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ABSTRACT

Automatic taggers describe music in terms of a multino-
mial distribution over relevant semantic concepts. This pa-
per presents a framework for improving automatic tagging
of music content by modeling contextual relationships be-
tween these semantic concepts. The framework extends ex-
isting auto-tagging methods by adding a Dirichlet mixture
to model the contextual co-occurrences between semantic
multinomials. Experimental results show that adding con-
text improves automatic annotation and retrieval of music
and demonstrate that the Dirichlet mixture is an appropri-
ate model for capturing co-occurrences between semantics.

1. INTRODUCTION

A central goal of music information retrieval (MIR) is to
create systems that can efficiently and effectively retrieve
songs from massive music collections. A potential solu-
tion to this challenge is to describe songs with a collec-
tion of manually annotated meaningful words (tags) and to
perform retrieval based on these text descriptions. Com-
mercial recommendation systems such Last.fm1 and Pan-
dora2 extensively use this semantic similarity approach to
create recommendation lists. Tags are useful because they
contextualize a song by describing human emotions, per-
sonal style, geographic origins, spiritual foundations, his-
torical period, or particular uses of the song.

1.1 Auto-Tagging

The continuous growth of music collections is making
manual human annotation of every song infeasible. In re-
sponse, several scalable approaches have been proposed
for labeling music with semantics including social tag-
ging [7], web mining [6] or tag propagation from similar
songs [12], each with advantages and disadvantages [14].
In particular, MIR researchers have proposed content-
based “auto-taggers” – methods that analyze acoustic
waveforms and automatically assign meaningful words to

1 http://www.last.fm
2 http://www.pandora.com
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songs. Much of this work has been inspired by related
methods for automatic image annotation [13].

One of the the first proposed approaches used Gaus-
sian Mixture Models (GMM) computed over the audio fea-
tures of the training examples to represent a vocabulary of
words [15]. An alternative model, the Codeword Bernoulli
Average (CBA) [5] attempted to predict the probability that
a tag applies to a song based on a vector quantized rep-
resentation of the audio signal. Regardless of the model
used, the output of an auto-tagger is a vector of tag probab-
ilities which may be interpreted as asemantic multinomial
(SMN), a distribution that characterizes relevance of each
tag to a song. Semantic multinomials capture patterns in a
song’s waveform that represent high-level properties such
as genres, emotions or instrumentation.

1.2 Tag co-occurrence

Auto-tagging models aim to capture statistically regular
patterns in the audio content and associate these patterns
with descriptive semantics. In general, these models treat
each tagindependently, ignoring thecontextthat derives
from associations between tags. Indeed, while some se-
mantic associations in music are inspired by direct auditory
cues (e.g., hearing a “violin”), others are inferred through
contextual relationships (e.g., inferring “cello” and “bas-
soon”, when listening to “orchestral classic music”). This
gives rise to statistically significant co-occurrence patterns
of semantic concepts in the training data (e.g., many “rock”
songs also tagged as “loud”), and thus in the SMNs. We
suggest that actively capturing correlations in SMNs can
improve the semantic description of a song.

Two situations cause tags to co-occur in semantic multi-
nomial distributions. The first is when a tag acciden-
tally co-occurs with another concept. Accidental co-
occurrences could be due to many reasons, ranging from
poor posterior probability estimates arising from auto-
tagger errors, to the unavoidable ambiguous interpretation
of music, such as confusing “trumpet” and “trombone”.
The second type of tag co-occurrence results from feature
vectors that truly describe multiple musical concepts. For
example, a “cello” piece is very likely to have feature vec-
tors that also fit tags such as “classical music” or “vio-
lin”. While only co-occurrences of the second type are
indicative of true contextual relationships, SMN distribu-
tions derived from acoustic content exhibit both types of
co-occurrences.
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Figure 1. Co-occurrence patterns forCAL500; redder
points imply high correlation between tags.

