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Abstract— In this paper we introduce a form of cooperation
among agents based on exchanging sets of rules. In principle,
the approach extends to agent societies a feature which is proper
of human societies, i.e., the cultural transmission of abilities.
However, acquiring knowledge from untrustworthy agents should
be avoided, and the new knowledge should be evaluated according
to its usefulness. After discussing the general principles of our
approach, we present a prototypical implementation.

I. I NTRODUCTION

Adaptive autonomous agents are capable of adapting their
behavior according to changes in the environment. Then,
adaptive agents must take profit of past experiences using some
learning approach. As it is widely acknowledged, the effects
of learning should include at least one of the following:

• The range of behaviors is expanded: the agent can do
more.

• The accuracy on tasks is improved: the agent can do
things better.

• The speed is improved: the agent can do things faster.

According to [16] [2], three learning techniques are usable
to develop adaptive autonomous agents: reinforcement learn-
ing, models learning and classifier systems.

In reinforcement learning, the mechanism consists in as-
signing rewards (weights) to actions that contribute to the
resolution of a problem. This approach has been used for
instance to improve coordination between autonomous agents
[17]. In models learning, agents try to find causal relations
between their actions and the events occurring in the en-
vironment. In general, they use either probabilistic models
or logical models. The original ideas by [16] have then
been widely developed in various approaches. Induction (and
also inductive logic programming) is often considered as a
particular form of models learning. Classification is the most
common form of automatic learning. In the agent context, an
agent can try to classify applicable rules by setting priorities
and then updating these priorities according to the results
achieved [12]. Memory-based reasoning (MBR) is based on
the idea that if a given action took place in the past in a
given situations and gave good results, it will be useful in a
new situations′ similar to s. Incremental learning techniques

have been recently introduced for improving MBR in dynamic
applications where data arrive continuously [9].

In a multi-agent setting however, other forms of learning
can be introduced that, though related to the classical ones,
are specifically tailored to multi-agent systems (MAS) topics
and issues. For instance in [10], in order to recall practical
solutions to coordination problems, agents learn coordinated
procedures from execution traces and store them into a case-
base that is organized around expectations about other agents.
Agents also learn better estimates for how likely individual
actions are to succeed in order to improve the quality of
decisions when planning, communicating, and adapting plans.

In this paper we discuss a learning approach useful to
improve adaptive behavior in computational logic agents. We
assume that whatever the formalism, these agents have a
rule-based knowledge base. The approach is centered on the
possibility of exchanging sets of rules between agents. These
sets of rules can either define a procedure, or constitute a
module for coping with some sort of situation, or be just a
segment of a knowledge base. However, agents should then
be able to evaluate how useful the new knowledge is. To this
extent, we propose two techniques.

The first technique associates to the acquired knowledge a
specific objective, meaning that the new rules should help the
agent to reach that objective. After a while, the agent will
evaluate whether (or to which extent) the objective has been
reached. If the evaluation is unsatisfactory, the new knowledge
can be discarded. There is a clear similarity with reinforcement
learning, where here the action that is to be evaluated is the
use of the new knowledge.

The second technique consists in acquiring the same knowl-
edge from several other agents, and then comparing the results.
The comparison is made based on a meta-specification, i.e.,
based for instance on efficiency, or on a measure of similarity
of the results. The comparison will state which versions pass
a given threshold, and which don’t. The unsatisfactory ones
will be discarded.

In a real application, a directory agent can be employed so
as to inform agents of where to find the required knowledge.
This directory agent may in principle be notified of the
updates of the level of trust performed by agents that have
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acquired a piece of knowledge from a certain agent, and thus
compute and exhibit a value that represent thereputation
of that agent. To this aim, the directory agent will employ
suitable algorithms (for instance those presented in [19])to
assess the past behavior of agents, so as to allow avoidance
of untrustworthy agents in future.

