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Abstract However, best CRF_[7], which is theoretically grounded
and passively reverses to the mean, performs significantly

selection strategy named “Confidence Weighted ~ actively reverses to the mean via statistical correlation.
Mean Reversion” (CWMR). Inspired by the This calls for the need of integrating a powerful learning
weighted on-line learning technique, CWMR sides, all existing learning to trade algorithms (c.f., Sec
tion, and sequentially updates the distribution by of the portfolio, while the change in the distribution of the
following the mean reversion trading principle. portfolio is better reflected in its first order and second or-
The CWMR strategy is able to effectively exploit der information (mean and volatility).
the power of mean reversion for on-line portfo- To address these two drawbacks, we present a new on-line

lio selection. Extensive experiments on various  portfolio selection strategy named “Confidence Weighted
real markets demonstrate the effectiveness of our  \jean Reversion” (CWMR). In short, CWMR models the

strategy in comparison with the state of the art. portfolio vector as a Gaussian distribution and sequential
updates the distribution according to the mean reversion
1 Introduction trading idea. Thus, CWMR exploits the mean reversion

property in the financial markets and both first and second

On-line Portfolio Selection (PS), also termed “sequentialorder information of the portfolio vector by the powerful
portfolio selection”, aims to determine a practical stggte Confidence Weighted (CW) on-line learning[10, 11].

for investing wealth among a set of assets to achieve SOMgye salient features of the proposed CWMR strategy are:
financial objectives in the long run. The finance community

has studied the problem by mainly concerning the objective 1. It is the first learning to trade study that exploits the
of maximizing risk-adjusted returrls [12, 26| 28, 29]. Onthe ~ second order information of theortfolio (not the sec-
other hand, théearning to tradetechniques, often aiming ond order information ofrice);

to maximize the logarithmic compound return or growth 2. Our novel algorithms effectively exploit the mean re-
rate, have also been actively explored in the information ~ Vversion property of the financial market by applying
theory [6, 7| 21, 22, 27, 81] and the machine learning com-  the powerful confidence weighted learning technique.

munity [1,13, 4/ 15-19, 23, 24, 30.133]. Through extensive numerical experiments on a variety of
Some state-of-the-art PS strategies [15, 16] assume that thiP-to-date real testbeds, we show that the proposed CWMR
current best performing stocks would also perform wellalgorithms significantly surpass a number of state-of-the-
the next trading day, but empirical evidence! [20] indicates?It strategies in terms of long-term compound return. The
that such trends may be often violated, especially in the&Xperiments also show that CWMR is robust with respect
short term. This observation leads to the strategy of buying® different settings of the parameters and it can withstand
poor performing stocks and selling those with good perfor-small transaction costs.

mance. This trading principle, known as “mean reversion”;the rest of the paper is organized as follows. Sedfion 2
is followed by some methods, including Constant Rebalyomajly defines the problem of on-line portfolio selection
anced Portfolios (CRP).[7] and Anticar [4], among others. gection[3 reviews related work and highlights their lim-

Appearing in Proceedings of the!" International Conference on itations. Sectiorl4 presents our proposed CWMR algo-

Artificial Intelligence and Statistics (AISTATS) 2011, Faraud-  "thms, and Sectiohl5 compares these approaches on his-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright torical stock markets. Finally, we conclude in Sectign 6
2011 by the authors. with directions for future work.
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2 Problem Setting 3 Related Work

Consider a financial market with, assets to be invested. Some common and well-known benchmarks for PS include
The changes of asset prices fotrading periods are rep- theBuy-And-Hold BAH) strategy and th€onstant Rebal-
resented by a sequence of positiwece relative vectors —anced Portfolio{CRP) [7,8]. In our study, we refer to the
x1,...,X, € R. We usex” to denote such a sequence of equal-weighted BAH strategy as thearketstrategy. Con-
vectors. Thej't component of thé'® vectorz;; denotes trary to the static BAH strategy, CRP actively adjusts the
the ratio of the closing price to the last closing price of theportfolio by keeping a fixed fraction of the investor’s to-
jth asset on theé'" trading period, thus an investment in tal wealth on each asset. The best possible CRP strategy,
assetj on thei*! period increases by a factor of;. known asBest CRRBCRP), is a hindsight strategy.

