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ABSTRACT

In this paper we study the problem of automatic music tag
annotation. Treating tag annotation as a computational clas-
sification process, we attempt to explore the relationship be-
tween acoustic features and music tags. Toward this end, we
conduct a series of empirical experiments to evaluate a set of
multi-label classifiers and demonstrate which ones are more
suitable for music tag annotation. Furthermore, we discuss
various factors in the classification process, such as feature
sets, frame sizes, etc. Experiments on two publicly available
datasets show that the Calibrated Label Ranking (CLR) al-
gorithm outperforms the other classifiers for a selection of
evaluation measures.

1. INTRODUCTION

For the past decade, digital music collections have been grow-
ing enormously in volume, due to advances in technologies,
such as storage capacity, network transmission, data com-
pression, information retrieval, etc. The rapid rise in music
downloading has created a major shift in the music indus-
try away from physical media formats to electronic distri-
butions. Large on-line music providers now offer millions
of music catalogs. At present, these catalogs are commonly
classified and accessed through textual meta-data, such as
genre, style, mood, artist, etc. This classification scheme
is referred to as music tag annotation and relies on human
experts as well as amateurs to annotate the music [18].

While this meta-data is rich and descriptive, it is difficult
to maintain and in many cases is not comprehensive, due
to the ambiguity and subjectivity that is introduced in the
annotation process [7]. Moreover, annotation by human ex-
perts is an involved process, in terms of financial and labor
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costs [4]. Therefore, manual annotation is insufficient and
ineffective when facing large volumes of music. In Music
Information Retrieval (MIR), automatic music tag annota-
tion is an emerging area that aims to help automate the anno-
tation process. The task of music tag annotation can be de-
fined as follows [6]. Given a set of tags T = {t1, t2, ..., tA}
and a set of music pieces M = {m1, m2, ...,mR}, pre-
dict for each music piece mj ∈ M a tag annotation vector
A = (a1, a2, ..., aA), where ai > 0 if tag ti has been as-
sociated with the piece, and ai = 0, otherwise. These ai

describe the strength of the semantic associations between
tags and the music piece and are typically referred to as se-
mantic weights. Although these weights can be valuable in
some applications, we focus on the binary association where
a tag is either relevant to a music piece or not, i.e., its weight
is mapped to {0,1} and can be interpreted as a class label. It
is easy to see that a music piece can have multiple tags and
therefore music tag annotation can be modeled as a multi-
label classification process [6].

In our work, we study the problem of automatic mu-
sic tag annotation by attempting to learn a relationship be-
tween acoustic features and music tags. We conduct a se-
ries of experiments on a set of multi-label classifiers which
have shown promising results in other application domains
including document classification, video annotation, func-
tional genomics, etc. We demonstrate which classifiers are
more suitable for music tag annotation using a set of eval-
uation measures. While some of these classifiers have been
used for multi-label classification of music into emotions [13]
and genres [9], we believe that it would be beneficial to ex-
plore their application in music tag annotation.

2. RELATED WORK

Automatic music tag annotation is an important problem in
MIR with numerous applications, including music search,
recommendation, organization, etc. It has received consid-
erable attention as of recently and many related techniques
have been proposed. One of the most important contribu-
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tions to the problem is the work of Turnbull et al. [16], who
propose, along with a dataset called CAL500, one of the first
tag annotation systems based on a generative probabilistic
model. This dataset has become a de facto benchmark for
evaluating the performance of music tag annotation systems.

Hoffman et al. [5] present another probabilistic model,
referred to as the Codeword Bernoulli Average, which at-
tempts to predict the probability that a tag applies to a music
piece. It is claimed that this model outperforms the one from
Turnbull et al. [16] on the CAL500 dataset. In addition,
Bertin-Mahieux et al. [2] propose Autotagger, a model that
uses advanced ensemble learning schemes to combine the
discriminative power of different classifiers. Ness et al. [6]
describe how stacked generalization of the probabilistic out-
puts of a Support Vector Machine (SVM) can be used to im-
prove the performance of automatic tag annotation.

