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ABSTRACT

We present the beginnings of a new system for optical mu-
sic recognition (OMR), aimed toward the score images of
the International Music Score Library Project (IMSLP). Our
system focuses on measures as the basic unit of recogni-
tion. We identify candidate composite symbols (chords and
beamed groups) using grammatically-formulated top-down
model-based methods, while employing template matching
to find isolated rigid symbols. We reconcile these overlap-
ping symbols by seeking non-overlapping variants of the
composite symbols that best account for the pixel data. We
present results on a representative score from the IMSLP.

1. INTRODUCTION

For many years our community has lamented the lack of
symbolically-represented music. In contrast to audio, such
score-like representations allow music to be searched, com-
pared, transformed, and analyzed in many ways, as with
text data. The need for these libraries is particularly acute
for “classical” music, where the symbolic score has been
regarded, at least historically, as the definitive source ofa
composition. We believe the most promising pathway to
large-scale symbolic music libraries is through optical mu-
sic recognition (OMR). The potential for OMR has increased
dramatically with the rapid rise of the International Music
Score Library Project (IMSLP), an open library of primar-
ily scanned, public domain, machine-printed mostly classi-
cal music scores. The IMSLP represents a potentialgold
mineof symbolic music data, virtually imploring our com-
munity to develop OMR technology capable of harvesting
these data. Answering the OMR challenge posed by the IM-
SLP is the ultimate goal of the new research effort described
here.

The existence of large-scale symbolic libraries would trans-
form the musician’s world, allowing global distribution, flex-
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ible formatting, and content-based music information re-
trieval. Many envision future “digital music stands” based
on tablet computers. Fueled by symbolic music represen-
tations, such devices could support a wide range of appli-
cations in addition to the basic presentation of music, in-
cluding pedagogical systems offering performance analysis,
registration of scores with music audio and video, musical
accompaniment systems, automatic fingering systems, nota-
tion, automatic arranging and transcription programs. Sym-
bolic music forms the basis of many ISMIR foci, such as
music information retrieval as well as harmonic, motivic,
structural, and Schenkerian music analyses. And, of course,
large-scale symbolic music collections will be transforma-
tive for music libraries, allowing universal access to public
domain music.

OMR has seen various research efforts over the last sev-
eral decades, such as [2] [3], [4], [5], [6], [7], [9], [8] to
name only a few. Fujinaga [1] gives a rather complete bibli-
ography of more than 500 different papers, theses, and tech-
nical reports. Given the importance of this problem, we be-
lieve it has been underrepresented in the ISMIR community,
perhaps due to the many difficulties ofdefining the prob-
lem, such as stating goals, scope, and evaluation metrics
that are relevant toin vivo recognition situations. Our work
differs from most the we know in OMR, through its ori-
entation toward model-based top-down recognition. These
ideas have some precursors in OMR, such as [9], which in-
troduces Markov Source Models to OMR and performs a
proof of concept in a simplified domain, and [8], which also
argues for model-driven recognition, even of the experimen-
tal aspect remains undeveloped. Model-based approaches
are, of course, commonplace in the larger document recog-
nition community, as well as in computer vision, though the
connections here are beyond the scope of our present effort.

The state of OMR remains somewhat undeveloped, es-
pecially when compared to its optical character recognition
(OCR) cousin, simply because OMR is much harder. The
most powerful ideas from the OCR literature are the one-
dimensional modeling and processing techniques, such as
hidden Markov models (HMM) and dynamic programming
(DP), in recognizing lines of text. These techniques allow
for flexible top-downmodeling, training, and computation
to be integrated into the same framework. DP- and HMM-
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based approaches allowsimultaneoussegmentation and recog-
nition, in which symbols are segmentednot through local
topology, but by finding divisions that allow the pieces to
be identified as meaningful “stand-alone” quantities. It is
difficult to apply these ideas to OMR due to the fundamen-
tally two-dimensional layout of printed music. Instead, past
approaches have primarily workedbottom-up, usually per-
forming crucial image segmentationbeforerecognition, and
often in peril of constructing meaningless recognition hy-
potheses, (e.g. finding “orphan” accidentals that do not be-
long to note heads).