An investment on the market is specified bypartfolio ~ One group of learning to trade research aims to approach
vector, denoted ash= (by,...,b,), Whereb; represents the same daily wealth growth rate as the BCRP strat-
the proportion of wealth invested on thi& asset. Typ- egy. Coverl[7] proposedniversal Portfolio(UP) strategy,
ically, we assume the portfolio is self-financed and nowhich is based on the weighted average of the historical
margin/shorting is allowed, which meah&/\,,, where  performance of all CRP experts. Helmbold et al. [19] pro-

Ap ={b:beRP, YY" b = 1}. The invest- posed thé&exponential GradientEG) strategy to maximize

ment procedure is represented by thertfolio strategy  the expected logarithmic daily return. Agarwal et al. [1]
i.e., asequence of mappingsRT VA, i=1,2,...,  Proposed th©nline Newton StefONS) strategy to max-
where b;=b;(x1,...,x;_1) is the portfolio used on IMize the expe_cted logarithmic cumula_mve wealth. Hazan
the ith trading period given past market price relatives@nd Seshadhri[18] proposed an adaptive ONS approach.
x'"'={x1,...,x;-1}. Letus denote bp" the portfolio  another promising research direction for new on-line PS
strategy for the: consecutive trading periods. strategies tries to approach the Oracle strategy. Such idea

For theith trading period, an investment defined by portfo- Was adopted in Borodin et al.|[4] where they proposed a

lio b; produces aortfolio period returns;, i.e., the wealth ~ nNon-universal portfolio strategy naméaticor to exploit
increases by a factor ef=b, x,= 37", b;;z,;. Since we statistical information from historical markets and toakb
re-invest all the wealth, the investment results in muittipi ~ @nce the portfolio according to the mean reversion trading
tive cumulative return. Thus, aftertrading periods, the idea. Gyorfi et al.L[15] recently mtr(.)duce.d a framework of
investment of a portfolio stratedy” produces gortfolio ~ Nonparametric Kemel-based Moving Wind¢#*) strat--
cumulative wealtr8,,, which is increased by a factor of €9y attempting to construct portfolios based on similar
[T, b/ x;, i.e., S, (b",x") =S, [[", b x;, whereS, historical price relatives measured via Euclidean distanc
denotes the initial wealth, which is setdo in this paper. ~ Following the same frameworkyonparametric Nearest

) ) Neighbor(BNN) [1€] strategy locates the similar price rel-
Finally, we formulate the on-line PS problem as a sequenatives via nearest neighbor. Li et dl. [24] further proposed
tial decision task. The portfolio manager aims to designcorrelation-driven Nonparametric learningORN) strat-
a strategy to maximize the portfolio cumulative wealth. eqy by Iocating the similar price relatives via correlation
The portfolios are selected in a sequential fashion. On

each trading period, given the historical information, in- Aggregating algorithms [32] have also been used for On-
cluding all the previous sequences of price relative vactorin® PS. SingerL[30] propose8witching Portfolio(SP),
xi~1={x1,...,x;_1}, and the previous sequences of port-Wh'Ch switches among the underlying strategies according
folio vectorsbi~—'={by, ..., b;_1 }, the manager learnsto 10 a pr_ior distribution. Levina and _Shafer _[23] introduced
decide a new portfolio vectds; for the coming price rel- Gaussian Random WalkGRW), which applies the aggre-
ative vectorx;. The resulting portfolio is scored based on 9ating strategy and switches according to Gaussian distri-
the portfolio period return. This procedure repeats uhtl t bution. Sequential prediction techniques can also be ap-
end of the trading period. The portfolio strategy is scoredpPlied for tackle this task, for exampladd-betg3] predic-
according to the cumulative wealth achieved finally. tion strategy T0 & MO algorithm).

In the above model, we make several general assumptiong: S -
i ) .1 Limitation of existing work
1. Transaction cost: we assume no transaction costs
(commissions, taxes, and slippage, etc.) in the modelyost existing learning to trade strategies (UP, EG, ONS,
2. Market liquidity: we assume each asset is arbitrarilyg and B'™N) often adopt the trend following trading idea
divisible, and one can buy and sell required quantitiesyy assuming that the price relative for the next trading day
at the last closing price of any given trading period;  follows the same trend as today’s price relative, i.e., the
3. Impact cost: we assume the market behavior is nofyinning stocks over others tend to win the following trad-

affected by the trading strategy in our evaluation.  jng day. However, in the short-term, the stock price rel-
The implications and effects of these assumptions are disatives may not follow the previous trends as empirically
cussed in Sectidn 5.3 and Section|5.5. evidenced by Jegadeeshl[20].
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Besides the trend following idea, another trading princi-Traditional learning to trade algorithms, to the best of our
ple, i.e., “/mean reversion”, assumes that if a stock performknowledge, all focus on the first order information of port-
worse than others, it tends to perform better in the next tradfolio vector, while the proposed CWMR algorithm consid-
ing day. Thus, a mean reversion strategy tends to purchases both first and second order information where the addi-
the securities of poor performance and to sell the securitional second order information could benefit the PS task.
ties of good performance in the past. Some strategies that

adopt this idea include CRP![7] and Anticor [4]. Empiri- 4.2 Formulation

cally, the CRP strategy that passively reverses to the mean,; ;s model the portfolio vector for thé" trading day as
often performs worse than Anticor, which actively reverses, saussian distribution with mearcR™ and the diagonal
to the mean and thus can better exploit the fluctuation OEovariance matrix=cR™ ™ with nonzero diagonal ele-
assets [4]. On the other hand, because Anticor heuristicall , o nts,2 and zero for off-diagonal elements. The vajue
transfers the proportion within the portfolio based on Sta’represents the knowledge of asgéh the portfolio. The
tistical correlations, it often produces sub-optimal t&su diagonal covariance matrix teri;; or sz stands for the

