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ABSTRACT

In this paper, we tackle the problem of domain-adaptive
representation learning for music processing. Domain
adaptation is an approach aiming to eliminate the distri-
butional discrepancy of the modeling data, so as to transfer
learnable knowledge from one domain to another. With
its great success in the fields of computer vision and nat-
ural language processing, domain adaptation also shows
great potential in music processing, for music is essen-
tially a highly-structured semantic system having domain-
dependent information. Our proposed model contains a
Variational Autoencoder (VAE) that encodes the training
data into a latent space, and the resulting latent represen-
tations along with its model parameters are then reused to
regularize the representation learning of the downstream
task where the data are in the other domain. The experi-
ments on cross-domain music alignment, namely an audio-
to-MIDI alignment, and a monophonic-to-polyphonic mu-
sic alignment of singing voice show that the learned rep-
resentations lead to better higher alignment accuracy than
that using conventional features. Furthermore, a prelimi-
nary experiment on singing voice source separation, by re-
garding the mixture and the voice as two distinct domains,
also demonstrates the capability to solve music processing
problems from the perspective of domain-adaptive repre-
sentation learning.

1. INTRODUCTION

Music is composed, arranged, and performed in various
forms residing in different data modalities and domains,
yet sharing some common underlying information with
each other. Almost all of the music processing tasks es-
sentially extract such commonality as a protocol that en-
ables the transferring or communication among various do-
mains. For example, a piece of music can be either writ-
ten as a musical score, or rendered as an audio recording;
though the later encompasses much more information such
as intonation, articulation, emotion, and others not found
in the former, they still share common information such
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as note, pitch, and meter with each other. In light of this
property, we devise a framework that aims at eliminating
domain-dependent information, to achieve a feature repre-
sentation that is semantically shared across domains.

In this paper, we study learning representations that em-
bed shared semantic information across different domains,
specifically in applications of music signal processing. In
order to achieve domain-invariant feature representations,
we are essentially considering a domain adaptation prob-
lem [28]. Take audio-to-MIDI alignment [30] as an exam-
ple, while audio and MIDI data are drawn from distinct
domains of representation, they share pitch information in
common. We explore the transfer learning technique [25]
to tackle the problem. Specifically, in addition to transfer-
ring model parameters, we also transfer latent representa-
tions from one domain to the other.

With its success in computer vision [24,28,34] and nat-
ural language processing [16, 19, 32], transfer learning has
also shown great potential in music information retrieval
(MIR). In [6], a linear transformation is learned to project
data into a shared latent representation that captures se-
mantic similarity of music. Choi et al. uses feature maps
of multiple layers derived from a pre-trained convolutional
neural network (CNN) for music classification and regres-
sion tasks [2], and Park et al. exploits the deep model
trained for artist recognition as a general feature extractor
used for various tasks [26].

Our proposed framework 1 is different from the above-
mentioned works. With pairwise training data 2 from two
distinct domains, our framework first utilizes a VAE [12],
a state-of-the-art unsupervised generative model shown to
be effective in representation learning [9,14], to embed in-
formation of data from one domain (the source domain)
which contains mostly shared semantics into latent rep-
resentations. Data from the other domain (i.e., the tar-
get domain) is then mapped to the learned embeddings
through a separate neural network, in order to eliminate
domain-dependent information. Therefore, the novelty of
this paper is an unified framework that combines repre-
sentation learning and transfer learning altogether, which
learns domain-adaptive representations with VAEs that are
then transfered from source to target domain. In particu-
lar, we empirically validate the framework through three

1 https://github.com/yjlolo/Domain-Adaptive-VAE
2 Pairwise data in the context means parallel music events in different

domains, e.g., a piece of music written as a score or rendered as an audio,
and a recording of singing voice with or without accompaniment.
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Figure 1. The general architecture of the proposed training
framework.

well-known tasks in music signal processing that have not
been considered from the perspective of domain adap-
tation: audio-to-MIDI alignment [1, 13], audio-to-audio
alignment [17, 22], and singing voice separation [5, 10].