To understand the extent of tag co-occurrences, we ex-
amine the Computer Audition Lab 500 (CAL500) dataset,
used later in our experiments (see Section 4 for more de-
tails). Figure 1 depicts the pairwise correlation matrix be-
tween CAL500 tags. Correlation values have been com-
puted through an application of Jaccard’s Coefficients [8],

nij =
P (wi ∩ wj)

P (wi) + P (wj)− P (wi ∩ wj)
, (1)

which provide a measure of the strength of the association
between the general wordswi andwj , normalized by the
total number of times the two words appear. Thenij coef-
ficients range between 0 and 1, withnij > 0 if the tags are
not mutually exclusive (i.e., if they occur together in some
songs). In Figure 1, redder parts represent tag pairs that
are highly correlated (i.e., wherenij is large). As can be
seen, correlation is present in many tags and it is particu-
larly prevalent in the “Emotion” and “Acoustic” categories
whereas tags categorized as “Genre” display few correla-
tion patterns.

The co-occurrence patterns illustrated in Figure 1 are
not explicitly captured by auto-taggers that model acous-
tics independently for each tag. Although SMNs capture
patterns at the song level that are predictive of semantic
tags, each dimension of the semantic space (i.e., each tag)
is assumed to be independent from all others. Exploiting
these regular co-occurrences - giving the semantics context
- could provide a better semantic description of music.

This suggests an extension of auto-tagging models by
adding one additional layer of semantic representation that
explicitly captures tag co-occurrences. We began by mod-
eling the probability distribution of tags given audio fea-
tures, placing each song in a semantic space. Now, by
modeling a probability distribution of the SMNs derived
from each song - a distribution over distributions - we can
obtain a richer semantic description. We refer to these rep-
resentations ascontextual models.

1.3 Modeling Context

In this paper, we present a novel approach to automatically
tagging music with descriptive words by thinking of each
semantic concept as defining a broadercontextthat causes
multiple, related tags to co-occur in the description of a
song. For each tag, we learn a Dirichlet mixture (DM)
to model the distribution of the SMNs derived from all
training songs for that tag. This DM-based “contextual tag
model” is inspired by similar work on modeling the seman-
tics of images [11] where it was proposed as a framework
for combining object-centric and scene-centric methods to
model contextual relationships between visual concepts.
The DM can robustly infer contextually meaningful co-
occurrence patterns between tags in semantic multinomi-
als, while removing accidental co-occurrences that might
be present in some of the individual song-level SMNs.

2. RELATED WORK

Some recent work in music information retrieval has ex-
ploited tag correlation and context. Yang et al. [16] formu-
late tag detection as an ordinal regression problem to ex-
plicitly take advantage of the ordinal relationship between
concepts. Moreover, they proposed to leverage the co-
occurrence patterns of tags for context fusion and employ
tag selection to remove irrelevant or noisy tags. Unlike our
approach, the latter is a single-level model, incorporating
the tag correlation during the training of each individual
detector. Ness et al. [10] propose a hierarchy of two lin-
ear SVMs where the first classifier highlighted the audio
patterns and output a vector of tag affinities (analogous to
a SMN), and the second layer modeled the contextual re-
lationships between tags. Modeling context was also pro-
posed in [3] where a second stage used a learning and cor-
relation reweighing scheme to boost the result of tag detec-
tion, and, earlier, in [1] where authors used a decision tree
to refine the result of individual detectors.

Our approach using the DM to model context is appro-
priate for two reasons. First, the DM is agenerativemodel
that is learned from only positive training examples i.e.,
songs which have been positively associated with a seman-
tic tag. Unlike discriminative models (e.g., SVMs, boost-
ing, decision trees) which also require negative examples,
generative models can accommodate weakly labeled train-
ing data where the absence of an association between a
song and a tag does not guarantee that no such association
exists. Second, the Dirichlet is a distribution over parame-
ters of the multinomial distribution, making it a probabilis-
tically appropriate model of semantic multinomials derived
from auto-taggers.