In Section 2 we discuss the proposed approach at some
length. In Section 4 we present a prototypical implementation
of the approach in the agent-oriented programming language
DALI [3] [6], after shortly summarizing the main DALI fea-
tures (Section 3). In DALI, all the above can take profit from
the DALI communication architecture, that allows the agent
to filter incoming and out-coming messages according to any
kind of constraint, including trust [5]. Then for instance,new
knowledge will be learned by trusted agents only; successful
evaluation of the acquired knowledge can lead to an increase
of the level of trust of the sending agent, while a decision to
discard that knowledge can also result in a decrease of the
level of trust. Moreover, the trial of different version of the
same knowledge can be made in parallel, by exploiting the
DALI children generation capability [7] that allows the agent
to create sub-agents on specific tasks.

II. L EARNING BY RULE EXCHANGE

Learning may allow agents to survive and reach their goals
in environments where a static knowledge is insufficient. The
environmental context changes, cooperative or competitive
agents can appear or disappear, ask for information, require
resources, propose unknown goals and actions. Then, agents
may try to improve their potentiality by interacting with other
entities so as to perform unknown or difficult tasks.

One of the key features of MAS is the ability of “sub-
contracting” computations to agents that may possess the
ability to perform them. More generally, agents can try to
achieve a goal by means of cooperative distributed problem-
solving. However, on the one hand not all tasks can be
delegated and on the other hand agents may need or may
want to acquire new abilities to cope with unknown situations.
In our view, an improvement in the effectiveness of MAS
may consist in introducing a key feature of human societies,
i.e., cultural transmission of abilities. Without this possibility,
agents are limited under two important respects:

• they are unable to expand the set of perceptions they can
recognize, elaborate and react to;

• they are unable to expand their range of expertise.

Indeed, the flexibility and thus the “intelligence” of agents
will increase if they become able not only to refine but also
to enlarge their own capabilities. The need of acquiring new
knowledge can be recognized by an agent at least in relation
to the following situations:

1) There is an objective that the agent has been unable
to reach: it has been unable to relate a plan (in the
KGP perspective [13]) or intention (in a BDI perspective
[18]) to that objective (or desire) and it has to acquire

new knowledge (beliefs). As a particular case, there is a
situation the agent is unable to cope with; for instance,
there is an exogenuos event that the agent does not
recognize.

2) There is some kind of computation that the agent is
unable to perform.

Assuming that the agent establishes that it cannot resort
to cooperation to get its task performed, it can still resort
to cooperation in order to try to acquire the necessary piece
of knowledge from another agent. The problems involved in
this issue are at least the following: how to ask for what
the agent needs; how to evaluate the actual usefulness of
the new knowledge; and, how this kind of acquisition can be
semantically justified in a logical agent.

In this context, we make the simplifying assumption that
agents speak the same language, and thus we overlook the
problem of ontologies that in an actual implementation would
of course arise. We also assume that, whatever the underlying
formalism, agents have a rule-based knowledge base. Two
feasible ways of asking other agents can be:

• Ask by keyword, assuming that other agents have a way
of matching the keyword with a piece of knowledge.
Some kind of pattern-matching will have to be used by
an agent in order to establish whether it can answer a
request.

• Ask by predicate name.

An agent that would accept to give the requested knowl-
edge, should answer by providing, together with the piece of
knowledge, some kind of “control” information that should
include at least:

• A specification of the way of using that knowledge, that
specifies whether the rules apply automatically, e.g., in
the case of reactive rules, or if there is either a predicate
or a procedure to be invoked.

• In the former case, specify the format of the external
event that triggers the rules; in the latter, specifying the
invocation pattern of the predicate/procedure.

The details of the above are left to the specific implemen-
tation, related to the language/formalism in which the agents
are expressed. Notice that it is not required that the involved
agents be based on the same inference mechanism. However,
they should be somehow “compatible”, i.e., a prolog-based
agent might acquire an Answer-Set program [21] and then
use it, assuming that it is able to invoke an Answer-Set solver.
Clearly, the exchanged piece of knowledge should include all
the relevant rules, i.e., all the rules which are needed (directly
or indirectly [8]) for actually exploiting that knowledge.