The rest of the paper is organized as follows. In
Section 2, we describe our proposed architecture. The
experiments and results are detailed in Section 3 and
Section 4, respectively. Conclusions and future work are
presented in Section 5.

2. ARCHITECTURE

2.1 Overview

Figure 1 shows our proposed framework in the training
phase, which is divided into two modules: the first is a
VAE which models the data in source domain, and the sec-
ond, which can be either an autoencoder (AE) or simply
an encoder depending on tasks, models the data in target
domain. To facilitate the discussion, we refer Encoder
(or Decoder) and Encoder* (or Decoder*) to the source-
domain encoder (or source-domain decoder) and target-
domain encoder (or target-domain decoder), respectively.

The two models are trained sequentially in two steps.
First, we train the VAE, using the source-domain data as
inputs, and obtain the source-domain latent representations
z := z(µ,σ). More specifically, given the observation
data x in the source domain, and z ∼ p (z) the latent rep-
resentation, the posterior distribution p (z|x) is modeled
as a Gaussian distribution parameterized by the estimated
mean and standard deviation of the posterior distribution,
namely µ and σ, respectively. In other words, we have
p (z) = N

(
z;µ,σ2I

)
in practice.

Second, after the source-domain model is trained, we
train the target-domain model, with the following two
transfer learning schemes: 1) the source-domain model pa-
rameters are used to initialize the target-domain model pa-
rameters, and 2) the source-domain latent representation
z is used to regularize the target-domain latent represen-
tation z∗ with an regularization term L(z, z∗). The intu-
ition behind this is to leverage knowledge learned by the
source-domain VAE to reduce the distributional discrep-
ancy between the source and target domain.

The target-domain decoder, colored in gray in Figure 1,
is optional. For example, in the task of music alignment,

Conv1 Conv2 Conv3 Fc1 Gauss
#filters/units 64 128 256 512 L
filter size 1× F 3× 1 2× 1 - -
stride (1,1) (2,1) (2,1) - -

Table 1. Encoder network architecture. Conv refers to con-
volutional layers, Fc refers to fully connected layers, and
Gauss refers to the Gaussian parametric layer modeling z.

our purpose is to learn the domain-adaptive features by
mapping the data in target domain into the feature distri-
bution of data in source domain, without the need to re-
construct the input data from the latent representation.

It should be noticed that in the inference phase, shown
in the left-hand side of Figure 2, the parameter µ is re-
garded as z. That is, when encoding the source-domain
data, µ, the center of a Gaussian distribution, is the repre-
sentative of z. Therefore,µ is the true latent representation
that is transferred to the target domain. More details about
the models and experiments are in Section 3.

2.2 Source-domain Model: Variational Autoencoder

Since the source-domain VAE is task-independent, we in-
troduce its detailed architecture first in this subsection, and
the task-dependent target-domain model will be introduced
later in Section 3. We adopt the VAE architecture proposed
in [9], which learns the latent representations and models
the generative process of speech segments for voice con-
version. In our work, the source-domain input represen-
tation is either a segment of singing voice in the tasks of
singing voice alignment and separation, or a piano roll for
audio-to-MIDI alignment.

The input x of the source-domain VAE is a two-
dimensional image of size T × F , where T is the num-
ber of time steps and F is the number of frequency bands.
The encoder network of this VAE is a CNN with 3 con-
volution (Conv) layers and 1 fully-connected (Fc) layer
that outputs the latent representation z with dimension L
at the Gauss layer. The parameters of this CNN are sum-
marized in Table 1. The decoder network is symmetric to
the encoder network; it takes z as the input to reconstruct
x. Batch normalization followed by the activation function
tanh are used for every layer except for the Gauss and the
output layers. The objective function for training the VAE
is expressed as (1):

Lvae = Lrec + LKL , (1)

where the total loss function of the VAE, Lvae,
contains two terms: the reconstruction loss function
Lrec = −Eq(z|x)[log p (x|z)], the negative expected log-
likelihood of x, and the KL-Divergence loss LKL =
KL[q (z|x) ||p (z)], which regularizes the distance be-
tween the posterior and the Gaussian distribution. In varia-
tional inference, the true posterior p (z|x) is approximated
by q (z|x). For more implementation details of the VAE,
we refer the readers to [3, 12].
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3. EXPERIMENTS

We discuss the following three tasks: 1) audio-to-MIDI
alignment, 2) audio-to-audio alignment, and 3) singing
voice separation. In this section, we elaborate the goals,
the datasets, the task-dependent target-domain models, the
input data representations, and the evaluation processes for
each of these three tasks. Experiment results will be dis-
cussed in Section 4.