3. AUTO-TAGGING WITH
DIRICHLET MIXTURES

We start by briefly defining the problem and by reviewing
the song-level auto-tagging system described in [15].
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3.1 Problem formulation

The task of semantic annotation and retrieval can be seen
as a supervised multiclass, multilabel classification prob-
lem, where each class is a wordwi from a vocabularyV =
{w1, ..., w|V|} of unique tags, and each song is labeled with
multiple words. A song is represented as a series of audio
content features,X = {x1, ..., xT }, wherext represents
a vector of features, andT is related to the length of the
audio content; the goal is to find the wordswi ∈ V which
best describe a given song. Each song can then be rep-
resented as an annotation vectorπ = (π1, ...π|V|), where
πi > 0 if wi has a positive semantic association with the
song andπi = 0 otherwise. The coefficientsπi represent
the strength of semantic association between the song and
word wi and are termedsemantic weights[15] or affinity
values[10].

3.2 Defining a semantic space

Various auto-tagging methods have been proposed for de-
riving the semantic weights from acoustic features includ-
ing hierarchical Gaussian mixture models [15], support
vector machines [2,10], codeword Bernoulli averaging [5]
and boosting [3]. Any of these auto-taggers may be used
to produce semantic multinomials — a set of semantic
weights — that describe songs, a process that is illustrated
on the left of Figure 2. In this work, we use the hierarchi-
cal GMM approach and briefly review it hereafter but refer
the reader to [15] for the details of this model.

For each wordwi in the vocabulary, we train a tag-level
probability distribution over the audio feature space, e.g.
PX|W (x|wi) for i = 1, . . . , |V|. The most relevant tags
for a songX are the words with highest posterior probabil-
ity, computed using Bayes’ rule:

πi = PW |X(wi|X ) =
PX|W (X|wi)PW (wi)

PX(X )
, (2)

where PW (wi) is the prior of theith word. We as-
sume an uniform prior, e.g.,PW (wi) = 1/|V| for i =
1, . . . , |V|. We compute the song prior asp(X ) =
∑|V|

i=1
p(X|wi)p(wi). We follow [15] in estimating the

likelihood term in Equation 2,PX|W (X|wi), with the ge-
ometric average of the individual feature likelihoods of all
the songs positively associated with wordwi:

PX|W (X|wi) =

T
∏

t=1

(

PX|W (xt|wi)
)

1

T , (3)

where the distributionPX|W (x|wi) is modeled as a mix-
ture of Gaussians. ThePX|W (x|wi) distributions capture
the patterns of audio content that are predictive of each
wordwi.

Given an unseen test song, represented by a set of au-
dio feature vectorsX , we compute the posterior probab-
ilities for the presence of conceptwi ∈ V from Equa-
tion 2. Collecting the posterior probabilities of each
word results in an annotation vector describing the song,
π = {π1, ..., π|V|}, whereπi denotes the posterior word

probabilityPW |X(wi|X ). With appropriate normalization
(s.t.

∑

i πi = 1), this vector can be conceived of as ase-
mantic multinomial(SMN) which lies on a probability sim-
plex defined as asemantic space. The semantic multino-
mial is analogous to adocument vectorof word counts, of-
ten used in natural language processing [8], and it captures
all the semantic information about the song.

3.3 A model to learn context

To capture the common patterns in the SMNs and model
co-occurrences between tags, we learncontextual tag mod-
els in the semantic space from the SMNs of the all songs
in a training set that have been labeled with each tag. This
contextual modeling stage is illustrated on the right of Fig-
ure 2. Just as we modeled acoustic feature vectors as sam-
ples from a mixture of Gaussians, we consider that seman-
tic multinomialsπ are drawn from a mixture of Dirichlet
distributions over the semantic space [11]:

PΠ|W (π|w; Ωw) =
∑

k

βw
k Dir(π |αw

k ) , (4)