A new strategy to exploit the mean reversion property with.; fidence we have in the portfolio mean vajue
a powerful learning method is necessary.
At the beginning ofi*" trading day, we construct a port-

Finally, all existing algorithms only consider the first or- ¢,1i5 1. based on the distributioh” (11, ), bi~A (1, ).
der information of the portfolio vectors, while the second tpap, ;u‘ter the price relative; is re\;ealt'adz the p(;rtfolio

order information (volatility of the portfolio vector) ctii ;.\ ~reases its wealth by a factor bf-x;. It is straight-

provide useful volatility information for the PS task. forward that the portfolio daily return can be viewed as
a random variable of a univariate Gaussian distribution,

4 Confidence Weighted Mean Reversion for D~ (u - x;,x; Xx;). The mean of portfolio daily return

On-Line Porifolio Selection Is the retgrn of the mean portfolio vegtor.and the variance
is proportional to the length of the projectionxofon X.

4.1 Motivation and Overview Now let us update the distribution. According to the mean

Our prcr)]pc;]ser(]:l methOd”'s k:notlvatt_ed by t?e best CRP stra reversion trading idea, the probability of a profitable port

€9y, whic t eoret|c.a y has a nice performance guarang, ;. ¢, ihe next trading dayp with respect to a mean re-

tee [7], and the Anticor strategy, which has a good em- . . ?

- . . . . version threshold is defined as,

pirical performance [4], with their underlying mean rever-

sion trading idea. In the context of portfolio, or multiple Plon(,5) [D < €] = Phyunus) [b-x; < €.

stocks, it implies that better performing stocks tend te per o ) ]

form worse than others in the subsequent trading days, anfg°" Simplicity, we write Pfb-x; <] instead. The manager

the worse performing stocks are inclined to perform betteradjusts the distribution to ensure the probability of a prof

Thus if we want to maximize the portfolio return for the itable portfolio is higher than a confidence leve [0, 1],

next trading day, we could minimize the expected portfo-

lio return with respect to today’s price relative since the Prib-x; <€ > 0.

next price relative tends to revert. This is a bit contra-|f the expected return using th# price relative is less than

intuitive, but according to Lo and MacKinlay [25], the ef- a threshold with high probability, the actual return for the

fectiveness of mean reversion is due to the positive cross--1*" trading day tends to be high with correspondingly

autocovariances across securities. high probability, since the price relative tends to reverse

The proposed method is also inspired by Conﬁdencérhen,foIIowingtheintuition underlying PA algorithms [9]
Weighted (CW) learning [1d, 11], which was originally our algorithm chooses the distribution closest (in the KL di

proposed for classification. The basic idea of CW is toVergence sense) to the current distributfoii;, ;). As
maintain a Gaussian distribution for the classifier, and se2 '€sult, on the+1'* trading day, the algorithm sets the
quentially update the classifier distribution accordingney ~ Parameters of the distribution by solving the following op-
Passive Aggressive (PA) learning [9]. CW takes advantagimization problem:

of both first and second order information of the solution. Qriginal Optimization Problem of CWMR:

To address the limitations described in Secfion 3.1, in this (441, $i11) = argmin  Dg (N (1, ) [N (i, £4))
paper, we present a novel on-line PS method named “Con- o
fidence Weighted Mean Reversion”, or CWMR for short.
We model the portfolio vector as a Gaussian distribution 1€ L.

and sequentially update the distribution according to thender the distribution ofA/ (u, X), the return for the
mean reversion trading idea. Different from CRP and Anti-i** trading day has a Gaussian distribution with mean
cor, CWMR actively exploits the mean reversion propertyu,=u-x; and covariances,=x; x; of diagonal ele-

of the financial market with a powerful learning method. mentss?. Thus, the probability of a profitable portfolio,

st Pru-x; <€ >80 )