Our approach compromises between our idealistic zeal
for top-down recognition and the computational and practi-
cal demands of the challenging problem at hand. We be-
gin by identifying page structure as described in Section
2.2. Our main focus is the recognition of the individual
measures identified through the page structure decomposi-
tion. We employmodel-basedrecognition for the important
“composite symbol” sub-problems: isolated chords (Section
2.3.1) and beamed groups (Section 2.3.2). This guarantees
that the examples we recognize make syntactic sense and are
“optimal” in some limited sense. We aggregate these over-
lapping and conflicting candidates into measure hypotheses
in Section 2.3.3, through an optimization problem that seeks
meaningful non-overlapping “versions” of the recognized
measure components through constrained optimization.

2. SCIENTIFIC APPROACH

2.1 The Data Model

At a conceptual level nearly all music notation isbinary,
with each image location,x, either “black” (containing ink)
or “white” (no ink). Of course this binary nature is only
approximatelycaptured by the actual pixel intensity values,
g(x). In practice, the distribution of intensity values is nearly
always bimodal, but often containing values that could be-
long to either category. We model these intensities proba-
bilistically, with pB andpW the black and white pixel dis-
tributions.

A recognition hypothesis, such as the identification of a
single symbol, partitions the image domain into three sub-
sets: the locations assumed to black,B; a small “buffer” of
presumably white pixels surrounding the black pixels,W ,
accounting for the separation of symbols; and the remaining
locations which have not yet been considered,U . Suppose
we letpU denote the distribution for these latter intensities
of unknown origin. Assuming the gray levels are condition-
ally independent given the setsB,W,U , we can write the
data likelihood as

P (g) =
∏

x∈B

pB(g(x))
∏

x∈W

pW (g(x))
∏

x∈U

pU (g(x)).

For example, if our image contains single rigid isolated sym-

bol, thenB would be the black region of that symbol,W

would be a buffer around this domain accounting for its iso-
lation, andU would be the remainder of the image domain.

When optimizing this likelihood over various hypothe-
ses it seems pointless to require each model to account for
the entire image. Instead, we optimize the above likeli-
hood function with each factor divided by our “background”
modelpU (g(x)) — clearly not changing the ranking of hy-
potheses. The resulting objective function, after taking logs,
is expressed only in terms of the pixel locations where the
state is known,B andW :

H(B,W ) =
∑

x∈B

log
pB(g(x))

pU (g(x))
+

∑

x∈W

log
pW (g(x))

pU (g(x))
(1)

For instance, we look for a single specific rigid symbol by
maximizing this objective function over the location of the
hypothesized symbol — essentially, this is template match-
ing. If the optimal score is less than 0, the background
model gives the higher probability than any symbol-location
pair we can identify, so we believe the symbol does not oc-
cur in the region. Recognition in more complicated situa-
tions will proceed analogously, by optimizing this same ob-
jective function over multiple symbols, subject to various
compositional and non-overlapping constraints.

2.2 Finding the Page Structure

We represent the structure of a page of music hierarchi-
cally, partitioning the page into systems, each system into
system measures, and each system measure into individual
staff measures. We find this representation by first identify-
ing staves and then grouping the staves into systems using
the common bar line positions exhibited in a system. The
systems and measures are identified by first finding the best
configuration of shared bar lines for each potential system,
and then identifying the best partition of staves into systems,
both using DP. This approach is phrased as an optimization
of Eqn. , essentially seeking the configuration of bar lines
and systems that explains the maximal amount of black in
the image. We omit the details of our approach because this
is likely the least challenging aspect of OMR, while our ap-
proach has similarities with a number of others.