The contextual model for the wordw is characterized by a
vector of parametersΩw = {βw

k , α
w
k }, whereβk is a prob-

ability mass function (
∑

k β
w
k = 1), Dir(π;α) a Dirichlet

distribution of parameterα = {α1, ..., α|V |},

Dir(π |α) =
Γ(

∑|V |
i=1

αi)
∏|V |

i=1
Γ(αi)

|V |
∏

i=1

(πi)
αi−1 , (5)

andΓ(.) the Gamma function.
The parametersΩw are learned from the SMNsπn of

all the songs annotated with wordw. Note that the con-
textual modelsPΠ|W (π|w) play, in the semantic space, a
similar role to the modelsPX|W (X|w) in the acoustic fea-
ture space.

The learning process for the Dirichlet mixture model re-
lies on the maximum likelihood estimation, via the gener-
alized expectation-maximization (GEM) algorithm. GEM
is an extension of the standard EM algorithm, applicable
when the M-step of the latter is intractable. The E-step
computes the expected values of the component probability
distributionβk, whereas the generalized M-step estimates
the parametersαk. Rather than solving for the parameters
of maximum likelihood, each M-step simply produces an
estimate of the likelihood which is higher than that avail-
able in the previous iteration. This is known to be suf-
ficient for EM convergence [4]. Parameter estimation is
achieved through an application of the Newton-Raphson
algorithm [9].

Given an unseen test song described by the SMN
π = {π1, ..., π|V|}, the assignment of a word,wi, results
from a Bayes decision rule based on the posterior word
probabilities in the context space:

PW |Π(wi|π) =
PΠ|W (π|wi)PW (wi)

PΠ(π)
. (6)

Again we assume a uniform word prior probability
PW (wi). Collecting all the posterior probabilities
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Figure 2. Overview of the system: the Dirichlet Mixture models context by considering co-occurrences patterns between
auto-tags lying in a semantic space.

PW |Π(wi|π) = θi and normalizing (s.t.
∑

i θi = 1), we
build the vectorθ = (θ1, ..., θ|V|), denoted as thecontex-
tual multinomial(CMN) distribution of a song. Similar to
the semantic space defined in Section 3.2, CMN vectors
lies in acontextual space(see Figure 2).

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the impact of contextual
models, and in particular the DM, on automatically tagging
music with meaningful words.

4.1 CAL500 Dataset

The Computer Audition Lab 500 (CAL500) [15] dataset
comprises 502 songs by 502 different artists. Each song
has been annotated by at least 3 humans using a vocabulary
composed of 174 tags from 6 different semantic categories,
representing both objective and subjective concepts.

The songs are described by Mel-Frequency Cepstral Co-
efficient (MFCC) feature vectors; each MFCC vector sum-
marizes the spectral content of 23ms windows of a song.
Our experiments use 39-dimensional MFCC-Delta feature
vectors, composed by appending the first and second in-
stantaneous derivatives to the 13-component MFCCs.

A first analysis of the dataset demonstrates an imbal-
ance in the distribution of tags: while frequent tags can
have more than 300 positive examples, some others have
less than 10 ones. This is not a big problem when train-
ing auto-taggers since each song is described by a large
number of features vectors. However, the resulting set of
SMNs describing songs is much smaller than the number
of feature vectors and thus, we require more songs to ad-
equately train the contextual models. For this reason, our
evaluation considers only the tags with more than 30 exam-
ples, aiming to have at least20− 25 examples in the train-
ing set with the remainder in the test set. This reduces the
CAL500 vocabulary to 97 tags: 11 genres, 14 instruments,

25 acoustic qualities, 6 vocal characteristics, 35 emotions
and 6 usages.

To provide sufficient data to train the DM, we extract
multiple SMNs from each song, each derived from clips
lasting 3 seconds. We find empirically that, unlike im-
ages which generally depict only a few semantic concepts
(i.e., their SMNs have a few peaks that dominate all other
tags), even a short music clip can be reasonably tagged
with many words and the resulting SMNs tend to be much
more uniform. For this reason, when learning DM models,
we threshold the SMNs, retaining at most the ten largest
affinity values and setting all other dimensions to zero.

