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ABSTRACT

Factorization of polyphonic musical signals remains a dif-
ficult problem due to the presence of overlapping harmon-
ics. Existing dictionary learning methods cannot guarantee
that the learned dictionary atoms are semantically meaning-
ful. In this paper, we explore the factorization of harmonic
musical signals when a fixed dictionary of harmonic sounds
is already present. We propose a method called approxi-
mate matching pursuit (AMP) that can efficiently decom-
pose harmonic sounds by using a known predetermined dic-
tionary. We illustrate the effectiveness of AMP by decom-
posing polyphonic musical spectra with respect to a large
dictionary of instrumental sounds. AMP executes faster than
orthogonal matching pursuit yet performs comparably based
upon recall and precision.

1. INTRODUCTION

Dictionary learning, sparse coding, and constrained factor-
ization algorithms have recently revolutionized the way we
perform music transcription and source separation. Many
researchers have reported success when decomposing sim-
ple musical signals using nonnegative matrix factorization
(NMF) [23] or methods based upon sparse coding such as
K-SVD [1,2]. Unfortunately, problems remain for intricate,
polyphonic musical signals. When musical notes overlap
in time and frequency, the separation and transcription per-
formance of these basic dictionary learning methods dimin-
ishes rapidly. In such a case, the algorithm will usually learn
a dictionary where each individual atom contains informa-
tion from multiple musical sources, thus hindering our at-
tempts at decomposition.

Researchers have slowly improved upon the original dic-
tionary learning methods by adding constraints to the learn-
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ing process. By restricting the dictionary atoms to reside
within a predetermined feasible set, we can ensure that the
learned atoms will be useful at the conclusion of the learn-
ing process. For example, existing solutions include adding
constraints to the dictionary learning process such as har-
monicity [3, 25] or smoothness [3, 26].

Another solution is to add structure to the dictionary. For
example, one can construct and use a large, predefined, over-
complete dictionary where each atom is already labeled and
assumed to contain information from only one musical source.
Instead of learning an optimal dictionary for a given musi-
cal signal, it may suffice to match the signal to this large set
of precomputed, labeled dictionary atoms. Then, by decom-
posing a signal with respect to this fixed dictionary, classifi-
cation is easily achieved by simply reading the label of the
atom. As musical databases become more available, con-
struction of predefined dictionaries will become easier, thus
reducing the need for adaptive dictionary learning.

Of course, the performance of such an algorithm depends
upon the breadth of the dictionary. When atoms from more
musical sources are added to the dictionary, the dictionary’s
ability to decompose polyphonic music will improve. How-
ever, dictionary growth introduces concerns related to scal-
ability and computational complexity. While the aforemen-
tioned algorithms have significantly advanced the state of
the art, they remain slow and difficult to scale as the dictio-
nary size increases. Most of the original factorization meth-
ods such as matching pursuit (MP) [18] and NMF with mul-
tiplicative updates [17] have complexity that is linear in the
size of the dictionary. As a result, when dictionary sizes
grow, the transcription efficiency of these algorithms dimin-
ishes.

To summarize the problem: how can we make use of
a large, precomputed, overcomplete dictionary to factorize
overlapping harmonic sounds accurately and efficiently?

We address this problem by proposing a variant of MP
called approximate matching pursuit (AMP). Unlike MP and
NMF, AMP can decompose signals into a sparse combina-
tion of atoms with complexity that is sublinear in the dictio-
nary size while maintaining accuracy. To do this, AMP uses
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an approximate nearest neighbor (ANN) method to find ap-
proximate matches to the signal residual at each iteration.
The ANN method that we choose in this work is locality
sensitive hashing (LSH), a probabilistic hash algorithm that
places similar, yet not identical, observations into the same
bin. LSH can retrieve near neighbors with a complexity that
is sublinear in the dictionary size.

Our experiments demonstrate that AMP is as capable as
orthogonal matching pursuit (OMP) [20] for decomposing
polyphonic musical spectra into combinations of atoms from
a large dictionary of over 17,000 labeled musical spectra.
Meanwhile, AMP requires less computation and factorizes
more quickly than OMP.