All of the models discussed in the following are imple-
mented with PyTorch [27], and are trained using stochas-
tic gradient descent with the Adam optimizer [11]. The
optimizer is parametrized by: learning rate = 10−3, β1 =
0.9, β2 = 0.999, and ε = 10−8. The mini-batch size is set
to 128 instances of input segments.

3.1 Task 1: Audio-to-MIDI Alignment

The first experiment we consider is to align an audio
recording of piano to its corresponding MIDI file. Al-
though this is a rather well-studied task [13,23,30], we re-
investigate this task from the perspective of domain adapta-
tion: using the learned latent representations for the feature
on which dynamic time warping (DTW) is performed.

3.1.1 Dataset

We use a subset of the MAPS dataset [4], ENSTD-
kCI, which contains 30 piano recordings performed by a
Yamaha Disklavier auto-piano together with MIDI files
that generate the recordings. We use 24 and 6 pieces of
the subset for training and validation, respectively.

3.1.2 Model

The goal of our framework is to map a frame of audio
feature and piano roll into the same representation if they
are of the same music event. To do this, we first define
the MIDI pieces as the source domain data, and the au-
dio pieces as the target-domain data. Then, we train the
source-domain VAE and obtain the learned source-domain
latent representation z. We then use this representation z
as the learning target to train the target-domain model, a
single encoder taking audio data as input, with its architec-
ture the same as the source-domain encoder. To be more
specific: given a pair of MIDI-audio input data that are of
the same event in the music, the source-domain VAE maps
the MIDI into a representation in a low-dimensional Gaus-
sian distribution, and the target-domain encoder is then
trained to map the audio input data to that distribution.

The learning task in the target domain is essentially a
regression task. The training objective function for source
domain is the same as (1), while the objective function for
the target domain Lencoder is

Lencoder = LMSE (z, z∗) , (2)

which is the mean squared error between the encoded la-
tent representations of the source-domain encoder z and
the ones of the target-domain encoder z∗. Notice that (2) is
only applicable when we have parallel source-target pairs.

Instead of audio, MIDI is regarded as the source-
domain data because the latent representation we obtain
should be more related to MIDI which contains mostly the
shared semantics with audio, i.e., pitch; we let the target-
domain encoder eliminate the information residing in au-
dio while unrelated to MIDI (e.g., spectral-related informa-
tion) in order to get succinct representations for alignment.

3.1.3 Data Representation

MIDI files are represented as piano-roll representation with
128 pitch classes, while its associated audio recordings are
represented using Mel-scaled spectrogram with 128 filter
banks, derived from power magnitude spectrum of 1024-
point short-time Fourier transform (STFT). To compute the
STFT, we use Hanning window with window size of 64 ms
and hop size of 20 ms. An input data for the source-domain
VAE (or the target-domain encoder) is a segment of a
piano-roll (or Mel-scaled spectrogram) with 21 frames, or
equivalently, 400 ms, leading to the input dimensions of
T = 21 and F = 128. To reduce the memory load, we only
collect segments every 10 frames of each clip for training.

3.1.4 Evaluation

To evaluate our proposed feature representation for audio-
to-MIDI alignment, we apply non-linear time-stretching to
the audio recordings so as to see if the features are robust
against the distortion and can still be aligned to the original
MIDI well. We follow the methodology in [17] for non-
linear time-stretch.