4.2 Annotation and Retrieval

We evaluate auto-tagging performance on both annotation
and retrieval tasks. In theannotationtask, we use Equa-
tion 6 to label each test song with the ten most likely tags.
Performance is measured using mean per-tag precision, re-
call and F-score. Per-tag precision is the probability that a
tag used by the model is correctly applied to a song. Per-
tag recall is the probability that the model annotates all the
tags that should apply to a song. F-score is the harmonic
mean of precision and recall, and is a single measure of
overall annotation performance.

In the retrieval task, we rank-order all songs according
to their relevance to a query tag. The retrieval goal is to
have highly relevant songs at the top of the ranking list as
this is the most crucial requirement in a music retrieval sys-
tem. We consider the mean average precision (MAP) and
theprecision at k(k = 3, 5, 10). For completeness, we also
report the area under the receiver operating characteristic
curve (AROC) as a measure of the quality of the complete
ranking [8].

Evaluation was performed using 5-fold cross validation,
with 400 songs in the training set, and 100 in the test set.
The folds were built such that each song appeared in the
test set exactly once. The results reported in Table 1 dis-
play the annotation and retrieval metrics, averaged over all
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Annotation Retrieval
Precision Recall F-Score P3 P5 P10 MAP AROC

Semantic
CBA 0.361 0.212 0.267 0.463 0.458 0.440 0.425 0.691

GMM 0.405 0.202 0.269 0.456 0.455 0.441 0.4330.698

Context
SVM 0.380 0.230 0.286 0.512 0.487 0.449 0.434 0.687

DM 0.441 0.232 0.303 0.519 0.501 0.470 0.4430.697

Upper Bound 0.716 0.471 0.568 1.000 0.993 0.942 1.000 1.000
Random 0.231 0.101 0.140 0.255 0.249 0.250 0.277 0.504

Table 1. Performance of different auto-taggers: the Codeword Bernoulli Average (CBA) and Gaussian Mixture Models
(GMM) consider semantics alone whereas the Support Vector Machine (SVM) and Dirichlet Mixture (DM) models learn
contextual relationships between the semantic multinomials produced by the GMM. All experiments were performed on
the same songs represented by the same set of features. “Random” is a baseline that annotates and ranks songs randomly.
“Upper Bound” uses the optimal labeling for each evaluation metric and shows the upper limit on what any system could
achieve.

tags in the vocabulary.

4.3 Contextual improvement

The proposed contextual modeling approach is compared
to some recent state of the art auto-tagging approaches: the
GMM model [15] alone (i.e., without context) and the CBA
model [5]. For the CBA model, each song is represented
as a histogram over a codebook of 500 vector-quantized
MFCCs. For each fold we trained the codebook models
only on the songs in the training set. All the code was
provided by the authors of [5].

We see in Table 1 that there is significant benefit from
modeling context on almost all annotation and retrieval
metrics. In particular, the precision-at-kmetrics demon-
strate improvements at the top of the ranked retrieval list
but not throughout list (based on AROC). It can be argued
that precision-at-kmetrics consider the part of the ranked
list which is most interesting for users of a semantic music
retrieval engine.

4.4 DM as a model of context

The center rows of Table 1 compare the DM approach for
modeling semantic co-occurrences to a Support Vector Ma-
chine (SVM). As with the DM, we trained a contextual
SVM for each tag using the semantic multinomials as the
input feature vector. Using SVM as a model of context was
first proposed in [10] although their approach differs in the
features used (median MFCC texture windows) and in the
semantic model (SVM), so our results do not present a di-
rect comparison with [10]. Our goal is simply to compare
the DM and SVM as models of contextual relationships.
The context SVM does not benefit from pre-processing the
SMNs (results not shown), thus SVMs are trained on all the
original semantic values. Table 1 shows that DM generally
improves on all the metrics and never performs worse. In
particular, the DM significantly improves on the SVM for
the annotation precision, F-score, P5, P10 and AROC met-
rics (t-test,10% significance level); all the other metrics
generally improve and never perform significantly worse.