2.3 Measure Recognition

Measures are composed of two kinds of symbols we call
rigid andcomposite. Rigid symbols, such as rests and clefs,
consist of a single glyph of known scale, whose possible lo-
cations may have partial constraints (e.g. the vertical po-
sition of most clefs and rests). In contrast, the compos-
ite symbols, most importantly chords (including single-note
“chords”) and beamed groups, are composed of highly con-
strained arrangements of primitive symbols (note heads, led-
ger lines, stems, flags, beams, accidentals, augmentation
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dots etc.). When the rigid and composite symbols can be or-
dered left-to-right in a measure (e.g. a monophonic or homo-
phonic line), almostanyordering of symbols makes sense,
as long as the time signature constraint is obeyed. As a
consequence, it seems that a generative model for the mea-
sure symbols, such as a finite-state machine, is not likely
to be powerful or useful. In contrast, chords and beamed
groups are natural candidates for top-down model-based,
finite-state-machine-directed recognition. The result isa hy-
brid approach to measure recognition, combining both top-
down and bottom-up approaches.

We begin by identifying candidates for the composite
symbols: potential beam corners for the beamed groups and
potential stem beginnings for the chords. These candidates
are explored through principled model-based recognition stra-
tegies, as described in Sections 2.3.1 and 2.3.2. We recog-
nize the remaining rigid symbols with template matching —
for now we only consider rests and clefs at line beginnings,
though there are other possibilities. The result of this pro-
cess is a collection of mutually inconsistent overlapping hy-
potheses. Section 2.3.3 presents a method of resolving these
conflicts by seeking non-overlapping variations on the rec-
ognized symbols, perhaps completely discarding some hy-
potheses.

2.3.1 Isolated Chord Recognition

We find candidate locations for note stems by convolving
the image with appropriate masks designed to “light up”
both possible stem orientations: stem-up and stem-down. In
finding these oriented candidates we err on the side of false
positives, since stems of isolated chords missed at this stage
can never be recovered. We now discuss how we identify
the best chord beginning from one of these candidate loca-
tions. If the score, (Eqn. 2.2), of this best chord is less than
0, we do not consider the candidate further.

A chord arranges a collection of note heads on a stem,
drawing ledger lines for the notes lying off the staff, with
the constraint that note heads on the same side of the stem
must differ by at least one staff line or staff space. Figure 1
shows a generative model for the somewhat simpler scenario
in which the chord is known to be stem-up, there are no
notes below the staff, and all note heads are on the right side
of the stem. Generalizing this situation to the full range of
possibilities increases the complexity of the graph structure,
though the basic idea remains sound.

A path through the figure is a recipe for drawing a par-
ticular chord from bottom to top, as follows. We start in
the bottom node of the figure, drawing the initial portion of
the stem, followed by a series of either note heads or blank
spaces, perhaps separated by an occasional half-space as we
move between note heads centered on staff lines and those
centered on staff spaces. The graph ends with a final section
containing “self-loops” accounting for an arbitrary number
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on staff line
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on ledger
lines

Figure 1. A directed graph representing a family of possible
chords.

of note heads above the staff with associated ledger lines.
While not indicated in the figure, we can exit the model
after visiting (and drawing) any note head. The path that
generates a c major chord in treble clef is shown in bold.

As is often the case, such a generative model can be
turned into a recognition engine. Consider the sequence of
pixel rows beginning at the bottom of the stem, continuing
up to the top of the chord. We seek a partition of this row se-
quence into consecutive intervals:I1, I2, . . . , IK , and a la-
beling of these intervals,s1, s2, . . . , sK , such that the label-
ing is a legal sequence of states from our graph. These two
sequences must satisfy several constraints. For instance,the
initial stem must exceed some minimum length, thus con-
straining the associated interval. Furthermore, weknowthe
location of the staff lines, so each state corresponding to a
note head or space on the staff must be associated with an
interval that spans the correct region. Similar constraints
apply to “above staff” note heads and half spaces.