More recently, Shen et al. [11] propose a framework called
MMTagger that combines advanced feature extraction tech-
niques and high-level semantic concept modeling for mu-
sic tag annotation. The proposed framework uses a mul-
tilayer architecture that gathers multiple Gaussian mixture
models and SVMs. In addition, Zhao et al. [21] introduce a
large-scale music tag recommender using Explicit Multiple
Attributes based on tag semantic similarity and music con-
tent. Experiment results in the work show that the proposed
recommender is more effective than existing ones and is at
least as effective as other SVM-based approaches.

3. MULTI-LABEL CLASSIFICATION

Different from traditional single-label classification where
each object belongs to only one class, multi-label classifica-
tion deals with the problem where an object may belong to
one or multiple classes simultaneously, i.e., objects are as-
sociated with a set of labels Y ⊆ L, where L (|L| > 1) is a
set of disjoint class labels [14].

In our work, we evaluate the following multi-label classi-
fiers for tag annotation. Random k-Labelsets (RAkEL), Cal-
ibrated Label Ranking (CLR), Multi-label k-Nearest Neigh-
bor (MLkNN), Backpropagation for Multi-Label Learning
(BPMLL), Hierarchy of Multi-label Classifiers (HOMER),
Instance Based Logistic Regression (IBLR), and an adapta-
tion of kNN using Binary Relevance (BRkNN). Moreover,
we use a Decision Tree (DT) and Support Vector Machine
(SVM) as base-level learning algorithms for CLR, RAkEL,
and HOMER. A total of 10 multi-label classifiers are eval-
uated. For the sake of space and due to the nature of our
work, we will not digress into the details of these classifiers.
The interested reader is referred to [3, 12, 14, 15, 19].

In order to evaluate the performance of multi-label clas-
sifiers, a variety of evaluation measures are typically em-
ployed. However, as automatic music tag classification is
relatively new in MIR, the evaluation measures used vary

significantly. Furthermore, different classifiers may perform
better under different evaluation measures. Therefore, it is
desirable that multiple and contrasting evaluation measures
are used in any multi-label classification experiment. We
make use of the following measures which are commonly
used in the multi-label classification literature: Hamming
Loss (HL), Average Precision (AP), Coverage (CO), Rank-
ing Loss (RL), One-Error (OE), Macro F-Measure (F1), Macro
Precision (Precision), and Macro Recall (Recall). The inter-
ested reader is referred to [14, 20] for details on them.

4. EXPERIMENT SETUP

In our experiments, the Mulan 1 open source library for multi-
label learning is used to train and evaluate each of the 10
classifiers using default parameters, e.g., the number of neigh-
bors is set to 10 for MLkNN and IBLR, a linear kernel is
used to train the SVM.

4.1 Dataset Selection

Our experiments are conducted on two publicly available
datasets. The Computer Audition Lab 500 dataset (CAL500)
[16] is a collection of 500 Western songs recorded by 500
different artists. Each song is manually annotated with a
subset of 174 tags, which are distributed across 6 attributes:
Mood, Genre, Instrument, Song, Usage, and Vocal. All tags
are manually generated under controlled experimental con-
ditions and are therefore believed to be of high quality. For
our experiments, we use the “hard” annotations provided
with the CAL500 dataset which gives a binary value for all
songs and tags indicating whether a tag applies to a song.

Magnatagatune is a collection of approximately 21,000
clips of music, each annotated with a combination of 188
different tags. The annotations are collected through an on-
line game, referred to as “TagATune”, developed to collect
tags for music and sound clips. Each clip, 29 seconds in
length, is an excerpt of music provided by Magnatune.com
and FreeSound.org. All of the tags in the collection have
been verified, i.e. a tag is associated with a clip only if it is
generated independently by more than two players. More-
over, only those tags that are associated with more than 50
clips are included in the collection. As discussed by Seyer-
lehner et al. [10], Magnatagatune is rather difficult to handle
due to its size and skewed tag distribution and and has not
been used as widely as CAL500.

4.2 Feature Sets and Extraction

Prior to classification, the music pieces must be parameter-
ized based on a set of features and their changes over time.
However, it is widely known that there is no accepted cri-
teria as which features are best for music classification [1].