The proposed feature representation of MIDI can be
derived as follows: we express MIDI as piano roll and
use it as the input to the source-domain encoder to obtain
the encoded latent representation as our proposed feature;
the process is illustrated in Figure 3 with the solid blue
line. On the other hand, in the target domain, we firstly
apply time-stretching distortion to the audio recordings,
represent the audio stream with Mel-scaled spectrogram
described in Section 3.1.3, and utilize the outputs of the
target-domain encoder as our final feature representation;
the green solid line in Figure 3 describes the process. Over-
all, the derivation of the proposed feature representation
during inference is illustrated in the left panel of Figure 2.

For comparison, we consider chroma as a baseline
to represent both domains, illustrated in Figure 3 with
the loose dash lines colored in blue and green, respec-
tively. Regarding the implementation of chroma, we use
chroma stft in the librosa library [18] for audio
and get chroma in the pretty midi library [29] for
MIDI. The other baseline is to use the piano roll for
MIDI and Mel-scaled spectrogram for audio, illustrated
in Figure 3 with the dense dash lines colored in blue and
green, respectively.

We utilize DTW to align the feature representations and
compute the alignment accuracy. The accuracy is calcu-
lated by an error measure e whichp compares the discrep-
ancy between the estimated warping path and the ground-
truth one [36] instead of the conventional note-level align-
ment accuracy, because the error measure e allows more
subtle comparison on frame-level evaluation.
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Figure 2. Left: the derivation of the proposed feature representation in task 1 and task 2. Right: the training scheme of the
target-domain DAE in task 3.

Figure 3. Extraction pipelines of feature representations
for the two alignment tasks, i.e., task 1 and task 2.

3.2 Task 2: Audio-to-Audio Alignment

In this experiment, we consider singing voice alignment,
in particular the alignment of song recordings performed
by singers with their artificially-distorted versions. Specif-
ically, two subtasks are considered: 1) aligning the dis-
torted monophonic singing recordings to the original ver-
sion, denoted as mono-to-mono, and 2) the distorted mono-
phonic singing recordings to the original singing record-
ings mixed with the corresponding background music, de-
noted as mono-to-poly. The goal is to demonstrate the ro-
bustness of our proposed feature representation against the
artificial distortion effects, i.e, pitch-shift and time-stretch,
as well as interference of the background music.

3.2.1 Dataset

We adopt the MIR-1k dataset [8] which contains the 1,000
Chinese karaoke excerpts with separated voice and accom-
paniment tracks, clipped from 110 songs. We then divided
the 110 songs into two subsets, one containing 88 songs for
training, and the other containing 22 songs for validation.

3.2.2 Model

The training procedure resembles the one mentioned in
Section 3.1.2. The difference is that the source domain
refers to monophonic singing, and the target domain refers
to its polyphonic version; the shared information is the
singing voice. Notice that, similar to Section 3.1, the syn-
thetic dataset with artificial distortion is not used for train-
ing. The target-domain encoder for modeling polyphonic
music learns not only to output features that are compara-
ble to monophonic singing voice, but also features that are
more robust to artificial distortion.

3.2.3 Data Representation

The inputs are represented the same way as the audio data
described in Section 3.1.1. As suggested by the prelim-
inary experiments, the number of filter banks is set to
F = 256 instead of 128.

3.2.4 Evaluation

We evaluate our proposed feature representation under
both time-stretching and pitch-shifting distortion. The set-
tings of the distortion follow the one in [17].

As shown in Figure 3, for the subtask mono-to-mono,
we first apply the artificial distortion to the monophonic
singing, followed by a Z-score normalization. The Mel-
scaled spectrogram is then extracted as the input to the
source-domain encoder, which gives the proposed feature
representation of monophonic singing after a post Z-score
normalization. We align the distorted monophonic singing
to the intact version. For the subtask mono-to-poly, we
adopt the identical process to the monophonic singing.
While for polyphonic singing, the target-domain encoder
takes the input as the Mel-spectrogram to output the pro-
posed feature representation. We align the distorted mono-
phonic to the original polyphonic version. The overview of
derivation of the proposed feature representation and align-
ment are illustrated in the left panel of Figure 2.