436



Confidence Weighted Mean Reversion Strategy for On-Line Pdfolio Selection

PriD<e] = Pr Doyp cc=in] |n this formu|a,&@ Final Optimization Problem 2 (CWMR-Stdev):
— op — oD oD

is a normally distributed random variable, the above prob- 1 defr2

. I3 —2 2
ability equals® (%) where® is the cumulative dis- (#i+1, Yi+1) =argmin o (log (deﬂ‘2) +Tr (Y ))
tribution function of the Gaussian distribution. As a re- +1 ((M' )T (i — u))
sult, we can rewrite the constraint aS;22>o~" (0). 2\ co
Substitutingu,, ando,, by their definitions and rearrang- s.t. e—log (u-x;) >¢ || ¥xil|, X is PSD
ing terms, we obtain the constraimt: u-x;>¢/x,; x;, w-1=1, u>=0.
wherep=®""1 (9). €]

4.3 Algorithms
revious studies. we replace the portfolio return term: rNow let us develop the proposed algorithms based on their
P ! P P I solutions using the typical techniques from convex opti-

b_y its logarithmidog (“'?“') in order to reflect the.”Sk aver  mization [5]. The solutions to the optimizations are shown
sion preference of the investors. Moreover, using logarith. Ny

mic utility function and holding other variables constant, n Pr?posmorﬂé% Propositiofl 2, V\."thl their corresponding

imply loosening the constraint. However, since betnd proofs in Appendix A & B, respectively.

¢ are adjustable, by choosing appropriate values, we caRroposition 1. The solution to the final optimization prob-

weaken the loose effect. Thus, in our formulation we modJem @) (CWMR-Var) is expressed as:

ify the constraint using the logarithmic return function as &1 » B .

e—log (ux;) >p\/x, Tx;. Hip1=Hti — X135 ( o ) , M= 20X,

To this end, we rewrite the above optimization problem as: . o
] o where);; corresponds to the Lagrangian multiplier cal-

Revised Optimization Problem of CWMR: culated by Eq@®) andx; = 11122?‘{ denotes the confidence

weighted price relative average.

(ig1,Dis1) = arg min 1 (1Og (demi) +Tr (2;12)) Proposition 2. The solution to the final optimization prob-

w= 2 det lem @) (CWMR-Stdev) is expressed as:

To make our research more realistic and consistent wit

% ((W — ) = (- u))

X;—X;1 _ _ x-x,bT
pin=pi— A Bi———, BoL =% A=,
st e—log (p-x;) > ¢y/x] Ex; i Xq VU;

.1 = —Nip1 Vit /A2, [ V2P2+4V;
p-1=1 p=0. where V;=x] £;x; and y/T;= "2 S i

denote the variance of the portfolio return for tifé¢ and
For the above revised optimization problem, the constrainti-1t" trading day, and\;,; denotes the Lagrangian mul-
is not convex mZ. We s_uggest t_w_o ways to handle it. The tiplier calculated by Eq(7), andx; = 11:2;; represents
first way is to linearize it by omitting the square root|[11], the confidence weiahted average of teprice relative
i.e.,e—log (u-x;) >¢x, Tx;. As aresult, we have the first 9 9 P :
final optimization problem namedWMR-Var , whose so- nitially, with no information available for the on-line PS
lution is an approximate solution to the original optimiza- task, we simply initialize the portfolio mean to uniform

tion problem[(1). portfolio and the portfolio covariance matr®; to equally
Final Optimization Problem 1 (CWMR-Var): standard deviation-, or equivalent variancel;. One re-

maining issue is that the resultingcan be negative since
detsS, ) we do not consider the non-negativity constraint in the so-
(log ( detzz) +Tr (%, E)) lution. To solve this issue we simply project the resulting

(iv1,Biy1) = arg IZLHEH %
1 - 1 to the simplex domain to ensure the simplex constraint.
t3 ((Ni —p) B (i — u)) Another remaining issue is that although the covariance
St oe—log (i xi) > éx) Tx, matn)_( is non-smgular in Fheory, in real _computatlon, the
covariance matrix2 sometimes may be singular due to the
p-1=1, p=0. . . . .
@ compqter precision. _To avoid this problem and be consis-
tent with the projection of the:,, we try to rescaleé by
Following Crammer et all [10], the second reformulation isnormalizing its maximum value tg}—Q. The final CWMR
to decompos& since it is positive semidefinite (PSD), i.e., algorithm is presented in Figuiré 1.
$—72 with T:Qdiag(A}/Q, N .,A},{Q) Q", where Q is
orthonormal and\q, ..., \,, are the eigenvalues & and
thus Y is also PSD. This reformulation yields the secondThe CWMR algorithm is motivated by the Confidence
final optimization problem name@WMR-Stdev, whose  Weight learning (CW)[[10, 11], thus its formulation and
solution is the exact solution of the original probldrth (1). subsequent derivations are similar. However, they address