At this stage, the receiver agent has to face two problems:

(a) Establish whether the new knowledge is consistent, or
at least compatible, with its knowledge base. This is
a topic which has long been studied in belief revision
[1]. However, we assume that the new knowledge is not
directly incorporated to the existing knowledge base.
On the contrary, in the first stage the new knowledge
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is distinct from the existing well-established knowledge
base, as it must be evaluated before being accepted.

(b) Establish whether the new knowledge is actually useful
to the purposes for which it has been acquired. If
so, it can possibly be asserted in the knowledge base.
Otherwise, it can possibly be discarded.

Then, agents should be able to evaluate how useful the new
knowledge is. Similarly to reinforcement learning, techniques
must be identified so as to make this evaluation feasible with
reasonable efficiency. Simple techniques to cope with this
problem can be the following.

1) The new knowledge had been acquired in order to reach
an objective: the agent can confirm/discharge the new
knowledge according to its reaching/not reaching the
objective. This evaluation can be related to additional
parameters, like e.g. time, amount of resources needed,
quality of results.

2) The new knowledge has been acquired for performing a
computation: the agent can acquire the same knowledge
by several sources, and compare the results. Results
which are not “sufficiently good” (given some sort of
evaluation) lead to the elimination of the related piece
of knowledge. The others are used (compared/combined)
to produce the accepted result.

A. Semantics of Learning by Rule Exchange

The semantics of Computational Logic agent languages may
in principle be expressed as outlined in [3] for the DALI
language. I.e., given programPAg, the semantics is based on
the following.

1) An initialization stepwherePAg is transformed into a
corresponding programP0 by means of some sort of
knowledge compilation (which can be understood as a
rewriting of the program in an intermediate language).

2) A sequence of evolution steps, where reception of each
event is understood as a transformation ofPi into Pi+1,
where the transformation specifies how the event affects
the agent program (e.g., it is recorded).

Then, one has a Program Evolution SequencePE =
[P0, ..., Pn] and a corresponding Semantic Evolution Sequence
[M0, ...,Mn] whereMi is the semantic account ofPi (in [3]
Mi is the model ofPi).

This semantic account can be adapted by transforming the
initialization step into a more general knowledge compilation
step, to be performed:

(i) At the initialization stage, as before.
(ii) Upon reception of new knowledge.

(iii) In consequence to the decision to accept/reject the new
knowledge.

III. DALI IN A NUTSHELL

DALI [3] [6] [20] is an Active Logic Programming lan-
guage designed in the line of [14] for executable specification
of logical agents. The Horn-clause language is a subset of

DALI, which however includes the following agent-oriented
features. The reactive and proactive behavior of the DALI
agent is triggered by several kinds of events: external events,
internal, present and past events. All the events and actions
are timestamped, so as to record when they occurred.

An external event is a particular stimulus perceived by the
agent from the environment. In fact, we define the set of
external events perceived by the agent from timet1 to time
tn as a setE = {e1 : t1, ..., en : tn} whereE ⊆ S, and S

is the set of the external stimuli that the agent can possibly
perceive.

A single external eventei is an atom indicated with a
particular postfix in order to be distinguished from other DALI
language events. More precisely:

Definition 1 (External Event):An external event is syntac-
tically indicated by postfixE and it is defined as:
ExtEvent ::=<< AtomE >> |seq << AtomE >>

where anAtom is a predicate symbol applied to a sequence of
termsand aterm is either a constant or a variable or a function
symbol applied in turn to a sequence of terms.

External events allow an agent to react through a particular
kind of rules, reactive rules, aimed at interacting with the
external environment. When an event comes into the agent
from its “external world”, the agent can perceive it and decide
to react. The reaction is defined by a reactive rule which has
in its head that external event. The special token:>, used
instead of: −, indicates that reactive rules performs forward
reasoning.

Definition 2 (Reactive rule):A reactive rule has the form:
ExtEventE :> Body or
ExtEvent1E , ..., ExtEventnE :> Body

The agent remembers to have reacted by converting the
external event into apast event(time-stamped). Operationally,
if an incoming external event is recognized, i.e., corresponds
to the head of a reactive rule, it is added into a list calledEV

and consumed according to the arrival order, unless priorities
are specified.

