
CONSTRUCTING COMPARATIVE GENOME MAPS

WITH UNRESOLVED MARKER ORDER

DEBRA GOLDBERG

Center for Applied Mathematics� Cornell University� Ithaca NY �����

E�mail� debra	cam
cornell
edu

SUSAN MCCOUCH

Department of Plant Breeding� Cornell University� Ithaca NY �����

JON KLEINBERG

Department of Computer Science� Cornell University� Ithaca NY �����

Comparative genome maps are a powerful tool for interpreting the genomes of
related organisms� The species maps which are the input to the process of con�
structing comparative maps are often themselves constructed from incomplete or
inconsistent data� resulting in markers �or genes� whose order is not fully resolved�
This incomplete marker order information is often handled by placing markers
whose relative order cannot be reliably inferred together in a bin which is mapped
to a common location� Previous automated and manual methods have handled
such markers in an ad hoc or arbitrary way� We present e�cient algorithms for
comparative map construction that provide a principled method for handling un�
resolved marker order� The algorithms are based on a technique for e�ciently
computing a marker order that optimizes a natural parsimony criterion� in this
way� they also yield a working hypothesis about the original incomplete data set�

� Introduction

Comparative mapping is based on the observation that the order of homolo�
gous genes along the chromosomes of related species is often conserved� Co�

linearity �conservation of gene order�� and to a lesser extent synteny �neighbor�
hoods containing a number of homologous gene pairs� in chromosomal regions
of di�erent species suggests that these chromosomal segments are likely to be
homeologous �derived from a common ancestral linkage group�� Comparative
maps identify colinearity or synteny between genomes of di�erent species�
and allow us to exploit the research accumulated for each of the species under
consideration to gain new insights into issues including gene characterization�
phylogenetic relationships� and principles of chromosome evolution�

Work in comparative mapping dates back as far as studies of Sturtevant
and Weinstein in the ��	
�s������ and it has grown into a very large area
of research� We refer the reader to O�Brien et al� for a general review of
comparative studies in mammals� Paterson et al for plants�� and R�omling and
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T�ummler� for bacterial genomes� Indeed� comparative genomics has proven
so useful in understanding human genetics that it has been termed 
the key
to understanding the human genome project���

Despite the considerable amount of research in this area� there has been
relatively little algorithmic work aimed at formalizing what is meant by a
comparative map in a mathematical sense� or at providing a precise means for
computing such a map from input data� In the absence of such a framework�
the maps produced by di�erent labs have been constructed on an individual
and largely ad hoc basis� making it di�cult to reason about these di�erent
maps from a common set of principles� Motivated by this state of a�airs�
Nadeau and Sanko� challenged the community in ���� 
to devise objective
methods that reduce the arbitrary nature of comparative map construction���

In recent work�� we have proposed a formalmodel of comparativemapping
as a chromosome labeling problem� in which the goal is to divide chromosomes
into contiguous segments for which there is signi�cant evidence of common
ancestral linkage groups� We provide background on this model in Section 	���
where we show a natural labeling criterion for chromosomal segments� based
on a trade�o� between parsimony and consistency� under which the optimal
labeling can be computed e�ciently� This approach is distinct from sequence�
alignment methods� which work on a much more localized scale� and also
distinct from algorithms for inferring chromosomal rearrangement scenarios�
which essentially start with a structure like a comparative map� and pro�
pose hypotheses about evolutionary history� Our framework is perhaps most
similar to work of Sanko�� Ferretti� and Nadeau�� which seeks to �nd non�
contiguous segments that 
cover� all homologous genes in a dataset�

��� The present work� Unresolved marker order

In this paper� we propose an algorithmic approach for addressing the ubiq�
uitous problem of unresolved marker order in comparative map construction�
Genetic maps are constructed from linkage analysis of �nite mapping popula�
tions� and frequently there are markers which cosegregate in all individuals�
so their relative order cannot be determined� Analogously� in physical maps�
two markers which are contained in exactly the same set of clones also cannot
be ordered precisely� In addition� the raw data may be ambiguous or inconsis�
tent� due to experimental or statistical error� leading to markers whose relative
order cannot be determined with a su�cient degree of con�dence� Existing
computational techniques for comparative map construction� however� have
generally relied on the tacit assumption that there is a completely speci�ed
linear order on markers� and this assumption is present in our previous work�
Since this assumption rarely holds in practice� the resolution of marker order
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has essentially been dealt with in an ad hoc or arbitrary way�
Here we develop a principled method for handling unresolved marker or�

der within our model of comparative mapping� We work with a standard
representation for markers whose order cannot be determined� the markers
are partitioned into bins� or megaloci� markers within the same megalocus are
considered to have an unknown relative order� but there is a total order on
the megaloci themselves� Thus� the resulting dataset looks linearly ordered�
except that in place of individual markers we have a sequence of megaloci�

We provide an e�cient algorithm that simultaneously constructs a com�
parative map and an ordering of the markers in each megalocus� These two
tasks are inter�related� in the sense that the megalocus orders are computed so
as to optimize a natural parsimony criterion for the map� Our main technical
result is to show that these optimal orders can be computed in polynomial
time� and� indeed� by an algorithm that performs well in practice� Indeed�
we will see that the algorithm can actually run faster in practice on an input
with megaloci than on a totally ordered set of markers of the same size� this
is essentially because the megaloci serve as a 
compressed� representation
which the algorithm can manipulate at a high level� We supplement our algo�
rithms with a set of results showing comparative map construction based on
this method for mouse�human data� We note that while our optimal orders
thus provide a canonical hypothesis about marker order� which can serve as a
basis for further lab work� we do not claim that they represent the 
correct�
or 
true� order � essentially� we simply do not have enough information in
these settings to identify such a correct order�

A number of studies use representations not based directly on megaloci�
and our approach can be adapted to handle several of these as well� We brie�y
discuss one such extension in Section ��	�

� Algorithms

We cast comparative mapping as a labeling problem� as in our previous work��
We begin with two genomes� the base and the target� and we wish to label seg�
ments of the target using names of linkage groups from the base� In this
section� we describe our underlying algorithms in detail� First we give some
background� including notation and a review of the previously�published al�
gorithms which form the foundation for this work� Then we develop a linear
megalocus algorithm� which is extended to a stack megalocus algorithm in the
�nal subsection� In Section �� we discuss an implementation of this algorithm�
and show some results from a comparative analysis of the human and mouse
genomes� with human as the base and mouse as the target�
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��� Chromosome Labeling� An Approach to Comparative Mapping

We �x a chromosome in the target genome� and let M � h�� 	� � � � � ni denote
the sequence of comparatively mapped markers �genes� in order on this chro�
mosome� We divide the base genome into linkage groups �usually chromosome
arms� which will serve as labels for the target genome� Thus� we have a la�
bel set L � fc�� c�� � � � � ckg� where k is the number of linkage groups in the
base genome� A comparative map is viewed as an assignment of labels to the
markers of the target genome� i�e� a function f �M � L�

We assume each marker i has been comparatively mapped to a single
linkage group �i in the base genome �i�e� each marker i has a single homolog
in the base genome� and it is located on �i�� We say marker i has type �i�
Markers that have not been comparatively mapped in the base genome are
not informative for our purposes� We de�ne a simple distance function ���� ��
on pairs of labels as follows� ��a� b� � 
 if a � b� and ��a� b� � � if a �� b� We
extend this de�nition if one of the parameters is a set A� so that ��A� b� � 
 if
b � A� and ��A� b� � � otherwise� In the context of a labeling we say a marker
i matches its label if ���i� f�i�� � 
� we call it a mismatched marker otherwise�

In previous work� we cast comparative mapping as the problem of com�
puting an optimal labeling of the marker set�� In our basic linear model�
the optimization criterion was based on balancing a mismatch penalty m and
a segment boundary or segment opening penalty s� We refer the reader to
Figure � for details� Only the ratio s�m a�ects the resulting optimal label�
ings� so this ratio is essentially the only tunable parameter in the algorithm�
intuitively� s�m gives a minimum number of matching markers required to
consider opening a new segment� We have found that in practice� the results
produced by the algorithm are generally stable over a fairly wide range of
parameter values�

A potential labeling is scored by assessing the
penaltym for eachmismatchedmarker� and the
penalty s for each segment boundary� Formally�
the objective function Q�f� is�

s �jfi � f�i� �	 f�i
 ��gj�
m �jfi � f�i� �	 �igj� �

The objective function is minimized in an opti�

mal labeling�

Figure �� Diagram showing scoring scheme for linear model�
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To compute an optimal labeling in this model� we use a dynamic pro�
gramming formulation in which S�i� a� denotes the optimal cost for labeling
the su�x of M beginning at position i subject to the condition that f�i� � a�
We initialize S�n� a� � m � ���i� a�� and compute the optimal solution using a
recurrence relation as follows�

S�i� a� � m � ���i� a� � min
b�L

�S�i��� b� � s � ��b� a� � � ���

We extended the linear model to a stack model� which allows labels to be
remembered as though pushed and popped from a stack� In the stack model�
a label can still change at a segment boundary by being replaced with another
label �with associated penalty s� as in the linear model� but a label can also
change by having another label pushed on top of it� which can later be popped
o� to recall the earlier label� This is demonstrated in Figure 	a� Pushing a
label also incurs a penalty of s� but popping is nearly free� incurring only a
small penalty �� This corrects the linear algorithm�s problem with long�range
dependencies� which impedes the labeling of 
aba� label patterns generated
by insertions and other important chromosome rearrangement events�

An optimal labeling in the stack model can also be computed using a dy�
namic programming algorithm� in which S�i� j� a� denotes the optimal cost
of a labeling f of the subsequence of M which starts at position i and
ends at position j� subject to the condition that f�i� � a� We initialize
S�i� i� a� � m � ���i� a�� and make use of the following recurrence�

S�i� j� a� � min

�
�m � ���i� a� � min

b�L
�S�i��� j� b� � s � ��b� a� ��

min
i�k�j

�S�i� k� a� � S�k��� j� a� � � �

�
A �	�

See Figure 	b for a graphical view of how push�pop is accomplished�
We note that the balance between minimizingmismatches and minimizing

stack operations re�ects the notion of parsimony discussed in the introduction�
While we do not go into the details here� our objective function can be viewed
as arising from a maximum a posteriori approach with a prior probability
term favoring labelings that involve a small number of stack operations� We
also note that the process of pushing and popping on a stack is suggestive of
the biological process of insertion� this idea is discussed in our earlier work��

a� b�

Figure �� Graphical representationof� a� the stackmodel� and b� push
pop as implemented
in recurrence of stack algorithm�
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��� Linear Megalocus Model

We now extend our labeling framework to the case in which the input contains
megaloci� the types of unordered sets of markers discussed in the introduction�
The goal is to produce an order for the markers in each megalocus so that the
resulting totally ordered set of markers has a labeling with as low a score as
possible �under the linear or stack models respectively�� The main di�culty
here is that the ordering problems in the di�erent megaloci can interact in
complex ways� since we must produce a labeling for the full ordered set of
markers� Despite this� we show that an order yielding an optimal labeling can
be computed e�ciently for both the linear and stack models�

We begin with the linear model� since the algorithm for the stack model
will build on this� For each megalocus� we consider the set of markers be�
longing to the megalocus as a supernode Z� Within Z� there is an optimal
ordering that clusters markers of the same type contiguously� Thus we will
search only for solutions of this form� we seek an ordering over these clusters�
rather than over the markers themselves� Figure �a depicts an example of a
supernode with four clusters� each consisting of markers of the same type�

b.