1 http://mulan.sourceforge.net.
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Therefore, we experiment with three different feature sets,
to be described below, which are commonly used for music
classification. The Marsyas 2 audio processing framework
is used for the computation of the features.

The Spectral feature set, denoted FSs, consists of spectral
features, including Spectral Flatness Measure, Spectral Cen-
troid, Spectral Crest Factor, Spectral Rolloff and Spectral
Flux.

The Timbral feature set, denoted FSt, consists of a combi-
nation of spectral, temporal and cepstral features. The fol-
lowing features are included: Zero Crossing Rate, Spectral
Centroid, Spectral Rolloff, Spectral Flux, MFCC, Chroma.

The Beat feature set, denoted FSb, extends FSt by includ-
ing rhythmic features that are derived by extracting periodic
changes from a beat histogram.

Following a general practice in MIR [8], we model the
audio signal as the statistical distribution of audio features
computed on individual, short segments. This process yields
a large number of feature vectors. Therefore, the feature
vectors are then aggregated together using statistical meth-
ods. Although more elaborate representations have been
proposed in the literature, the simplicity of using a single
vector for classification is appealing [6]. Frame-level fea-
tures in our experiment are compressed into a single set of
song-level features by computing the mean and standard de-
viation across the feature vectors [6]. Furthermore, we in-
vestigate the effects of frame size on multi-label classifica-
tion. For each <feature set, classifier> pair, we examine the
classification performance as we adjust the frame size, fr,
represented as the number of samples collected during a cer-
tain time period, where fr ∈ {256, 512, 1024, 2048, 4096}
with a 50% frame overlap [8].

5. RESULTS AND DISCUSSIONS

In this section, we present the results from our experiments.
Following the practices used in [2,5,16], 10-fold cross vali-
dation is employed during the evaluation process.

5.1 CAL500

In the first set of experiments, we evaluate the multi-label
classifiers using the CAL500 dataset. We find that for all
feature sets, the Calibrated Label Ranking classifier using
a Support Vector Machine, CLRSVM, outperforms the other
classifiers when fr ∈ {1024, 2048, 4096}. Furthermore, we
observe that CLRDT, BPMLL, MLkNN and BRkNN
also perform well over all of the frame sizes and feature
sets.

2 http://marsyas.sness.net.

When we analyze the performance of each classifier over
the individual frame sizes, we find it difficult to select one
that performs well for all of the classifiers. More specif-
ically, we observe that the performance of each classifiers
is not significantly affected by the variation in frame size.
Despite this, we find that CLRSVM performs the best when
fr = 4096. Table 1 shows a comparison of 5 classifiers,
evaluated by HL, for the three feature sets when fr = 4096;
the value following ± gives the standard deviation.

Note that in the following tables, (↓) indicates better per-
formance when the number is smaller while (↑) indicates
better performance when the number is bigger.

FSs FSt FSb

CLRSVM 0.125±0.004 0.127±0.004 0.128±0.004
BPMLL 0.211±0.009 0.218±0.008 0.217±0.010
BRkNN 0.130±0.004 0.134±0.003 0.136±0.004
RAkELDT 0.152±0.003 0.153±0.004 0.156±0.004
MLkNN 0.129±0.004 0.133±0.003 0.135±0.003

Table 1. Hamming Loss (↓) of the classifiers for the three
feature sets, FSs, FSt, and FSb, when fr = 4096.

From the table we can see that HL of each classifier is
better when FSs is used. This is also observed for the other
evaluation measures. Table 2 presents the performance of
CLRSVM for each of the feature sets as evaluated by HL, OE,
CO, and AP; the best result for each measure is shown in
bold face. We find that CLRSVM performs the best, for a ma-
jority of the evaluation measures, when FSs is used. While
spectral features have shown promising results in various
MIR classification tasks, the inclusion of rhythmic features
has been shown to increase classification performance [17].
Further investigation into this result would be desirable.