The internal events define a kind of “individuality” of a
DALI agent, making it proactive independently of the envi-
ronment, of the user and of the other agents, and allowing it
to manipulate and revise its knowledge. More precisely:

Definition 3 (Internal Event):An internal event is syntac-
tically indicated by postfixI:
InternalEvent ::=<< AtomI >>

The internal event mechanism implies the definition of two
rules. The first one contains the conditions (knowledge, past
events, procedures, etc.) that must be true so that the reaction
(in the second rule) may happen:
IntEvent : −Conditions

IntEventI :> Body

The goal defined in the first rule is automatically attempted
with a default frequency customizable by means of directives
in the initialization file. Whenever it succeeds, the internal
event “has happened”, and the reaction (second rule) is trig-
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gered as if it were an external one. A DALI agent is able to
build a plan in order to reach an objective, by using internal
events of a particular kind, calledplanning goals.

Actions are the agent’s way of affecting the environment,
possibly in reaction to either an external or internal event. An
action in DALI can be also a message sent by an agent to
another one.

Definition 4 (Action): An action is syntactically indicated
by postfixA:
Action ::=

<< AtomA >> |messageA << Atom,Atom >>

Actions take place in the body of rules.

If an action has preconditions, they are defined by action
rules, emphasized by a new token:

Definition 5 (Action rule):An action rule has the form:
Action :< Preconditions.

Similarly to external and internal events, actions are
recorded as past actions.

Past events represent the agent’s “memory”, that makes it
capable to perform future activities while having experience
of previous events, and of its own previous conclusions. Past
events are kept for a certain default amount of time, that can
be modified by the user through a suitable directive in the
initialization file. A past event is syntactically indicated by
the postfixP .

Procedurally, DALI is based on an Extended Resolution
Procedure that interleaves different activities, and can be tuned
by the user via directives.

The operational semantics of DALI is based on Dialogue
Games Theory [4] [20]: the DALI Interpreter is modeled as a
set of cooperating players. By means of this approach one is
able to prove formal properies of the language in the form of
properties that the game will necessarily fulfil.

A. DALI Communication Architecture

The DALI communication architecture consists of four
levels. The first and last levels implement the DALI/FIPA
communication protocol and a filter on communication, i.e. a
set of rules that decide whether or not receive (told check level)
or send a message (tell check level). The DALI communication
filter is specified by means of meta-level rules defining the
distinguished predicatestell and told. Whenever a message
is received, with content partprimitive(Content,Sender)the
DALI interpreter automatically looks for a correspondingtold
rule. If such a rule is found, the interpreter attempts to prove
told(Sender, primitive(Content)). If this goal succeeds,
then the message is accepted, andprimitive(Content)) is
added to the set of the external events incoming into the
receiver agent. Otherwise, the message is discarded. Sym-
metrically, the messages that an agent sends are subjected
to a check viatell rules. The second level includes a meta-
reasoning layer, that tries to understand message contents,
possibly based on ontologies and/or on forms of commonsense
reasoning. The third level consists of the DALI interpreter.

Environment

META layer

TOLD layer

Reactive module

Learning module

TELL module

Proactive module

Planning module

Action module

module
Past 

sensing

cycle

DALI internal interpreter

Agent

Fig. 1. DALI communication architecture

B. Children generation capability

We have introduced in the DALI framework the ability to
generate children agents [7]. An important motivation for this
improvement has been the need for our agents to face not-
trivial planning problems by means of the invocation of a
performant planner, such as for instance an Answer Set Solver.
[11] [15] [21]. As a planning process can require a significant
amount of time, the possibility for an agent to assign this
time-expensive activity to its children can constitute a real
advantage.

