the 1164 themes. At level 
1 this allows access to the individual themes. At higher levels one views the 
individual themes grouped into clusters and may still view an individual theme or 
may select a cluster and view its summary or differences between its members. 

7. An Example theme 

Here we give a partial listing of the term set for the theme developed on 
pneumocystis pneumonia in AIDS. This theme has 70 terms associated with it. This 
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is of intermediate size. While some themes have only 30 terms many have over 70 
and a few over 200 terms. 

Table 2. The “pneumocystis pneumonia” theme in the AIDS database. The top 
twenty and the bottom twenty terms are listed. Terms ending with “!!t” or “!!p” are 
from the text (title or abstract). Terms ending with “!!T” or “!!P” are from the title.  
All other terms are MeSH terms. 

∝t weight term 

4203.16 7.67756 pneumocystis!!t 
4131.06 7.45661 carinii!!t 
4044.71 7.2371 pneumocystis carinii!!p 
3451.11 6.22396 pneumonia, pneumocystis carinii! 
3189.29 5.88545 pneumonia!!t 
3148.41 8.89602 pneumocystis!!T 
3128.89 6.16155 carinii pneumonia!!p 
3076.95 11.3618 carinii!!T 
3019.83 11.3184 pneumocystis carinii!!P 
2056.77 6.119 pneumonia!!T 
2034.68 10.5684 carinii pneumonia!!P 
1334.72 4.80077 pneumonia, pneumocystis carinii!complications 
1196.67 6.04187 pcp!!t 
1166.19 7.33732 pneumonia pcp!!p 
874.62 4.7418 pneumonia, pneumocystis carinii!drug therapy 
860.536 2.73083 acquired immunodeficiency syndrome!complications 
765.718 4.90711 pentamidine! 
747.283 4.9847 pentamidine!!t 
687.268 4.81072 pneumonia, pneumocystis carinii!diagnosis 
644.147 4.36415 pneumonia, pneumocystis carinii!etiology 
. . . . . . . . . . . . . . . . . . 
288.126 5.02338 pneumocystis pneumonia!!p 
279.602 5.41492 pneumocystis carinii!isolation & purification 
279.038 3.85202 bronchoalveolar lavage fluid! 
276.319 4.35901 trimethoprim sulfamethoxazole!!p 
269.075 4.23562 bronchoscopy! 
266.897 6.37945 pentamidine!administration & dosage* 
258.448 4.98364 pneumonia, pneumocystis carinii!mortality 
239.531 4.00696 trimethoprim-sulfamethoxazole combination! 
239.136 1.70665 diagnosis!!t 
236.596 7.98609 carinii infection!!P 
231.826 4.30286 trimethoprim! 
221.698 4.05579 prophylaxis!!T 
220.914 2.85947 respiratory!!t 
218.138 4.89353 trimethoprim!therapeutic use 
217.447 4.23204 pentamidine!adverse effects 
214.698 4.48168 transbronchial!!t 
208.269 4.20944 trimethoprim-sulfamethoxazole combination!therapeutic use 
199.971 4.20475 sulfamethoxazole! 
193.587 4.89464 sulfamethoxazole!therapeutic use 
190.416 3.63024 alveolar!!t 
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8. Future Plans 

Our immediate plan is to extract the literature from MEDLINE® that deals with 
genetics (over one million documents) and produce a set of themes for this subject 
area. It is unclear whether such a large set of themes will lend itself to browsing, 
though we plan to experiment with browsing. We are more optimistic regarding a 
different strategy. We plan to treat the individual themes as documents and make 
them accessible through Boolean querying much as for documents. Because the 
terms in themes are rated by their associated tα  values, these values may be used to 
produce ranked retrieval. This is straightforward in the case of a single query term 
and for Booleans could make use of some kind of extended Boolean19 or fuzzy 
logic.  Once a user has selected a theme consistent with his interests he has the 
option of using it to produce ranked retrieval of the documents in the database. This 
is based on the weights associated with the terms in a theme (see Table 2) and is 
defined by (3.13).  Another potential application of themes is to the problem of term 
disambiguation. If a term occurs in multiple themes and the term occurs in a 
document then one may compare the themes with the document to see which theme 
best fits the context and interpret the term accordingly. We hope to investigate the 
usefulness of this approach in future work.  
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