For any such state and interval sequence, we compute the
associated data likelihood, as follows. Each(sk, Ik) pair as-
sumes a particular labeling of black image pixels insideIk.
All states must account for the stem, thus must label the re-
gion corresponding to the stem as black. Additionally, some
of the other states account for note heads, perhaps also with
ledger lines. Finally we label a small band of white pixels
around the black pixels of each labeledIk, thus accounting
for our expectation that there will be some minimal separa-
tion between the chord and other symbols in the image. We
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Figure 2. Left: Graph describing possible beamed struc-
tures.Right: A beamed structure with an associated region
Rk. x0 is the left corner of the beamed group, whileu and
v give the beam direction and stem orientation.

can then approximate Eqn. 2.2 as

H(B,W ) ≈
K∑

k=1

H(Bk,Wk) (2)

whereBk andWk represent the black- and white-labeled
pixels in and aroundIk. (Really, Bk and Wk depend on
(sk, Ik), though we have suppressed this in the notation).
Using DP, it is a simple matter to compute a global opti-
mum of this objective function over all partitions and legal
labellings of these partitions; this is the essence of our chord
recognition strategy.

A simple modification improves this approach. Due to
the buffers of white pixels, the regions the{Bk ∪ Wk}

K
k=1

overlap, so that some pixels are counted multiple times, per-
haps under both blackandwhite models. We resolve this by
assuming that(Bk ∪Wk)∩ (Bk+j ∪Wk+j) = ∅ for j > 1,
allowing us to correct this error in a pairwise manner. Thus
we modify Eqn. 2 to be

H(B,W ) =

K∑

k=1

H(Bk,Wk)−H(Bk−1,k,Wk−1,k) (3)

whereBk,k+1 = Bk ∩ Bk+1 andWk,k+1 = (Bk ∪ Wk) ∩
(Bk+1 ∪ Wk+1) \ Bk,k+1. In other words, when we en-
counter a pixel with given two different labellings, we “de-
fer” to the black label. The modified objective function is
still expressed as a sum of terms that depend on pairs con-
secutive states, thus is still amenable to DP.

2.3.2 Beamed Group Recognition

As with chord recognition, a candidate detection phase first
finds possible locations for the left corner of potential beamed
groups, while classifying these candidates “stem-up” or “stem-
down,” and estimating the angle of the parallel beams.

Figure 2 shows the graph structure we use to model a
beamed group (without note heads). This model “draws”
the beams and note stems from left to right, forcing an alter-
nation between note stems and beams, except when partial
beams (as in dotted rhythms) are employed. For clarity’s

sake, the figure only allows one or two beams, though our
actual models can account for any number of beams. For ex-
ample, the numbered sequence of transitions generates the
beam structure in the right panel of Figure 2. As with the
chord recognition approach described above, the state graph
specifies what sequences of states “make sense,” in this way
lending itself naturally to a DP-based recognition strategy,
this time parsing along thehorizontaldimension.

Supposex0 gives the left hand corner of the beamed
group,u is a unit vector pointing in the beam direction, and
v points in the stem direction (up in the case of our Figure 2).
(x0, u, v) are estimated when we identify a beam candidate.
Thus, ifN is the maximum length of the beamed group, we
seek a partition of{0, 1, . . . , N} into intervalsI1, . . . , IK ,
with labelss1, . . . , sK for the intervals, forming a legal se-
quence from the state graph of Figure 2.

A labeled interval,(Ik, sk), corresponds to a possible la-
beling of the pixel data for the region

Rk = {x : (x− x0) · u ∈ Ik, (x− x0) · v > 0}

as shown in the right panel of Figure 2. Essentially, we
choose a black region,Bk, that “fits into” Rk. For instance,
if sk is of type “single beam,”Bk would be the parallelogram-
shaped of known height “sitting” in the bottom ofRk. Or if
sk is of type “note stem,” thenBk would be a thin vertical
line of known height fitting into the bottom of an equally
thin Rk. By including small buffers of white pixels around
the black pixels,Wk, we can form an objective function as
in Eqn. 3, withBk,k+1 andWk,k+1 defined as before. As
usual, DP leads to a global maximum of our objective func-
tion, thus estimating the desired beam structure.