Another motivation for generating children is, more gen-
erally, that of splitting an agent goal into subgoals to be
delegated to children. This possibly with the aim of obtaining
different results by means of different strategies, and then
comparing the various alternatives and choosing the best ones.
The father provides the child with all the information useful
to find the solution and, optionally, with an amount of time
within which to resolve the assigned problem.

IV. BASIC LEARNING MECHANISMS

Agents that adopt forms of learning to improve their be-
havior can in perspective deal with more complex jobs, but
expose themselves to some risks. The learned information
could be either intentionally or accidentally wrong or simply
not consistent with the agent specialization. Agents knowledge
is generally divided into a set of facts and rules: the former
represent the agent “beliefs” about itself and the world, while
the latter determine the entity behavior. If learning one ormore
beliefs (plain facts) implies a certain degree of risk, adding
rules coming from other agents to the knowledge base can

WOA 2005 4



very dangerous. Thus, in our view it is necessary to elaborate
different learning strategies for beliefs and rules, reserving to
the latter case a more sophisticated acquisition process. In the
following subsections we will first propose an approach to
manage the exchange of facts and then we will discuss the
more general problem of rules learning.

A. Beliefs learning

The belief base of DALI agents is composed of the facts
which are present in the agent logic program, dynamically
augmented by past events. Past events keep trace of what the
agent has done/observed before: external and internal events,
performed actions, reached internal conclusions and pursued
planning activities.

Past events also represent external world knowledge.
In fact, a DALI agent can ask for some facts
by using the primitives is a fact(Fact, Ag) and
query ref(Fact,Match number,Ag) where: Fact is
the desired information,Match number represents the
number of matches that the agent intends to receive andAg

is the name of the agent asking for the fact. While the first
primitive allows the entity to require a ground fact, the second
one supports the requests of non-ground information. Then,
if for instance agentdavewants to know who is the lover of
susy, it can send the following message to, e.g.,susy’s friend
kate:

messageA(kate, query ref(love(Y, susy), 1, dave)).

If the beliefs base of kate contains only the fact
love(susy, peter), no matching is directly found. This prob-
lem has been overcome in DALI via a meta-level support
that, by using both ontologies and properties of relations,tries
to “understand” message contents (namely, message contents
are automatically subjected to a proceduremeta which is
predefined though user-customizable). In this case, if the
ontology of kate contains information on the symmetry of
the predicate ’love’,loves(Y, susy) can be matched with
love(susy, peter) and the agentkatewill return the result:

send message to(dave,

inform(query ref(loves(Y, susy), 1),
values([loves(susy, peter)]), kate),
italian, [])

Once received the desired information, the agentdavewill
update its beliefs by adding, as a past event, the fact:

past event(loves(susy, peter), 479379, kate).

where first value is the information aboutsusyandpeter, the
second value is the acquisition time and the third value keeps
track of the information source. The sender agent name is
relevant: if trust in this agent reliability will be reducedunder
a certain threshold by negative cooperation experiences, all
partial beliefs coming from it could be eliminated. At the same
time, thetold filter will get rid of at priori each communication
act sent by the unreliable agent:

told(Sender, query ref(Fact,Match number)) : −
not(unreliableP (Sender agent)).

Another direct acquisition beliefs method in DALI agent is
based on theconfirm primitive. This method allows an agent
to send a fact to another one. Also in this case, the fact will be
added to the agent beliefs only if the message will overcome
the told filter. For example, if the agentdave intends to send
to peter the informationbought(car, red), it will send the
message:

messageA(peter, confirm(bought(car, red), dave)).

and the peter beliefs will contain the past event:
past event(bought(car, red), 479379, dave).

A fact can be eliminated from the agent knowledge base by
using thedisconfirmprimitive.

B. Rules learning

The rule-exchange approach to learning proposed in this
paper is a first step into the complex world of learning rules.
For instance, a DALI agent, when receiving a stimulus whose
reaction is unknown, can ask other agents for acquiring rules
capable of suggesting the right behavior to adopt. While
retrieving and adding rules to the knowledge base is not
difficult, the relevant problem of learning a correct information
remains.