4.4 Discussion
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ous portfolio confidenc&; and mean returp;-x;, which

Algorithm 1 The CWMR Algorithms for On-Line PS catch both first and second order information. To the best
INPUT: ¢=®~1 (9): Confidence parameter<0: Mean of our knowledge, none of previous learning to trade algo-
reversion parameter rithms has explicitly exploit the second order information
INITIALIZE: p; =11, 3, = LI, Sp =1 of portfolio vector, however, the second order information
Fort=1,2,... " may contribute to the success of the proposed algorithms.
1. Draw a portfoliob, from A (i, ) 5 Numerical Experiments
2: Receive stock price relativeg; = (21, ..., Ttm) _ _
3: Calculate the daily return and cumulative retup:=  We now examine the efficacy of our proposed approach
Si_1 x (b - xy) by performing extensive experiments on publicly available
4: Calculate the following variables: real and diverse data from stock markets.
1's , . o
M=%, Vi=xZixi, %= 1T2t);t Details of the experimental datagkase summarized in Ta-
_ o ' ble[d. Two of these datasets have been used by in previous
5: Update the portfolio distribution: work (NYSE (O) [1/[4[ 7] 15, 16, 19] and TSE [4]), while
At+1 asin Eq.[(h) the rest datasets are collected by us.
xt—Xel
CWMR-Var Bl = it — Ae1 30 tM,,t L Dataset Region Time frame #days | # Assets
Sip1 = (Et‘l + 211 pdiag (xt)) " NYSE(©O) | US | July3™ 1962 -Dec31°° 1984 | 5651 36
NYSE (N) us Jan1®* 1985 - Jun30*® 2010 | 6431 23
At+1 asin Eq.[[Y) TSE CA Jana'™ 1994 - Dec31%* 1998 | 1259 88
_ \/W STI SG Jan1*" 2005 - Jun30*® 2010 | 1404 22
VU, = et ;Hld) AR MSCI Global | Oct17*" 2005 - Oct15*" 2010 | 1304 4
CWMR-Stdev o — %1 -
frt1 = p — A1 30 s . Table 1: Summary of 5 real datasets from various markets.
— (-1 At -
_ B = (2* t¢ md'agz (Xt)) In this paper, we measure investment performance using
6: Normalizey; 1 andX;,: the most common metrigumulative wealth Other de-
. 2 341 tailed experiments, including those on risk adjusted retur
= arg min — , 2 = — - ! .
pee = arg min = a7, B m2Tr (Be41) are presented in the long version.

) ! ) For our approach, we provide deterministic and stochastic
F_|gure 1: The propqsed Confidence Weighted Mean Revet;q <ions. For the former (CWMR-Var and CWMR-Stdev),
sion (CWMR) algorithms. we eliminate the randomness of the portfolio (in reality, no
investors like random portfolio) and stabilize experiment
. . . . performance, by deterministically drawing a portfoliorfro
different problems since CWMR aims to handle on-line portfolio Gaussian distribution, i.e., directly set thetho-

portfolio selection while CW focuses on classification. Al- .| b=y For the latter (CWMR-Var-s and CWMR-Stdev-
though both objectives adopt KL divergence to measure thg), we repeat it fob0 times and provide their average value.

closeness between two distributions, their constraints re.. - . . .
. v Since the stochastic portfolio may be negative, the projec-
flect that they are different problems oriented. To be sp P y 9 pro)

e . -
o o - “~tion to the simplex domain becomes necessary. We set the
cific, CW’s constraint is the probability of a correct predic P y

. . v . arameters empirically without tuning, i.e., confidence pa
tion, while CWMR’s constraint is the probability of a mean P P y 9 P

reversion profitabl tfolio ol imblex constraireT rameterp=2 or equivalently confidence levé-=95%, and
eversior pc3 avle portiolio plus a SIMpIEX CoNSwaIMEL ., o 5 reversion parameiet—0.5. Sectior 5.2 will exam-
formulations’ differences result in different derivatgn

ine the parameter sensitivity.

Since portfolio mean is our main concern for the on-line PS\Ne compare the proposed strategy with several existing

p;okl)lerin, 'P th('js tsectlrc: nr,nwe n;alnrlt); Fl)im\rgde arp]r(:allr]["nilpary strategies (c.f., Sectidd 3), whose parameters were set ac-
analysis of update schemes of portfolio mgao reflect its cording to the suggestions from their respective studies.

underlying mean reversion trading idea. Both CWMR-Var
and CWMR-Stdev have the same update equation for thg.1 Cumulative Wealth

i i — Xp—X¢1 i i- . . .
portfolio mean, i.€. iy 1=(1¢—~Ar1 13 B Itis obvi- g firgt experiment evaluates the cumulative wealth at the
ous thath:, is non-negative an; is PSD. The denom- o, o¢ the trading period. From the results illustrated in Ta
inator termx;—x;1 can be viewed as excess return VeCtorbIe[Z@ we find that CWMR (both deterministic CWMR-
of asset pool for previous trading day, wharerepresents  y/,c\yMR-Stdev and stochastic CWMR-Var-s/CWMR-
the confidence Welghted mean return. Holding other term_%tdev—s) significantly outperform all competitors, indhugl
constant, the portfolio mean tends to move towards previppiicor andBNN, which are the state-of-the-art techniques.