As stated above, the approach only recognizes the beams
and stems, though not the note heads and ledger lines. How-
ever, an interesting variation on this idea combines the recog-
nition of both beam structure and chords into a single opti-
mization, as follows. When scoring a note stem on a par-
ticular interval, rather than only considering the stem itself,
we nest the optimization problem of Section 2.3.1insidethe
current optimization, thus substituting the best configuration
of stem, note heads and ledger lines for the single stem. The
result is the most likely beamed group configuration (not yet
considering note head “decorations” such as accidentals and
augmentation dots), starting from the initial candidate loca-
tion.

2.3.3 Resolving Conflicts Between Hypotheses

While our identification of each chord and beamed group
is highly constrained, their overall arrangement within the
measure is unconstrained. Thus, it is inevitable that we will
find overlapping and mutually inconsistent symbols. We
now describe how we resolve these conflicts, producing an
explanation for the measure in terms of non-overlapping ob-
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Figure 3. Left: Two hypotheses that both “claim” the re-
gion, C. Right: A network of overlapping regions with
various conflicts.

jects that still satisfy the essential grammatical constraints
described above.

The simplest type of conflict concerns two hypotheses
that both compete for a common subregion,C, as shown in
the left panel of Figure 3. Such a situation could arise, for
instance, when the single note on the right tries to explain
the rightmost note head of the beamed group as an acciden-
tal. We resolve this conflict by running the two recognizers
again, nowdisallowingthe use ofC in their recognized re-
sults. Such constraints are simple to incorporate into our
recognizers, and come with little additional cost over the
initial computation. Suppose thats1 ands2 are the uncon-
strained scores of the two recognizers, whiles′1 ands′2 are
the constrained scores. Here we choosemax(s1 + s′2, s

′

1 +
s2) as our optimal score, thus allocating the contested region
to the better fittingjoint model.

This general idea applies equally well to more complex
situations, as in the right panel of Figure 3, showingsev-
eral regions of conflict. Here we view the network of con-
flicts as agraph, with the recognized regions representing
nodesand the conflicts asedges. When this graph structure
is a tree, we can still compute the optimal assignment of
the contested regions to the original hypotheses, thus pro-
ducing a non-overlapping joint hypothesis. To do this, we
recognize each region subject toall possibleconflict sub-
sets. Thus, for example, the 3 conflicts involving region B
in Figure 3 would require 8 possible constrained solutions.
With the constrained solutions in place, it is a simple mat-
ter to optimally allocate the regions of conflict to the origi-
nal hypotheses using familiar “max propagation” ideas from
graphical models. In fact, this approach can be extended to
graphs containing cycles by an appropriate triangulation of
the graph, or to situations where the more than two hypothe-
ses claim a region.

This notion of conflict resolution also plays a role in our
recognition of beamed groups. After having recognized a
beamed group in the manner of Section 2.3.2, we proceed

to look for both accidentals and augmentation dots that “be-
long” to the identified note heads. Frequently, this intro-
duces conflicts into the result when these note head “deco-
rations” overlap each other or previously recognized parts
of the beamed group. In such a case, it is possible for either
the newly recognized decoration, or the original interpreta-
tion of the conflict region to be correct. We resolve such sit-
uations though pairwise conflict resolution, performing the
entire recognition of beamed group and decorations subject
to constraints that “allocate” the region of conflict. We re-
solve conflicts sequentially, moving left to right in the rec-
ognized structure. While the result is not optimal, at least it
provides an interpretation that obeys the grammatical con-
straints of the beamed group and ensures that all recognized
decorations belong to recognized note heads.

3. RESULTS

While this research is a “work in progress,” we present a
snapshot of our current state of the art here.http://www.music.in-
formatics.indiana.edu/papers/ismir11 shows the first five pages
of the Beethoven2nd Romance for Violin and Orchestra,
op. 50, as recognized by our OMR system. Even though
our recognition results contain important structural and as-
sociative information, these images simply color the regions
recognized over the original image. This coloring is done
so that any recognized black region shows up in blue, while
any recognized white region shows up as red. Most, but not
all, errors are clearly visible in these images, giving an quick
informal depiction of our current level of success.