Intelligent agents can have different specializations for
different contexts and a learning rules process cannot ignore
this. Moreover, even agents having the same specializations
can adopt behavioral rules which are mutually inconsistent.
What could the solution be?

In the prototypical implementation that we present here,
the learning rules process includes several steps starting
from a verification of the source reliability. The solution is
based on the introduction of amediator agentthat we call
yellow rules agent, keeping track of the agents specializa-
tion and reliability. When an entity needs to learn something,
it asks theyellow rules agent for the names agents having
the same specialization and being more reliable.

Once obtained this information, the agent may acquire the
desired knowledge by some of them. If the agent will finally
decide to incorporate the learned rules in its program because
they work correctly, it will also send toyellow rules agent

a message indicating satisfaction. This will result in an incre-
ment of the reliability of the agent that has provided the rules.
A negative experience will imply an unfavorable dispatch. In
the present implementation agents return a numeric value in-
dicating the “level of trust”. We mean to add also the objective
that the receiver agent meant to reach via the new knowledge,
so as to conditionally rate agents with respect to this point.
This in order to avoid a low reliability esteem for agents which
are actually reliable in their own area of expertise. In fact, it
may happen that an agent has a very specialized (and accurate)
rule set which is mistakenly matched against some requests.
In updating the level of trust theyellow rules agent should
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adopt a model that updates trust only when the information is
sufficient, i.e., after a certain number of reports which arein
accordance, sent by reliable agents.

The learned rules will be added to the agent knowledge base
in the form of past events. A preliminary check will verify
some properties such as, for example, the syntactic correctness
or consistency. Rules that “survive” this check will be usedby
the agent in its activities, and their usefulness and efficiency
will be recorded. After a certain time, according to resultsthe
acquired rules will be either definitely learned or eliminated.
Below we describe in more detail all steps involved in our
cooperative rules learning approach.

1) New knowledge is needed.A DALI agent behavior
is described by: (i) a set of rules determining what
reaction to apply in response to external stimuli; (ii) a
set of rules useful to draw internal conclusions or to
reach goals via planning strategies; (iii) a set of rules
containing conditions for reacting external events or for
performing actions; (iv) a set of horn-clauses. The need
to acquire new knowledge arises whenever an agent
receives a communication act whose content is unknown
and the meta-level does not succeed in searching for a
semantically equivalent content recognized by the entity.
The communication act could be an external event, a
proposed action, a request of information and so on.
Having no internal means to cope with this situation, the
agent activates the learning rules process. This process is
risky enough, so the agent must try to search a suitable
information source.

2) Looking for information sources. Our learning archi-
tecture allows a particular agent,yellow rules agent,
to maintain the information useful to identify the de-
sired rules source or sources. Each agent living in the
environment is identified by the tuple:

source(Ai, Si,KRi, Qi)

where the first parameter represents the agent identi-
fication and the second one is a string synthesizing
the agent role in the environment. The third one is
a list of rules keys that the agentAi is willing to
transfer to other agents. The fourth one is the reliability
value, computed byyellow rules agent according to
positive and negative feedbacks. In fact, agents that
receive rules fromagenti, at the end of the verification
phase send a message toyellow rules agent rating
that knowledge. According to current and past val-
ues average, theyellow rules agent computesagenti
reliability by means of some kind of eveluation.
For example, if the agentdave is a barman and
is available to give to others the rules useful to
serve a drink, the tuplesourcemight be for instance:
source(dave, barman, [serve drink], 0.6).

Whenever an agentAk having the specializationSk

needs some rules, it will send toyellow rules agent

the message:

messageA(yellow rules agent,

search sources(Ak, Sk,Keyk))

whereKeyk is meant to indicate the desired rules. More
precisely, this parameter allowsyellow rules agent to
identify agents having the right information by finding a
correspondence betweenKeyk and the elements of the
rules keys listKRi.
If one or more agents fulfill the correspondence, the
agentAk will receive as a response the list of reliable
agents corresponding to the expected specializationSk

and the keyKeyk:

Ls = [(A1, Q1), ..., (An, Qn)]

If no agents are available, the response will be the empty
list.
Having chosen the names of one or more agents to
which one can ask missing rules according to the
yellow rules agent and personal reliability evaluation,
the agent will then contact them.