Table 2 breaks up the evaluation over the different tag

categories. As can be seen, all categories but “Genre” show
clear benefit from contextual modeling. Note that improve-
ments are related to the tag co-occurrences depicted in Fig-
ure 1. In fact, all the categories showing a high degree of
co-occurrences (“Emotion”, “Instrument” and “Acoustic”)
improved with respect to the GMM. Though not exhibit-
ing as much co-occurrence, the “Usage” and “Vocals” cat-
egories, which perform poorly using semantics alone, ben-
efit from the de-noising effect of learning contextual rela-
tions. In these cases, the extra information from even only
few co-occurrences can lead to improvements in the qual-
ity of auto-tagging. Conversely, since the “Genre” category
does not exhibit much co-occurrence (i.e., genres are more
exclusive), we do not gain benefit from additional contex-
tual modeling. It has to be noted that SVM performs better
for the “Genre” category, especially in the top of the rank-
ing list; we believe that in this case SVM benefits from
some de-noising effects that DM is not able to capture.

4.5 Predictive co-occurrences

Finally, we include some examples of learned contextual
models for 6 tags, representing each semantic category in
CAL500. Table 3 shows the top three semantic multino-
mial dimensions that have most influence on the contextual
models for each tag. These examples illustrate how the
DM uses context to improve automatic tagging by learn-
ing to put most weight on semantic dimensions that are
predictive of the tag being modeled e.g., “calming, low en-
ergy, mellow” music is good for “going to sleep”. This
demonstration of the dependence between tags indicates
the importance of including context when modeling the re-
lationship between semantics and music.

5. CONCLUSIONS

In this paper we have presented the Dirichlet mixture
model, a novel approach for improving automatic music
tagging by effectively modeling contextual relationships
among tags. Starting from the SMN of each song, the DM
adds an additional layer to model tag co-occurrences, giv-
ing context to the semantic representations derived from
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Category # Tags Model P5 P10 MAP

Emotion 35
GMM 0.513 0.506 0.477
SVM 0.539 0.514 0.481
DM 0.561 0.535 0.489

Genre 11
GMM 0.367 0.325 0.355
SVM 0.396 0.336 0.350
DM 0.360 0.331 0.341

Instrument 14
GMM 0.460 0.431 0.441
SVM 0.495 0.452 0.455
DM 0.506 0.458 0.463

Acoustic 25
GMM 0.508 0.501 0.472
SVM 0.524 0.516 0.471
DM 0.564 0.546 0.496

Usage 6
GMM 0.253 0.233 0.258
SVM 0.266 0.226 0.237
DM 0.308 0.273 0.281

Vocals 6
GMM 0.253 0.240 0.261
SVM 0.260 0.210 0.235
DM 0.287 0.267 0.278

Table 2. Retrieval results considering the different word
categories for the semantic GMM, and the contextual SVM
and DM models.

Context Tag Semantic Influence

calming low energy tender slow tempo

hard rock hard rock rock strong

acoustic guitar slow tempo tender acoustic guitar

acoustic texture low energy soft rock light beat

going to sleep calming low energy mellow

emotional tender sad soft rock

Table 3. Examples of the top three semantic influences on
contextual tag models.

acoustic content. A tag’s affinity with a song is computed
as the posterior probability under the tag’s DM model. The
set of all posterior tag probabilities provides a contextual
description of the song.

Experiments reported that modeling context outper-
forms approaches based on a semantic representation
alone, especially considering the top of the ranked retrieval
lists. We demonstrate that the DM is an appropriate choice
for modeling semantic context by comparison to learning
context with an SVM. More specifically, examining the
performance across semantic categories, we showed that
the DM improves performance for tags that exhibit a high
degree of correlation, as well as for noisy tags that are
poorly represented by acoustic patterns.
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