In addition, we developed ground truth for these images,
associating each image symbol or primitive with a hand-
labeled bounding box. The table of Figure 1 gives both false
positives and false negatives for each symbol type. The ta-
ble only lists the symbols we try to recognize at present,
thus the additional symbols in the image (not included for
reasons of space) should be counted as a false negatives.
In perusing the results we observe several types of common
confusions, such as with open and closed note heads, as well
as sharps and naturals. We also see a natural tendency of
“out-of-vocabulary” symbols to create false positives. At
present, we cannot offer any comparison with other OMR
results — the evaluation problem here is a research topic in
its own right. Though our evaluation completely misses the
importantinterpretationof the symbols, it can be used for
self-comparisons with future system variations. In essence,
such a measure enables the “gradient descent” paradigm to
be applied to the overall research effort.

4. FUTURE WORK

At present, we have designed the core of an OMR recog-
nition engine, though there still remains years of work be-
tween our current system and one that can harvest large-
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symbol name False + False -
solid note head .04 74/1724 .04 68/1718
note stem .02 29/1573 .06 90/1634
ledger line .07 51/701 .06 43/693
2 beam .11 35/312 .04 13/290
1 beam .23 76/331 .08 23/278
aug. dot .52 252/481 .14 36/265
8th rest .03 7/242 .04 10/245
3 beam .04 6/138 .15 24/156
single flag down .00 0/92 .36 51/143
whole rest .21 28/132 .10 12/116
flat .07 8/107 .05 5/104
quarter rest .01 1/92 .10 10/101
open note head .28 25/88 .29 26/89
single flag up .02 1/50 .34 25/74
natural .14 7/50 .30 18/61
treble clef .00 0/60 .00 0/60
sharp .36 21/58 .16 7/44
16th rest .04 1/24 .21 6/29
bass clef .00 0/20 .00 0/20
triple flag down .43 9/21 .20 3/15
triple flag up .59 13/22 .10 1/10
alto clef .00 0/10 .00 0/10
4 beam .33 1/3 .00 0/2
double flag up - 0/0 1.00 1/1
double flag down 1.00 3/3 - 0/0

Table 1. False positives and false negatives for each symbol
and primitive.

scale symbolic music representations from the IMSLP. We
comment here on several of the tasks that must be a part of
this vision.

Many OMR authors advocate enabling the system toadapt
to a particular document. Since we have performed no train-
ing so far, we expect this will be a fruitful direction. Of
course, this opens the door to more power data models by
more intricate modeling of within-symbol grey-level distri-
butions. However, training also allows us to model a “prior”
distribution (or other regularizing notion) on thea priori
plausibility of various symbols, as well as the “wiggle room”
in the joints of the composite symbols.

An additional step lies between the current output of our
system and the symbolic music representations we desire.
While our recognition approach embeds important seman-
tic interpretation into a recognized hypothesis, our eventual
system must perform further interpretation, such as under-
standing rhythm and voicing. This is an active part of our
research efforts to date, though we do not discuss them here.
This interpretation phase may intersect with the recognition
phase, allowing us to choose between plausible image in-
terpretations through global constraints, such as those ona
measure by the time signature.

Numerous authors have also advocated the role of the
user interface in an OMR system. In short, the value of the
resulting data remain suspect until corrected and “blessed”

by a knowledgeable person. Given that a user must be in-
volved at least this much, it makes sense to think creatively
about how the user’s input can be leveraged throughout the
recognition process. An obvious possibility is allowing the
user to correct intermediate results in the chain of processing
steps, thus avoiding the potential “garbage-in garbage-out”
scenario that occasionally plagues completely automated ap-
proaches. Another alternative is to allow partial hand-labeling
of misrecognized regions. For instance, the user might iden-
tify a single pixel as belonging to a beam, thus facilitatinga
constrained re-recognition of the offending region.
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