ous one while the magnitude is negatively related to theAS widely done in the fund management industry [14], we
previous excess return, which is in effect the mean rever- il

sion trading idea. At the same time, the negative move- 1a| datasets and their compositions can be downloaded from
ments are dynamically adjusted by optimel,;, previ- |http://www.cais.ntu.edu.sg/ ~libin/portfolios
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also performed statistical tests to examine if the claimed e we can observe that CWMR costs much less computa-
cess return can be generated by simple luck. As the resultfonal time than the three performance-competing strate-
(Table[2(B)) show, the possibility for achieving the excessgies, which validates its computational efficiency.

return due to simple luck is only.01% on the TSE dataset
and almost% on other datasets. Finally, we also plot the o
wealth curve of the cumulative wealth in Figdfe 3. TheAny PS strategy claiming excess returns should be care-
figures show that the proposed CWMR algorithm performdully scrutinized, including CWMR. To recall, we had
consistently over the entire trading period. These result§1ade several assumptions in Secfion 2 regarding transac-
show that the CWMR approach is a promising and reliabldion costs, market liquidity, and impact cost, which would

PS technique to achieve high return with high confidence. &ffect the practical deployment of the proposed strategy. |
noring transaction costs can reduce the problem complex-

5.2 Parameter Sensitivity ity, which is common in existing studies. In Sectionl5.3, we
We now evaluate how different choices of the parameter@ad examined the effect of varying transaction costs with
affect the performance of CWMR. Since confidence paesults showing that CWMR can withstand moderate trans-
rameters generally does not have a decisive influence orction costs. The second assumption is that the market is
the final performance, we evaluate the scalability of theliquid and one can trade any quantity at quoted price. In
proposed approach with respect to the negative mean ré1€ experiments, we have tried to minimize the effect of
version sensitivity—e. Figure[3 depicts the results, plus the market liquidity by arbitrary choosing stocks from the
the final cumulative wealth achieved by Market and BCRPMarket index, which usually have large capitalization and
strategy for comparison. The figures show clearly that fi-thus have a high market liquidity. The last assumption is
nal cumulative wealth increases as the negative sengitivitthat portfolio has no impact to the market. However, as we
grows, and becomes stable as the negative sensitivity eXPServed, the portfolio increases astronomically and dioul
ceeds certain critical values, indicating that the power ofnevitably impact the market. In reality, we can reduce the
mean reversion has been thoroughly exploited by our strafna@rket impact by controlling the size of the portfolio, as
egy. Needless to say, even though our parameter settin&{p'ca”y done by some quantitative funds. Finally, we note

i.e., —e=0.5, is not thebestsetting, the proposed CWMR @dain, even in such theoretically “perfect market” typlial
still significantly surpasses existing approaches. adopted in previous studies, none has ever claimed such

eye-catching performance on the benchmark testbeds.

5.5 Discussion and Thread of Validity

5.3 Practical Issues: Transaction Cost . S
Back tests in the historical market may suffer from “data-

To evaluate the performance when the market model i%nooping bias” issue. In particular, following previous

not friction-less, we conduct empirical experiments on theorks, in our datasets the composition stocks never deliste
proposed CWMR strategy with proportional transactionfrom the markets, i.e., survived over the entire trading pe-
costs[2| 4]. Figurél5 shows the results on the five dataset$yq. Another possible “data-snooping bias” is the dataset
with varying transaction costs frofs to 1% (we extend  ggjection. In fact, we developed CWMR approaches based
z-axis on the STI dataset since the break-even level &Xsolely on the widely adopted NYSE (O) dataset, and col-

ceedsl %), plus the cumulative wealth achieved by Market, jocted other three datasets (NYSE (N), STI, and MSCI) af-
BCRP and the state of the arts (Anticor aBt™). Aswe (o1 the algorithm was fully developed.

can observe, the performance with transaction costs is mar- .
ket dependent, in most cases, especially with small rate® ~Conclusions
CWMR outperforms the state of the arts. In other casesThis paper proposed a novel on-line portfolio selection
though both powered by mean reversion, CWMR underperstrategy named “Confidence Weighted Mean Reversion”
forms Anticor, showing that aggressiveness results in moregCWMR), which successfully applied machine learning
transaction costs. Nevertheless, the results comparéd witechniques for on-line portfolio selection by exploitirget
the benchmarks clearly demonstrate that on most datasetsean reversion property of the financial markets. Unlike
(except NYSE (N)), the performance is considerably robusthe existing techniques using only the first order informa-
with respect to the transaction costs, where the break-evefon, CWMR exploits both the first and second order infor-
rates are always abowe6% (around0.2% on NYSE (N)).  mation of the portfolio vectors. Empirically CWMR sur-
Thus, CWMR can withstand small transaction costs evempassed all the competing existing techniques on various up-
though we do not explicitly tackle it in our study. to-date testbeds from real markets. Future work will study
theoretical bounds of the logarithmic wealth achieved by