We compare our proposed feature representation with
the 24-ordered Mel-cepstral coefficients (MCEPs) [33], a
widely used features regarding speech alignment for voice
conversion [20], in terms of the error measure e, as in
Section 3.1.4. We use the spectral envelope which is ex-
tracted by WORLD [21] to derive MCEPs. DTW in this
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task searches for the optimal alignment path according to
squared Euclidean distance, as suggested by preliminary
experimental results.

3.3 Task 3: Singing Voice Separation

Singing voice separation is an essential yet notoriously
challenging problem in music signal processing; the goal
is to separate singing voice from music mixture. We inves-
tigate the potential of domain adaptation on this problem.

3.3.1 Dataset

We again adopt the MIR-1k dataset for experiment, and
split the dataset in a way identical to that in Section 3.2.1.

3.3.2 Model

The basic idea is a follow-up of the mono-to-poly
scheme in Section 3.2: given the fact that we have
obtained domain-adaptive latent representations shared
across monophonic singing and its polyphonic version
with accompaniment, one step further is to consider de-
coding the outputs of the target-domain encoder in order
to reconstruct the monophonic singing voice in the target
domain. Therefore, we adopt a Denoising Autoencoder
(DAE) [35] in the target domain.

The training scheme of the target domain is illustrated
in the right panel of Figure 2. It is important to note that,
different from the vanilla DAE for source separation [5],
we regularize the bottleneck layer with the learned latent
representation encoded by the VAE along with the model
parameters for weight initialization. The training objective
function for the target domain therefore becomes:

LDAE = Ll1(x, x̃) + αLMSE (z, z∗) , (3)

where the reconstruction loss Ll1 denotes the l1-norm; x
and x̃ are the clean source of singing voice and estimated
one, respectively. α is the weight of the regularization term
which is set to 1 without further investigation in this pre-
liminary work.

3.3.3 Data Representation

For audio representation, the magnitude spectrogram in-
stead of the Mel-scaled spectrogram is used as the input;
the parameters for computation of STFT remain the same
as in Section 3.1.3.

3.3.4 Evaluation

The music mixture which contains the ground-truth source
of singing voice x and background music is firstly normal-
ized with a Z-score normalization, and is represented as
the magnitude spectrogram. The trained DAE then takes
as the input the magnitude spectrogram, and outputs the
estimated source of signing voice x̃.

For evaluation, we use mir eval [31] to calculate
and report source-to-distortion ratio (SDR), source-to-
inference ratio (SIR), and source-to-artifact (SAR) ratio
together with normalized SDR (NSDR). All scores are
weighted by number of frames of each song. We com-
pare the performance among vanilla DAE with or without

error measure
Proposed (L = 128) 2.48
Proposed (L = 12) 4.08
Chroma 6.71
Spec 39.24

Table 2. The error measure e of audio-to-MIDI alignment
using different feature representations.

our proposed regularization term and weight initialization
during training phase.

4. RESULTS

In this section, we report the performance evaluated on the
validation sets for each experiment.

4.1 Task 1: Audio-to-MIDI Alignment

Table 2 lists the median value of e, the alignment error
measure, over the 6 audio-MIDI pairs in the validation set
using four different feature representations: two of them
are the proposed latent representations with dimensions
L = 128 and 12 (Proposed), one is the 12-dimensional
chroma (Chroma), and the other uses Mel-scaled spec-
trogram for audio and piano-roll representation for MIDI,
both are 128-dimension (Spec). One can see our proposed
domain-adaptive features outperform with both L = 128
and 12. This implies that the plane pitch information of
MIDI domain is properly modeled in the latent represen-
tations by the source-domain encoder, and is efficiently
transferred to audio domain by treating the latent represen-
tations as learning targets for the target-domain encoder.