HL ↓ OE ↓ CO ↓ AP ↑
FSs 0.125±0.004 0.102±0.037 116.7±2.814 0.586±0.016
FSt 0.127±0.004 0.094±0.047 119.7±3.659 0.576±0.014
FSb 0.128±0.004 0.088±0.035 121.6±4.018 0.567±0.013

Table 2. Classification performance (mean±std) of
CLRSVM on CAL500 for each feature set where fr = 4096.

When we analyze HL of CLRSVM for each of the feature
sets over all of the frame sizes, we find it interesting that
both FSs and FSt demonstrate good performance when
fr ∈ {1024, 2048, 4096} while FSb tends to perform bet-
ter when fr ∈ {256, 512, 1024}. This result is discussed
further in Section 5.3.

Table 3 reports the experiment results of the top 5 multi-
label classifier using FSs and fr = 4096 on CAL500. To
make a clearer view of the relative performance between
each classifier, a partial order “�” can be defined on the
set of all classifiers for each evaluation measure, where A1

719



Poster Session 6

HL ↓ OE ↓ CO ↓ RL ↓ AP ↑ F1 ↑ Precision ↑ Recall ↑
CLRSVM 0.125±0.004 0.102±0.037 116.736±2.814 0.140±0.006 0.586±0.016 0.497±0.027 0.642±0.059 0.124±0.009
CLRDT 0.126±0.003 0.106±0.024 117.417±2.970 0.143±0.005 0.578±0.014 0.445±0.027 0.611±0.039 0.124±0.013
BPMLL 0.211±0.009 0.130±0.051 119.878±3.880 0.144±0.007 0.570±0.016 0.479±0.016 0.294±0.039 0.469±0.026
BRkNN 0.130±0.004 0.184±0.054 143.503±2.834 0.189±0.008 0.534±0.016 0.429±0.017 0.543±0.043 0.131±0.011
MLkNN 0.129±0.004 0.132±0.054 126.082±2.994 0.159±0.005 0.550±0.011 0.476±0.014 0.587±0.047 0.118±0.010

Table 3. Classification performance (mean±std) on CAL500 for FSs where fr = 4096.

� A2 means that the performance of classifier A1 is statis-
tically better than that of classifier A2 on the specified mea-
sure. Following the practice used by Zhang and Zhou [20],
a two-tailed paired t-test at 5% significance level is used to
perform the comparison.

Note that the partial order “�” only measures the rela-
tive performance between two classifiers A1 and A2 for a
single evaluation measure. It is possible that A1 performs
better than A2 in terms of some measure but worse than A2
in terms of other ones. In this case, it is hard to judge which
classifier is superior. Therefore, in order to give an overall
performance assessment of a classifier, a score is assigned
to it which takes into account its relative performance with
other classifiers on all evaluation measures. For each mea-
sure, for each possible pair of classifiers A1 and A2, if A1
� A2 holds, then A1 is rewarded by a positive score +1 and
A2 is penalized by a negative score -1. Based on the accu-
mulated score of each classifier on all evaluation measures,
a total order “>” is defined on the set of all classifiers [20].
Table 4 presents an example of this process; the accumu-
lated score for each classifier is shown in parentheses.

Multi-label Classifier
A1-BPMLL; A2-CLRDT; A3-CLRSVM; A4-MLkNN

Hamming Loss A2 � A1, A3 � A1, A3 � A4, A4 � A1
Coverage A1 � A4, A2 � A4, A3 � A4
Ranking Loss A1 � A4, A2 � A4, A3 � A4
Average Precision A1 � A4, A2 � A4, A3 � A1, A3 � A4
Total Order A3(6) >A2(4) >A1(-1) >A4(-9)

Table 4. Relative performance between four multi-label
classification algorithms on the CAL500 dataset.

The total order of all 10 multi-label classifiers on CAL500
is as follows: CLRSVM (42) > CLRDT (31) > BPMLL
(25) > MLkNN (20) > BRkNN (-1) > RAkELSVM (-7)
> HOMERSVM (-9) > RAkELDT (-13) > HOMERDT (-
35) > IBLR (-53). It can be seen that CLRSVM outperforms
all the other classifiers on the CAL500 dataset. Furthermore,
CLRDT, BPMLL, MLkNN , and BRkNN demonstrate
good performance and outperform the remaining classifiers.