2. RELATED WORK

Computation of sparse coefficients with respect to a large,
overcomplete dictionary is often accomplished by pursuit
algorithms such as MP [18]. This greedy algorithm directly
addresses the issue of sparsity by decomposing a signal, x,
into a linear expansion of waveforms that are selected from
a redundant dictionary of functions. When stopped after a
few iterations, this algorithm yields a signal approximation
using only a few atoms. After each iteration of the MP al-
gorithm, the residual, r, is orthogonal to the previously se-
lected vector, ak, but not necessarily orthogonal to the dic-
tionary vectors selected earlier.

Pati et al. proposed OMP, an improvement over MP which
ensures that the residual is orthogonal to all previously se-
lected dictionary vectors [20]. After dictionary atoms are
selected for inclusion into the decomposition, an extra or-
thogonalization step is performed by solving a least-squares
problem. Researchers have shown that OMP provides a dra-
matic improvement over MP [20]. In many cases, when an
input signal is known to be k-sparse, OMP converges in k
iterations, while MP will require many more iterations to
converge.

Pursuit algorithms have been applied to MIR in many
ways. The most popular applications are music transcription
and source separation. Harmonic matching pursuit (HMP)
has been used to decompose an audio signal into Gabor or
harmonic (i.e., sums of Gabor) atoms [15]. Dictionaries of
atoms can also be adapted and learned to fit the data [9]. To
resolve instances when harmonics from separate notes over-
lap, some algorithms impose smoothness constraints [4].
Similar sparse coding methods have been used for genre
recognition [19]. In the neurological signal processing lit-
erature, pursuit methods for generic acoustic signals have
been applied for coding purposes [24].

Cotton and Ellis [10] also use LSH together with MP,
however that work addresses a fundamentally different prob-
lem – content-based search of whole acoustic events, e.g.,
the sound made by a horse’s hoof. There, the sparse repre-

sentation produced by MP is stored using LSH. On the other
hand, our proposed method addresses the problems of tran-
scription and source separation. As shown later, we enhance
MP by embedding LSH within MP to make it faster and
more scalable. Also, we use a massive dictionary of real-
world musical spectra, not synthetic Gabor atoms as in [10].

3. PROBLEM FORMULATION

Given the magnitude spectrum of an input signal, x ∈ RM ,
and a dictionary, A = [a1 a2 ... aK ] ∈ RM×K , the problem
is to find a vector of coefficients s ∈ RK that minimizes
||x−As||2.

When M < K, the dictionary is called overcomplete,
and there are infinitely many solutions for s. However, by
imposing a sparsity constraint on s, the solution space di-
minishes greatly, possibly to a unique solution. In particu-
lar, if the input is truly a sparse linear combination of dic-
tionary atoms, i.e., x = As0, where s0 is a sparse vector,
then the problem becomes finding an optimal set of coeffi-
cients, ŝ = argmins ||x − As||2, that is equal to the input
coefficients, i.e., ŝ = s0.

An exhaustive search for the sparsest solution is NP-hard
[12]. However, suboptimal greedy algorithms such as OMP
often work well in practice. Unfortunately, OMP requires
at least K inner products to computed during each iteration,
thus creating a complexity that is at least linear in K. Be-
cause this complexity is too slow for large dictionaries, the
problem becomes solving for ŝ = s0 using an algorithm that
has complexity that is sublinear in the dictionary size, K.

Without loss of generality, we assume that the dictionary
is overcomplete, M < K; this assumption is not strictly
necessary for AMP to operate. We also assume that the true
sparsity of any input signal, ||s0||0, is less than the dimen-
sionality, M . For musical signals, this assumption usually
holds in practice. For example, even in highly polyphonic
music, the number of simultaneous sounds will likely be sig-
nificantly less than the dimensionality of our spectra, i.e., the
number of frequency bins. If not, then we increase the FFT
size to produce longer spectra.