Figure �� Diagram showing� a� markers �circles� arranged into clusters �octagons� within
a supernode �rectangle�� and b� High�level view of the map as viewed by the algorithm�

The key idea in the algorithm is that the clusters selected for the begin�
ning and end of the supernode order are the ones that determine how the
labeling of the chromosome before and after the supernode will interact with
the labeling of the markers in the supernode� Once these two extreme clusters
are selected� the remaining clusters can be ordered essentially arbitrarily� In
keeping with this idea� we create a representation of the chromosome in which
the supernodes and markers outside supernodes are totally ordered� and each
supernode is represented by two consecutive positions in the order� the �rst
of these positions will be assigned a label for the beginning of the supernode�
and the second will be assigned a label for the end of the supernode� �See
Figure �b�� This pair of labels will be enough for us to determine an optimal
ordering within the supernode by a post�processing step� Speci�cally� clusters
within the supernode corresponding to the �rst supernode label �if any� will
be placed at the beginning� clusters corresponding to the second label will be
placed at the end� and the remainder will be ordered arbitrarily� If the two
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supernode labels are the same� then the markers matching this label can all
be placed at the end� and all other clusters will be considered mismatches�

The full details of the algorithm and its correctness proof are somewhat
complex� and due to the space limitations we can only sketch them here� The
reader is referred to the Ph�D� thesis of the �rst author	 for these details�
Let n� � n denote the number of positions in the modi�ed map after each
supernode has been replaced by a pair of positions� Let S denote the set
of indices of supernode start positions� and E denote the set of indices of
supernode end positions� If a is a label and j � S �so j � � � E�� we de�ne
nj�a� to be the number of markers of type a in the supernode associated with
start position j� and nj to be the total number of markers in this supernode�
We de�ne �j � �j
� to be the set of labels containing a homolog of a marker
in the supernode associated with position j� i�e� �j � fa � Ljnj�a� � �g�

The optimal labeling is constructed from a dynamic programming recur�
rence that follows the recurrence used in the basic linear model� As before�
S�i� a� denotes the optimal cost for labeling the su�x beginning at position
i subject to f�i� � a� For markers outside supernodes� and for supernode
end positions� this is built from S�i��� �� as before� To deal with supernode
start positions we include a cost for labeling the markers 
hidden� inside the
supernode by our representation� This cost can be determined from the labels
for the supernode start and end positions� by augmenting the recurrence with
a hidden marker penalty p�i� �� �� de�ned for supernode start positions i � S�

Thus� with S�n�� a� � m � ���i� a�� the recurrence is as follows�

S�i� a� � m � ���i� a� � min
b�L

�S�i��� b� � s � ��b� a� � p�i� a� b� � � ���

It remains to de�ne the hidden marker penalty p�i� a� b�� To prevent the
implicit placement of a marker at both the start and end of a supernode�
the case in which the two supernode indices receive the same label must be
considered separately from the case in which they receive di�erent labels�
resulting in a two�case structure for p�i� a� b��

p�i� a� b�� �

����
���

P
c��a�b

�min�s�m � ni�c�� � m ��i�a� b� � for i � S� a �� b
P
c��a

�m � ni�c�� � m ��i�a� a� � for i � S� a � b


 � i �� S�

���

Markers which match either of the pair of supernode labels �a or b� will
not impart any mismatch penalty� and segment opening penalties associated
with these labels are handled explicitly by the recurrence� so we need only
consider the 
hidden� markers which don�t match either of the labels a or b�
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For c �� a� b� the �rst terms in the de�nition of p�i� a� b� give the total cost
attributed to markers of type c due to mismatched markers or a segment
boundary penalty� The de�nition for the case a � b does not hinder homeolo�
gies from being labeled within a supernode� rather it requires there be distinct
labels at the two ends of the supernode whenever markers in the supernode
should be labeled with at least two labels�

The function �i used in computing p�i� a� b� adjusts for the e�ect of as�
signing mismatch penalties �m� both in the recurrence �for the �rst and last
positions in the supernode� and in the function p� It is de�ned as follows� For
i � S we de�ne �i�a� b� � ����i� a�����i� b��� which is the number of mismatch
penalties assessed by the recurrence for a supernode labeled with a and b at
its ends� Note that �i�a� b� � f
� �� 	g� The notation min�i�a�b
 indicates to
sum the �i�a� b� smallest values�

�i�a� b� �

��������
�������


 � �i�a� b� � 

�	 � �i�a� b� � 
� a � b

 � �i � ffag� fbgg� a �� b

�	 � ���
min�i�a�b

c��a�b
c��i

�

 � m � ni�c� � s

�� � m � ni�c� 	 s

	
� otherwise

���

Condition ��� is invoked when the �rst three conditions do not apply� the entire
supernode has length 	 s and consists exclusively of markers of a single type
c� and c is not among the labels at the ends of the supernode�

By computing p�i� a� b� for all i� a� and b prior to the recurrence loop and
appropriate ordering of operations� this algorithm has running time O�k�n��
which is the same computational complexity as the original linear model�
Since we view the label set as having �xed constant size� this is a running
time linear in the number of markers�

��� Stack Megalocus Model

We now extend the stack model to also allow rearrangement of markers within
megaloci� Since the order of clusters internal to a supernode �i�e� those that
don�t match the label at either end� is not explicitly determined by the re�
currence� we do not allow pushing or popping with internal markers of a
supernode� this maintains the stack structure through the megaloci� Given
this� the algorithm for the stack megalocus model is based on the function
p�i� a� b� de�ned above for the linear megalocus model� together with a dy�
namic programming recurrence in which S�i� j� a� has the same meaning as
in the basic stack model� We initialize S�i� i� a� � m � ���i� a�� and use the
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following recurrence�

S�i� j� a� � min

���
��
m � ���i� a� � min

b�L
�S�i��� j� b� � s � ��b� a� � p�i� a� b� �

min �S�i� k� a� � S�k��� j� a�� � �
i�k�j
k��S


��
��
���

The correctness of the algorithm is established by arguing that an ap�
propriate hidden marker penalty computation p��� �� �� for a given supernode
is included exactly once in a subproblem if and only if the subproblem in�
cludes both the supernode start and end positions �and thus includes all the
markers of the supernode�� The algorithm has running time O�kn	�� which is
the same computational complexity as the original stack model� In practice�
this algorithm is actually faster than the basic stack algorithm for a totally
ordered marker set of the same size� for the running time is more precisely
O�k�n��	�� and the reduction in the number of elements in the modi�ed map
more than makes up for the additional processing for each element�

� Results and Discussion

��� Computational results

The stack megalocus algorithm was implemented in Java and executed on a
Sun Ultra�Sparc �
 running Solaris� The implementation was veri�ed using
synthetic data� We tested the stack megalocus algorithm with mouse�human
data taken from the Mouse Genome Database�� The resulting comparative
maps compared favorably with the mouse�human maps published by the Hu�
man Genome Project�� despite the fact that they were produced from di�erent
input data� Chromosomes with up to 	�
 markers ran in about �
 seconds�
The total processing time for all �� mouse autosomes is about two minutes�
Results were displayed using an OpenDX visualization program� as explained
in Figure �� Due to memory limitations� one mouse chromosome could only be
processed after the label set L was manually reduced to only those chromo�
somes possible in an optimal labeling� We are exploring many space�e�ciency
options� but are not too concerned since mouse�human is the densest compar�
ative data set� and computing power will improve as more data accumulates�

To provide a sense for the types of analysis one obtains from our stack
megalocus algorithm� we have extracted the labeling of three small chromo�
somal regions in the mouse genome from a full genome analysis� Results from
the original stack algorithm and the stack megalocus algorithm are shown and
contrasted in each case� In these cases� as in many portions of the genome� the
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In the accompanying �gure� the column of marker names on the

left are the mouse chromosome � markers which have known ho�

mologs �actually orthologs� in human� The shaded rectangles

to the right of these marker names show the labeling assigned

by one of our comparative mapping methods� colored by chro�

mosome� The actual visualization is in full color for optimally

distinguishing among labels� the label name itself is displayed at

the top of each rectangle� A translucent band is overlaid over

the left half of these rectangles to indicate the arm� The right�

most column shows the linkage group of the homolog� Some of

the homologs are mapped to a centromeric region� and others are

mapped only to a chromosome �the arm is unknown�� depending

on the precise location of these� theymaymatch the linkage group

of either chromosome arm� Marker names and homolog locations

of markers which match their assigned label are shown in white�

mismatches are shown as black� and those which may be matches

are shown in gray� A circle color�coded by the chromosome of the

homolog is overlaid on the labeling rectangles� providing another

way to visualize most mismatches �mismatches involving the two

distinct arms of one chromosome are not apparent this way��

Certain of the segments �colored rectangles� are connected with

an intervening black bar� the result of a post�processing heuristic

that indicates portions of the chromosome not considered clearly

homeologous to any human linkage group�

Figure �� Results of the original stack model for a portion of mouse chromosome ��

rearrangement of markers in a megalocus allows a signi�cantly more parsimo�
nious labeling and provides a hypothesized canonical order for these markers�

Figure �a shows a region of mouse chromosome � where rearrangement of
markers in the same megalocus has allowed for a map with fewer mismatches�
Figure �b shows a region of mouse chrosome � where parsimonious rearrange�
ment of co�located markers has resulted in a map where mismatched markers
can be placed between labeled segments� which is preferable� Figure �c shows
a region of mouse chromosome �� where rearrangement has also enabled the
formation of an additional labeled segment� In this case the proposed seg�
ment is a small segment that pushed to a larger segment further down the
chromosome� which could be suggestive of a chromosomal rearrangement such
as an insertion or inversion� Again� this is a hypothesis that can be tested by
further lab investigations �for example� by placing additional markers in this
region or sequencing an area around this region in both genomes��
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a� Mouse chromosome � b� Mouse chromosome � c� Mouse chromosome ��

Figure �� Detail of � mouse chromosomes in mouse�human comparisons� The upper �gures
shows results from the stack algorithm� and the lower �gures show results from the stack
megalocus algorithm�

��� Discussion

This paper seeks to lay a principled foundation for comparative mapping stud�
ies in the presence of uncertain marker order� We use marker order and not
distance between markers� and have not incorporated species�speci�c infor�
mation� so that our algorithms work for a wide variety of species� for genetic
and physical as well as high� and low�resolution species maps� We impose no
assumptions about evolutionary mechanisms� Results from these algorithms
can form the basis of hypotheses to guide further lab studies�

Some maps� such as most versions of the human map� do not use the
megalocus representation� instead each marker is assigned an interval where
it is likely to be located� The intervals of two markers overlap if and only
if their relative order cannot be resolved� and the relative order of markers
may be neither completely known nor completely unknown� For these� there
is a simple modi�cation to the stack algorithm that assigns a boundary point
at the beginning and end of each interval� and assigns a fractional weight to
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the subinterval between consecutive boundary points for each marker whose
interval spans it� such that the weight attributed to each marker sums to one�

We are in the process of putting together a web site where our suite of
comparative mapping programs will be made publicly available� DeCAL �De�
tecting Common Ancestral Linkage segments� will provide access to both the
stack algorithm and the stack megalocus algorithm� We are also investigating
algorithmic extensions of this work� in particular� it is an interesting open
question to extend the approach for pairwise genome comparison discussed
here to one that allows for the simultaneous comparison of multiple genomes�
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