A   _agent

A   _agent

search_sources

Ls list

yellow_rules_agent

learner_agent

A   _agent

ask_rules_head

confirm([R1,...,Rn], A1) no specialization

has matching rules

no matching rules

where Ls=[(A  ,   6), (A  ,   5)]

1

s

n

1 0. s0.

Fig. 2. A cooperative learning scenario

3) Asking for missing rules. In order to get the needed
piece of knowledge, the agent can choose one of two
techniques: the first one allows an agent to learn all
required rules by specifying their heads. This implies
that there be a strict correspondence between the heads
of rules in two or more agents in order to be able to
activate the learning process. But, agents often came
from different platforms and technologies, so this cor-
respondence could hardly be found. This limit can be
overcome by adopting ontologies capable of matching
rule heads which though looking syntactically different
are semantically equivalent. If we consider the agentAk

having selected the couple(As, Qs) and the headHl,
the following message will propose to the receiver agent
the exchange of rules having the headHl:

messageA(As, ask rules head(Hl, Ak))

The second technique allows an agent to ask for a
specific key that can match with either the head or the
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body of rules in the agent program. We may notice that
in this manner the probability of finding corresponding
rules will be higher, though the rules appropriateness
and usefulness could be more in question. In this case,
the message syntax will be:

messageA(As, ask rules key(Key,Ak))

Agents accepting the proposal to exchange rules that
match with either theHead or the Key will pack all
retrieved rules and will send them back to theAk entity.

messageA(Ak, sent rules([R1, ..., Rn], Ch,As))

The parameterCh represents the goal that must be
invoked in order to activate the rules. In particular, if
the agentbob receives from the agentdavethe rules:

[dangerE :> call policeA,

call police :< have a phone]

the parameterCh will correspond todangerE .

As soon as these rules will be received by the
learner agent, they will be unpacked and asserted
as past events in its knowledge base with the suf-
fix learnP (Rule, T ime, Sender,Objective). Each rule
will be re-asserted in a second version, where more
information is associated to it, and in particular: the
current time; the sender agent name; a parameterObjec-
tive, useful to remember what was the goal for which
the request had been issued. For example, if the agent
was in a dangerous situation when it requested the rule
with the keyhelp, it will memorize that theObjectiveof
this learning rule process was to get safe. The objective
introduction will allow the agent, after learning the rules,
to check their effectiveness with respect to the associated
goal.

4) Add learned rules. Rules added as past events
are managed by a specific internal event,
gest learning(Rule), that implements the first
filter level. This internal event filters one rule at the
time. In order not to slow down the agent, this operation
is performed in suitable time slots, i.e., when the agent
is not performing complex tasks and the events queues
have few items to be processed. Each rule is taken into
account in order to be added to the knowledge base, and
must fulfill two conditions (expressed in the first rule
of the internal event):learn if(Rule, T ime, Sender)
and properties true(Rule). The first condition,
learn if(Rules, T ime, Sender), is similar to a told
one: the user can define in the same file of tell/told
rules a set of constraints that the consideredRules, the
Time and theSender agent must respect:

learn if(Rules, T ime, Sender) : −
constraint1, ..., constraintn.

Constraints can avoid adding an incoming rule from an
agent that was reliable foryellow rules agent, but is
considered instead unreliable by the receiver agent under
some different perspective.Time can be used to either

gest learning(Rule) : −
learnP (Rule, T ime, Sender,) ,
learn if(Rule, T ime, Sender),
properties true(Rule).

gest learningI(Rule) :>
accept at presentA(Rule).

Fig. 3. First learning process filter

force or delay the assertion of theRules. Other domain-
or situation-dependent constraints can be expressed.
The second condition,properties true(Rule), takes
more specific properties of theRules into account, e.g.:

- the syntactic correctness according to prolog and DALI
language;
- the absence of procedure calls without a corresponding
procedure;
- the overlap of rules originating from different agents;
- the rule consistence with respect to previously learned
clauses.