4. PROPOSED ALGORITHM: APPROXIMATE
MATCHING PURSUIT

One drawback of existing pursuit methods such as MP and
OMP is their complexity. When the dictionary size, K, be-
comes very large (e.g., over one million), these methods
may require an unacceptably large amount of computation
to find an answer. For example, in each iteration of MP,
K inner products must be computed between the residual
r and every atom in the dictionary – a complexity of order
O(MK). Here, we introduce a simple variation of these
pursuit methods that uses an ANN algorithm in place of
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computing K inner products as done in MP. As a result, we
can reduce the complexity to be sublinear in K.

The approximate matching pursuit (AMP) algorithm is
described in Algorithm 1. This algorithm is similar to OMP
except that it addresses the main computational bottleneck
for large dictionaries – nearest neighbor search – by allow-
ing any adequately near neighbor to be selected as a compo-
nent.

Algorithm 1 Approximate Matching Pursuit [Tjoa and Liu]
Input: x ∈ RM ; A = [a1,a2, ...,aK ] ∈ RM×K s.t.
||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do

Find any k such that ak and r are near neighbors.
S ← S ∪ k
Solve for {sj |j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj ||2

r← x−As

ŝ← s

AMP intentionally resembles MP and OMP. Like OMP,
AMP is capable of providing a sparse decomposition in far
fewer iterations than MP. If the ANN retrieval method were
instead changed to a nearest-neighbor (NN) method, then
AMP would yield identical results to OMP. Also, AMP is
flexible in the sense that any ANN method could be used as
long as it performs retrieval in sublinear time. Therefore,
AMP can also be considered as a modular framework of al-
gorithms.

Despite its simplicity, AMP embodies a fundamentally
different philosophy to signal factorization. AMP is a data-
driven algorithm, not a model- or knowledge-based algo-
rithm. With such an abundance of available musical data, we
use side information, not rigid mathematical models, to rep-
resent test data. Algorithmic advances such as AMP, cou-
pled with technological advances in computing, are mak-
ing data-driven algorithms more computationally feasible
for problems in MIR such as transcription and source sepa-
ration.

5. LOCALITY SENSITIVE HASHING

AMP allows the use of any ANN algorithm that can per-
form retrieval in sublinear time. For this work, we focus on
locality-sensitive hashing (LSH), a category of algorithms
that places nearby points in a high-dimensional space into
the same bin in a hash table. Because of its simplicity,
robustness, and low complexity, LSH has become popular
for solving many high-level problems beyond MIR such as
search and retrieval of text and images. The robustness of
LSH is desirable for problems in MIR where queries are of-
ten distorted due to environmental or musical variation, and

therefore, learned dictionary atoms will rarely match prede-
fined dictionary atoms exactly. Ryynänen and Klapuri used
LSH to perform query-by-humming (QBH) by constructing
a hash table from pitch contour vectors [21]. Yu et al. use
LSH and order statistics to store chroma features in a hash
table for audio content retrieval [28]. Cotton and Ellis use
LSH to store landmarks in audio that correspond to mean-
ingful acoustic events [10]. Casey and Slaney have used
LSH to store features called audio shingles for computing
various levels of musical similarity between songs [5–7].

However, LSH has rarely been used for signal-level prob-
lems like music transcription. To our knowledge, this work
is among the first in MIR to use LSH for low-level tasks
such as sparse coding and music transcription.

While other ANN algorithms can be used within AMP
instead of LSH, such as those that use space partitioning
like the kd-tree and hierarchical k-means, these algorithms
do not work well in high-dimensional spaces, i.e., dimen-
sionality over 100. In fact, all current indexing techniques
based on space partitioning degrade to linear search for suf-
ficiently high dimensions [11, 14, 27]. Therefore, we only
consider LSH in this work.

In this work, for i ∈ {1, 2, ..., k} and ` ∈ {1, 2, ..., L},
we define the function h`

i to be

h`
i(q) = sign〈p`

i ,q〉 (1)

where p`
i is a zero-mean, unit variance, Gaussian random

vector with independent elements. As illustrated later, the
parameters k and L adjust the tradeoff between recall and
precision of the dictionary atoms.