5.2 Magnatagatune

For the second set of experiments we evaluate the classifiers
using the Magnatagatune dataset. We find that for all fea-

ture sets, CLRSVM outperforms all the other classifiers when
fr ∈ {1024, 2048, 4096}. Furthermore, we observe that
CLRDT, BPMLL, MLkNN , and BRkNN , offer com-
parable performance over all of the frame sizes and feature
sets.

FSs FSt FSb

CLRSVM 0.022±0.002 0.021±0.002 0.021±0.001
BPMLL 0.073±0.003 0.074±0.002 0.022±0.002
BRkNN 0.021±0.002 0.021±0.002 0.022±0.002
RAkELDT 0.023±0.002 0.023±0.001 0.023±0.001
MLkNN 0.021±0.002 0.021±0.002 0.022±0.002

Table 5. Hamming Loss (↓) of the classifiers for the three
feature sets, FSs, FSt, and FSb, when fr = 2048.

Once again, it is difficult to select a frame size that works
well for all of the classifiers. We observe that each classifier
performs differently, for each feature set, over the differ-
ent frame sizes. In spite of this, CLRSVM performs the best
when fr = 2048. Table 5 shows a comparison of 5 multi-
label classifiers, as evaluated by HL, for the three feature
sets when fr = 2048. From the table, we find that HL is bet-
ter for a majority of the classifiers when FSt is used. It can
be seen that HL of CLRSVM and BPMLL is better when
FSb is used. If we extend our analysis to include additional
evaluation measures, we find that, on average, performance
improves with the use of FSt for a majority of classifiers.
Table 6 presents the performance of CLRSVM for each fea-
ture set.

HL ↓ OE ↓ CO ↓ AP ↑
FSs 0.022±0.002 0.423±0.028 40.6±4.709 0.479±0.017
FSt 0.021±0.002 0.403±0.050 38.9±4.687 0.505±0.027
FSb 0.021±0.002 0.413±0.037 40.7±5.031 0.495±0.024

Table 6. Classification performance (mean±std) of
CLRSVM on Magnatagatune for each feature set where fr =
2048.

Table 7 presents the experiment results of the top 5 multi-
label classifiers using FSt and fr = 2048 on Magnata-
gatune. We note that, for a majority of the evaluation mea-
sures, the performance of each classifier is better on Mag-
natagatune than on CAL500. We will discuss more on this
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HL ↓ OE ↓ CO ↓ RL ↓ AP ↑ F1 ↑ Precision ↑ Recall ↑
CLRSVM 0.021±0.002 0.403±0.050 38.915±4.687 0.076±0.009 0.505±0.027 0.350±0.029 0.738±0.088 0.018±0.002
CLRDT 0.021±0.002 0.471±0.041 42.321±5.461 0.085±0.009 0.459±0.019 0.330±0.023 0.573±0.073 0.029±0.003
BPMLL 0.074±0.004 0.690±0.037 42.081±4.725 0.088±0.012 0.360±0.015 0.282±0.015 0.118±0.041 0.268±0.030
BRkNN 0.021±0.001 0.451±0.043 76.343±6.978 0.166±0.018 0.448±0.022 0.376±0.026 0.591±0.063 0.045±0.005
MLkNN 0.021±0.002 0.443±0.040 51.168±5.082 0.102±0.010 0.468±0.024 0.390±0.041 0.612±0.068 0.045±0.008

Table 7. Classification performance (mean±std) on Magnatagatune for FSt where fr = 2048.

in the following section.
Similarly as the CAL500 dataset, the partial order “�”

and the total order “>” are also defined on the set of all
classifiers. The total ordering for all 10 multi-label classi-
fiers on Magnatagatune is as follows (the accumulated score
for each classifier is shown in parentheses): CLRSVM (37) >
MLkNN (28) > CLRDT (24) > BRkNN (22) > BPMLL
(-1) > RAkELDT (-7) > HOMERSVM (-11) > RAkELSVM

(-21) > IBLR (-31) > HOMERDT (-40). It can be seen
that CLRSVM outperforms all of the multi-label classifica-
tion algorithms on the Magnatagatune dataset. Furthermore,
MLkNN , CLRDT, BRkNN , and BPMLL perform well
for a selection of evaluation measures.