If certified by the internal event, the rules are added to
the agent program with a label indicating that they are
to be submitted to second filter. A particular label will
emphasize that the rules have been learned provisionally.
Final learning will take place only if the rules will
overcome the second filter level, based on usefulness
and efficiency. Some rules discarded by the first filter
can remain for some time in the agent knowledge
base, waiting for a successive integration. In fact, the
learning process can generate new contexts where some
previously false properties become true.
In order to avoid a rule that cannot be learned to be kept
for too long in the agent memory, we have introduced
a particular internal event that eliminates all past events
learnP (Rule, T ime, Sender,Objective) that has been
kept for an amount of time that exceeds a threshold.

C. Exploiting basic mechanisms

Rules added to the agent program in order to be evaluated
wait for the moment in which the agent will be in need of
them. The estimate of their usefulness depends strictly on the
kind of learned rules. Some, expressing a set of actions that
the agent needs to perform, can be evaluated by examining the
correspondence between the entity objective and the exhibited
behavior. Some, useful to execute complex operations, can
be evaluated by examining for instance the time spent in the
calculation and the result quality. Here we propose two sample
methods to estimate partially learned rules.

• On Objectives Once introduced in the agent program,
each piece of knowledge is used by the entity during its
life, keeping always track of its performance with respect
to the corresponding objective. This testing phase can
be performed in two modalities. The first one is based
on the correspondence between the expressedObjective
in learnP (Rule, T ime, Sender,Objective) and the ef-
fective rule application result. For example, ifObjective
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check objective(Rules, V alue) : −
learnP (Rules, T ime, Sender, Objective),
expired time(Time, T ),
evaluate(Rules, Objective, V alue).

check objectiveI(Rules, V alue) :>
evaluate rule(Rules, V alue).

evaluate rule(Rules, V alue) : −
accept definitelyA(Rules, V alue).

accept definitely rule(Rules, V alue) :<
V alue > Threshold.

evallreject ruleA(Rules, V alue).
reject ruleA(Rules, V alue) :<

V alue < Threshold.

Fig. 4. Second learning process filter

expresses the agent safety, we would expect that the agent
be safe or at least having made some progress in this
direction. The utility and efficiency test is implemented
by an internal event that, whenever a learned rule is
invoked, checks from time to time its effect.
The evaluation is performed by the function
evaluate(Rules,Objective, V alue) that considers:

- the degree of correspondence between theObjectiveand
past events generated by theRulesapplication;
- given the state snapshot of the program execution, the
degree of correspondence between the saved state and the
declaredObjective.

For each usage ofRules, the returnedV alue incre-
ments/decrements the average calculated on the past
evaluations. After some time, a negative result implies the
rule elimination while a positive one determines a final
learning. However, the agent maintains information on
the Rulessources, so that also in future what is learned
can be eliminated if, for example, the source becomes
unreliable.

• On comparison If the learned rules are aimed at some
kind of complex computation that returns a result, a
suitable testing method can be adopted. The agent can
generate children, and can assign each child a different
set of rules acquired by different sources for the same
calculation. The results, together with performance, time
and resources spent, will be returned to the father that
can decide which set of rules is better to adopt.

V. CONCLUSIONS

We have proposed a form of cooperation among agents that
consists in improving each agent’s skills by acquiring new
knowledge form the others. The approach aims at extending
to agent societies a feature which is proper of human societies,
i.e., the cultural transmission of abilities. We have outlined the
problems and advantages of this approach, and have discussed
a prototype implementation in DALI. More experimental work
is needed for proving the effectiveness of the approach, and
for putting various methods of verification of the usefulness of
learning at work. Indeed, the mechanisms for matching needs
against rule sets of other agents (keywords or rule heads) is

quite preliminary and must be checked in real applications,as
it might result in low “precision”, i.e., too many matches are
found and “recall”, i.e., too many matches are discarded.
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