It has been shown that this choice of distribution on p`
i

will hash points together whose angle,

θ(q, r) = arccos
〈q, r〉
||q||||r||

, (2)

is small [8]. Specifically, it can be shown that, for any i and
`, the probability that h`

i(q) = h`
i(r) is equal to

P (h`
i(q) = h`

i(r)) = 1− θ(q, r)

π
. (3)

We claim that two hashes are equal, h(q) = h(r), if and
only if there exists an ` such that, for all i ∈ {1, 2, ..., k},
h`

i(q) = h`
i(r). In other words, the following events are

equivalent:

{h(q) = h(r)} = ∪L
`=1 ∩k

i=1 {h`
i(q) = h`

i(r)}. (4)

From (3) and (4), it can be shown that the probability that
h(q) = h(r) is equal to

P (h(q) = h(r)) = 1−

(
1−

(
1− θ(q, r)

π

)k
)L

. (5)
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Figure 1. LSH example with k = 2. Points on the unit
sphere are separated into 2k = 4 bins.

To construct the LSH table, we initialize L empty ta-
bles. For each atom a in the dictionary A, and for each
` ∈ {1, 2, ..., L}, its hash is computed as a k-tuple:

h`(a) = (h`
1(a), h`

2(a), ..., h`
k(a)), (6)

and a is placed into bin h`(a) of table `. Finally, to perform
a query for point r, for all `, we retrieve all of the points
in bin h`(r) of table `. Among these retrieved points that
share a bin with r, we perform exhaustive search to find
the nearest neighbor among them. As indicated by Eq. 5,
through the proper choice of k and L, one can achieve any
desired amount of similarity between any two input vectors.

An example of LSH is shown in Figure 1 when k = 2.
Points on the unit sphere are hashed, and those points that
reside in the same bin share the same marker. We notice that
points in the same bin are close together.

There are many theoretical results for LSH that are be-
yond the scope of this paper. For detailed discussion and
proofs, please see [11, 14, 22, 27].

6. EXPERIMENTS

To illustrate the performance of AMP, we factorize poly-
phonic spectra as sparse combinations of atoms from a dic-
tionary of real piano sounds. First, we discuss how to build a
dictionary. For this work, our data comes from the Univer-
sity of Iowa database of musical instrument samples [13].
Each file in the data set is labeled by pitch and loudness,
e.g., “Piano C4 mf”, and contains a signal of an isolated
note sampled at 44100 Hz. We only consider the subset of
piano sounds.

For each signal, we compute a short-time Fourier trans-
form with a frame size of 92.9 milliseconds (i.e., 4096/44100)
and a hop of 10 milliseconds. To discard silent segments, we

detect any spectrum whose power is below a threshold. The
remaining spectra are normalized to have unit Euclidean
norm and are saved along with their pitch labels. These nor-
malized spectra constitute the dictionary, A, and the pitch
labels are used later to evaluate matches among dictionary
atoms. In total, we use a dictionary of 17,753 spectra of pi-
ano sounds covering the entire piano keyboard (i.e., MIDI
values 21 through 108).

For the following experiments, the input to AMP is a
vector x ∈ RM , a magnitude spectrum containing overlap-
ping harmonic sounds, where x = As0. A is the dictionary
of size M -by-K described earlier, and s0 is a synthetically
generated sparse vector of length K containing λ ones in
uniformly random locations. In other words, λ determines
the number of overlapping sounds at any moment. We vary
λ in the following experiments.

The LSH structure accepts parameters L and k, where L
is the number of LSH tables and k is the length of each key.
The dictionary, A, is used to populate each of the L LSH
tables as described in Section 5. Finally, given the input
x and the LSH tables, AMP produces a sparse coefficient
vector, ŝ.