5.3 Discussions

Base Classifier: From our experiments presented above, we
observe that using a SVM as the base-level learning algo-
rithm for CLR, RAkEL, and HOMER offers improve-
ments over using a decision tree. This result is observed for
both of the datasets. Table 8 reports the experimental results
of CLR, RAkEL, and HOMER on the CAL500 dataset
using a SVM and DT as base classifiers. It would be inter-
esting to explore alternative base-level learning algorithms
for music tag annotation.

HL ↓ OE ↓ AP ↑
CLRDT 0.126±0.003 0.106±0.024 0.578±0.014
CLRSVM 0.125±0.004 0.102±0.037 0.586±0.016
HOMERDT 0.196±0.007 0.808±0.061 0.355±0.020
HOMERSVM 0.159±0.004 0.581±0.051 0.427±0.015
RAkELDT 0.151±0.003 0.283±0.045 0.473±0.010
RAkELSVM 0.125±0.004 0.239±0.048 0.424±0.013

Table 8. Classification performance (mean±std) of CLR,
RAkEL, and HOMER on CAL500 using a SVM and DT
as base classifiers.

Feature Set: We find it interesting that, on average, classi-
fication using FSs and FSt tends to demonstrate good per-
formance when fr ∈ {1024, 2048, 4096} while using FSb

results in better performance when fr ∈ {256, 512, 1024}.
This might be explained by the notion that the smaller frame
captures better rhythmic information over the entire music
piece. Furthermore, a large frame may be more likely to

capture the long-term nature of the music, including melodic,
and harmonic composition, which could lead to improved
classification accuracy. While we find small improvements
in classification performance using different frame sizes, we
observe large differences in performance between the best
feature set and worst feature set for a selection of evalua-
tion measures and classifiers. For example, the performance
of BPMLL on Magnatagatune, as evaluated by AP, varies
from 0.04% using FSb to 37% using FSt. In addition, we
find that the best classification performance is achieved on
CAL500 and Magnatagatune using FSs and FSt, respec-
tively. However, it is important to note that there is no ac-
cepted criteria as which features are best for music classi-
fication [1]. Therefore, our observation in the experiments
reported in this work may not be conclusive.

Datasets: For a majority of the evaluation measures, it can
be seen that the classifiers perform better on Magnatagatune,
compared to CAL500. For example, CLRSVM achieves a
Hamming Loss of 0.0211 on the former and 0.1247 on the
latter. One possible explanation for this observation is that
the average number of tags for each instance in Magnata-
gatune is less than CAL500, i.e., each music piece in Mag-
natagatune is annotated with approximately 3 tags while each
music piece in CAL500 is annotated with approximately
26 tags. We also observe that classification performance
varies for each dataset depending on individual feature sets.
For instance, classification using FSs performs the best on
CAL500 while using FSt demonstrates the best performance
on Magnatagatune; we note that using FSs shows the worst
classification performance on Magnatagatune. This leads
us to believing that the spectral features used in our exper-
iment tend to give rise to better performance over longer
pieces of music while using timbral features performs bet-
ter on shorter music. Whether this is true in general needs
further investigation.

6. CONCLUSION

In this paper we present our initial attempts on automatic
music tag annotation. In our work, we conduct a series of
experiments, on a set of multi-label classifiers, exploring
the effects of different feature sets and frame sizes on tag
annotation. The results offer insight into which classifiers
and features are more suitable for this task. We find that
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the Calibrated Label Ranking (CLR) classifier consistently
performs well for a selection of evaluation measures when
using spectral and timbral features.

Further investigation is needed into the selection of clas-
sifier parameters. Recall that each classifier is trained using
default parameters. It would be interesting to explore the in-
fluence of these parameters on tag annotation performance.
In addition, it would be interesting and beneficial to com-
pare our results to existing results in the literature based on
a set of common measures.
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