CWMR and its performance with high transaction costs.
Other than the promising cumulative wealth performance,
CWMR also runs quite efficiently. Table 2|c) shows Acknowledgments
the computational time of the CWMR-Stdev and threeThis work was supported by Singapore MOE ARC tier-
performance-competing strategies (AntidaFK andBNN) 1 research grant (RG67/07) and tier-2 research grant
on all datasets with the same platform. From the table(T208B2203).

5.4 Computational Time
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Total Wealth Achieved
=

[ Methods [ NYSE(O) | NYSE(N) | TSE [ ST [ MSCI | [ Stat. Atr. [ NYSE(O) | NYSE(N) [ TSE | ST | MSCI |
Market 1450 18.06 1.61 184 1.03 Size 5651 6431 1259 1404 1304
Best-stock 54.14 83.51 6.28 3.67 1.05 MER (CWMR) | 0.0070 0.0027 | 0.0057 | 0.0137 | 0.0040
BCRP 250.60 120.32 6.78 9.01 1.11 MER (Market) 0.0005 0.0005 | 0.0004 | 0.0005 | 0.0001
P 26.68 31.49 1.60 2.85 1.09 Winning Ratio 0.5636 0.5197 | 0.5616 | 0.6731 | 0.6511
EG 27.09 31.00 1.59 2.80 1.09 a 0.0064 0.0021 | 0.0051 | 0.0129 | 0.0039
ONS 109.19 21.59 1.62 7.95 1.26 B 1.2132 1.1377 | 15182 | 1.5640 | 1.0358
SP 27.08 31.55 1.60 2.83 1.09 {-statistics 15.9256 5.0278 | 3.8044 | 14.1282 | 13.8449
'\GAEW 12173;7530 ig-gi 1-% 5'32 i-(l)g p-value 0.0000 0.0000 | 0.0001 | 0.0000 | 0.0000
Anticor 1.71E+07 | 2.10E+05| 28.77 | 628.89 3.10 (b) Statistical Test of CWMR-Stdev
BK 1.08E+09 | 4.64E+03 | 1.62 22.59 2.84
BNN 3.35E+11 | 6.80E+04 | 2.27 | 43109 | 9529 |[Methods [ NYSE(O) [ NYSEQ) | TSE | STI [ WMSCI |
CWMR-Var 6.40E+15 | 1.42E+06 | 324.65 | 6.79E+07 | 155.76 | | Anticor 1645 751 2118 284 8
CWMR-Stdev | 6.20E+15 | 1.28E+06 | 322.52 | 6.57E+07 | 155.82 || B 7.89E+04 | 5.78E+04 | 6.35E+03 | 4.38E+03 | 1.36E+03
CWMR-Var-s 4.31E+15 | 1.23E+06 | 318.58 | 4.54E+07 | 90.23 B 4.93E+04 | 3.39E+04 | 1.32E+04| 5.50E+03 | 1.46E+03
CWMR-Stdev-s | 4.32E+15 | 1.11E+06 | 318.70 | 4.52E+07 | 90.04 |[ CWMR | 123 68 | 162 | 14 | 2 |

(@) Cumulative Wealth

Figure 2: Performance evaluation: (a). Cumulative weaithieved by various trading strategies on the five datasdts. T
top two best results in each dataset are highlighted in lmoit] {b). Statistical-test of the performance of the CWMR-Stdev
on the stock datasets. MER denotes the Mean Excess Retur€amputational time costs (seconds) on the five datasets
achieved by performance comparable state-of-the-aitigadrategies.
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Figure 3: Trend of cumulative wealth achieved by proposedVlRAStdev and various strategies during the entire trading
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Appendix A: Proof of Proposition 1] Appendix B: Proof of Proposition [2

Proof. First let us replace the log return function Proof. Following the same procedure as the proof of
using its first order Taylor expansion at;, i.e., Propositior[]l, we adopt the Taylor expansion of the log
log (u-x;) ~log (p1i-x;) +W Moreover, since con- function and ignore the non-negativity of the portfolio vec
sidering the non-negativity constraint introduces too muc tor first.

complexity, at this stage we solve the problem without con-The Lagrangian for the optimizatiofl (3) is,

sidering it, and instead later we will project the solution t 1 de s s
simplex domain to obtain the required portfolio. ( (d t'r2) +Tr (C7°0%) o+ (pa—p) - Y5 (ui—u))
The Lagrangian for optimization problefd (2) is,

detEi _ _
L=3 (log ( — ) +TC () + () " 2 (Hi*ru))

A <¢XIEXi+IOg (pi-xi) +W*E) +n (p1-1).