Given the output, ŝ, we count the number of hits, misses,
and false alarms. A hit occurs if an element in s0 matches
an element in ŝ. A miss occurs if an element in s0 does not
match any element in ŝ. A false alarm occurs if an element
in ŝ does not match any element in s0. A match occurs when
two coefficients share the same pitch label.

All source code is written in Python using the NumPy,
SciPy, and Matplotlib packages [16].

In Figure 2, we compare AMP against another pursuit
method, OMP. For each algorithm, using the number of hits,
misses, and false alarms, we plot the recall, precision, and
F-measure. Recall is defined as R = hits/(hits + misses),
precision is defined as P = hits/(hits + false alarms), and
F-measure is defined as F = 2PR/(P +R). We also mon-
itor the execution time and number of M -dimensional inner
products computed by each algorithm. All quantities are av-
eraged over twenty independent trials.

From Figure 2, we see that the recall, precision, and F-
measure are all relatively similar for both algorithms. The
recall for AMP is nearly as high as that of OMP. The gap
in precision between the algorithms is slightly larger. In
practice, the stopping criterion can affect the tradeoff be-
tween recall and precision. When convergence occurs early,
ŝ is more sparse; therefore, recall decreases and precision
increases. When convergence occurs late, ŝ is less sparse;
therefore, recall increases and precision decreases. For this
work, we simply fix the stopping criterion such that the ratio
of the residual norm to the input norm, ||r||/||x||, is equal to
0.25. A more sophisticated stopping criterion may be able
to improve this tradeoff.

Next, we plot the execution time. Results show that AMP
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executes approximately two to four times faster than OMP.
The parameters used in LSH, (L, k), affect execution time.
When the length of the key, k, is low, then there are fewer
keys and more elements per bin. Therefore, the candidate set
of spectra is larger. When k is high, there are more keys and
fewer elements per bin resulting in a smaller candidate set.
The number of tables, L, has the opposite effect of k. When
L is high, the size of the candidate set increases. When L is
low, the candidate set size decreases.

Finally, we plot the number ofM -dimensional inner prod-
ucts computed by both algorithms. This measure describes
the primary source of computational effort. We see that
OMP requires far more inner products than AMP. For OMP,
each iteration requires K inner products because the resid-
ual is matched against every dictionary atom. For AMP,
each iteration requires far fewer than K inner products be-
cause LSH only retrieves those dictionary atoms that are
likely close to the residual vector. However, we notice that
the gap in the number of inner products computed by OMP
and AMP is larger than the gap in execution time. This dis-
crepancy is largely caused by overhead required of LSH, for
example, key computation, data subset retrieval, etc. Opti-
mizing these operations at a lower level could further widen
the gap in execution time between AMP and OMP.

7. CONCLUSION

We have proposed AMP, a pursuit algorithm that can decom-
pose overlapping harmonic spectra as well as OMP while
executing in less time and requiring fewer computations.
We have shown that the recall, precision, and F-measure for
AMP is comparable with that of OMP. Unlike OMP which
has complexity that is linear in the size of the dictionary,
AMP has sublinear complexity and is therefore much faster.
The simple modification of using LSH in place of exhaustive
linear search makes previously infeasible techniques feasi-
ble once again. Previously, LSH has primarily been used to
solve high-level tasks such as song or document retrieval;
here, we use LSH for the signal-level tasks of factorization
and separation.

AMP, like many recently proposed machine learning al-
gorithms, uses real data rather than contrived models and
constraints to describe musical spectra. We hope that this
simple algorithm inspires a new class of methods that intel-
ligently exploit the abundant musical data that already exists
among public collections rather than chasing gains in fully
unsupervised algorithms where little progress is left to be
made.

The dictionary itself has a significant impact on the de-
composition. Therefore, future work will include proper
dictionary design, i.e., how to create dictionary atoms from
musical data sets for maximum accuracy and efficiency. Dic-
tionary design also affects the proper choice of LSH param-

eters, L and k. A careful analysis of pairwise distances
among dictionary atoms can reveal which set of LSH pa-
rameters minimizes the probability of error.
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