4.2 Task 2: Audio-to-Audio Alignment

We evaluate on the validation set of 22 songs and report
the alignment error measure e of different feature repre-
sentations under the mono-to-mono and mono-to-poly sub-
tasks, along with the artificial distortion in pitch-shift and
linear/non-linear time-stretch. Figure 4 shows the median
of the error measure e using different feature representa-
tions; the baseline feature and proposed one are denoted
as MCEP and Proposed, respectively. Each individual plot
shows the error measure along pitch-shift steps of -2, -1, 0,
1, and 2. The top panel and bottom panel refer to mono-to-
mono and mono-to-poly, respectively. The leftmost to the
fifth column correspond to linear time-stretching rates of
0.8, 0.9, 1.0, 1.1 and 1.2, respectively, while the rightmost
column corresponds to the non-linear time-stretch.

The results of momo-to-mono in the top panel suggest
that our proposed feature representation encoded by the
source-domain encoder is more robust to the artificial dis-
tortion than the baseline feature. The bottom panel, which
corresponds to mono-to-poly, shows that by transferring
the latent representations from source to target domain, the
target-domain encoder indeed learns to output features that
are robust against both the artificial distortion and the in-
terference of background music.
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SDR SIR SAR NSDR
DAE 4.73 16.13 5.35 3.16
DAE + wt 6.50 20.40 6.85 4.93
rDAE 4.97 14.96 5.74 3.40
rDAE + wt 7.20 18.98 7.74 5.63

Table 3. The source-to-distortion ratio (SDR), source-to-
inference ratio (SIR), and source-to-artifact ratio (SAR)
and normalized SDR (NSDR) of different models.

4.3 Task 3: Singing Voice Separation

Table 3 demonstrates the SDR, SIR, and SAR together
with NSDR of different models in the task of singing voice
separation. Four models are compared: 1) DAE referring
to the vanilla DAE, the baseline model, 2) DAE + wt de-
noting the DAE trained with weight initialization using the
source-domain model parameters, 3) rDAE referring to
the DAE trained with the objective function whose weight
of the regularization term α = 1 in (3), and 4) rDAE+wt,
the DAE trained with both the weight initialization and reg-
ularization term.

From the SDR in Table 3, one can observe that DAE+
wt outperforms DAE by 1.77 dB, while rDAE outper-
forms DAE by only 0.24 dB. However, by combining
weight initialization and regularization together, rDAE +
wt achieves an improvement of 2.47 dB over DAE. This
implies that the effect of transferring the latent represen-
tation from the source to target domain as a regularization
term can be optimized by the transfer of the source-domain
model parameters.

Notice that though the reported performance is not on
par with the state-of-the-art method [10], our model still
show potentials in solving the singing voice separation
problem from the perspective of domain adaptation. Mean-
while, as a preliminary work, we evaluate the framework
on a relatively small dataset without data augmentation and
fine-tuning parameters.

5. CONCLUSION AND FUTURE WORK

In this paper, we re-investigate three well-known tasks of
music signal processing from the perspective of domain
adaptation, namely task 1: audio-to-MIDI alignment, task
2: audio-to-audio alignment and task 3: singing voice sep-
aration. To this end, we devise an unified framework that
achieve both representation learning and transfer learning
at once. Specifically, we use a VAE to learn latent repre-
sentation of source-domain data, which is then transfered
to train a separate model that maps target-domain data to
the representation.

We empirically validate our idea by demonstrating the
superiority of our proposed feature representations over
baseline ones across all the tasks. In both task 1 and 2, the
proposed features are shown to properly model the source-
domain data and are efficiently transfered to the target do-
main; they are more robust against various settings of ar-
tificial distortion compared to baseline features. In task 3,
it is shown that transferring of both model parameters and
latent representations, used for weight initialization and as
a regularization term, respectively, can benefit the perfor-
mance of singing voice separation, which indicates the po-
tential of the framework for such a challenging problem.

As a preliminary work, though we share most of the pa-
rameters and model architectures across all the tasks with-
out tailoring for each individual task, the proposed frame-
work consistently outperforms the baselines. For future
work, we would like to include larger datasets and opti-
mize the system architectures and their parameters. More-
over, expanding the framework for classification is of par-
ticular interest. For example, it is possible to transfer the
latent representation from source to target domain by di-
rectly leveraging it as the classifying feature [15] or inter-
mediate condition to models in target domain [7].
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