7 1

(010 tog (o) + ) ) )

7R

Taking the gradient of the Lagrangian with respect to
1 and setting it to zero, we get the update of, 1,

Wit1=pi—X? ()\M";( +n1), where Y; is non-singular.

Taking the gradient of the Lagrangian with respeqi tand

. T B B
setting it to zero, we can get the update@f; : i1 = Multiplying both sides by1", we get, =1
< . 17?2 ()\ Xi +771) = n = —2%_ wherex; =
()\ Xi 4 nl) whereX; is assumed to be non- t i X

1TT?xL . . .
srngular. MuItrpIyrng both sides of the update witi, ~ 5wy7 IS the confidence weighted averageitf price

we can gety, ie,1 = 1175, ()\ x5 +771) _,  relative. Plugging it to the update qf;,,, we get,
Wit1=1i—AYX? "L X1 Moreover, calculating the deriva-

N = A%, wherex;= L 7+ denotes the confidence tive of T and set i to zero, we also have the update of
weighted average of th&" price relative. Pluggrngly to T2, TH—I T—2+)\¢ TT2 — . The two updates can
— . . Xi—X4 7 417

the update Ofi;1, We can getu+1=p; —A%; ( i X ) : be expressed in terms of the covariance matrix as follows,
Moreover, calculating the derivative with respecBicand e xiX]
setting it to zero, we can also have the updat®pf, , i.e., i1 =pi— AT s Emzz +>\¢ﬁ~ (6)

_ T . i Xq i+1X5
1 =%;"+2¢ x;x]. Thus, the updates fqr;1; and  Here, X, is PSD and non-singular.
¥4 are represented as: _ o

Xi—%i I - Now let us solve the Lagrangian multiplier us-

Pip1=pi— AN, ( o ) T=E H200xix; . (4 ing its KKT  condition. We compute the in-
Now let us solve the Lagrange multipliés, using the Verse using Woodbury equation. [13]%;y, =
KKT conditions. The inverse of th&;, can also be » _ ¥, 2 x5 Then,
calculated using Woodbury equatian [[13], i.&;; = VX Bkt Adx] B

- Eixi%szi. The KKT conditionsimply 1€t M; = p; - xi, Vi = x{ 3y, andTU,- = x; Bi11x;, and

that either\=0, and no update is needed, or the constrainf"ultiPlying the update 2ﬁi+1 by x; (|§ft) andx; (right),

|£ orggmza(tjtrs\r/t KId)brs an equ?lrtytaftt?]r the upltiate TakrngfWe getU;=V,-V; (\ﬁﬁ/ A¢) Vi which can be solved
g. (@) and Woodbury equation to the equality version o _  AVigt/VEFIAT,

the constraint and rearranging the terms, we have: for U; to obtain/U;= ) - The KKT

condition implies that eithex=0, and no update is needed,

2

aX”+bA+c=0, ®)  or the constraint in the optimization problem Eg. (3) is an
with « 2¢%272¢;$?2>’<i><?&1, b = WXT?;T“ +  equality after the update. Substitute Hd. (6) and Woodbury
26V (e—log M;), ¢ = g_log M, — ¢V;, andM, ex equation to 'thf equ;lﬁrty verts;on .of the constraint, after
is the return mean ant@:xiT 3;x; denotes the return vari- rearranging in terms o1, we obtain:
ance of thei*” trading day. Above Eq[5) is clearly a aX’ +bA+c=0, (7
guadratic equation if\. We can calculate its rgot&l with  a _ (\/7,—:27,x72i1 L Ve 2y
and~;, as follows, v, ==tEv2=dac -, —bovlb—dac M? i i
To ensure the non-negativity of the Lagrangran multi- b = 2(e—logM;) (% + VT¢2) and

plier, we can project the value ), +o0), Aiy1 = _ (e —log M;)*> — Vi¢?. Let ;1 and ;2 be its

max {7i1, Yz, 0} NN Yy
In practice, since we only adopt the diagonal elements of®0tS: thus~ii= ; Vie= To

the covariance matrix, itis equivalentto computing, as ~ €nsure the non- negatrvrty of the Lagrangran multrplrer we
Eq. [B) but updating the covariance matrix with the follow- Project the value t0, +00), Aiy1 = max{v, viz, 0}-

ing rule insteady; !, = 27" + 2,1 4diag (x;), where  Similar to Propositior[]l we can update the diagonal co-
diag(x;) denotes the dragonal matrix with the elements ofyariance matrix aszz-t—l =14 ¢ Ait1 drag2 (x;). O
x; on its main diagonal. O
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