11th International Society for Music Information Retrieval Conference (ISMIR 2010)

AN AUDIO PROCESSING LIBRARY FOR MIR APPLICATION
DEVELOPMENT IN FLASH

Jeffrey Scott’, Raymond Migneco', Brandon Morton',Christian M. Hahn'
Paul Diefenbach?, Youngmoo E. Kim'
Electrical and Computer Engineering, Drexel University'
Media Arts and Design, Drexel University?*
{jjscott, rmigneco, bmorton, cmhahn, pjdief, ykim }@drexel.edu

ABSTRACT

In recent years, the Adobe Flash platform has risen as a
credible and universal platform for rapid development and
deployment of interactive web-based applications. It is
also the accepted standard for delivery of streaming me-
dia, and many web applications related to music informa-
tion retrieval, such as Pandora, Last.fm and Musicovery,
are built using Flash. The limitations of Flash, however,
have made it difficult for music-IR researchers and de-
velopers to utilize complex sound and music signal pro-
cessing within their web applications. Furthermore, the
real-time audio processing and synchronization required
for some music-IR-related activities demands significant
computational power and specialized audio algorithms, far
beyond what is possible to implement using Flash script-
ing. By taking advantage of features recently added to the
platform, including dynamic audio control and C cross-
compilation for near-native performance, we have devel-
oped the Audio-processing Library for Flash (ALF), pro-
viding developers with a library of common audio pro-
cessing routines and affording Flash developers a degree
of sound interaction previously unavailable through web-
based platforms. We present several music-IR-driven ap-
plications that incorporate ALF to demonstrate its utility.

1. INTRODUCTION

The use of web applications is now commonplace due to
the widespread availability of broadband connections, im-
proved client processing power, and the capabilities af-
forded by Adobe Flash. Flash has become the dominant
platform for the development of web-based interactive me-
dia applications by providing tools for easily implementing
rich graphics, animation and user interface controls as well
as cross-platform deployment. Despite its popularity, how-
ever, Flash’s support for sound and music processing has
historically been limited. ActionScript, Flash’s native de-
velopment language, was never intended to accommodate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2010 International Society for Music Information Retrieval.

643

computationally intensive algorithms, such as the signal
processing required for real-time audio feature extraction
and analysis.

Recognizing the potential for developing audio- and
music-centric applications on the web, we have developed
the Audio processing Library for Flash (ALF), which ad-
dresses the audio limitations of the Flash platform. ALF
is based on Flash version 10 and capitalizes on the the re-
cently introduced Adobe Alchemy framework, which al-
lows existing algorithms written in C/C++ to be compiled
into byte code optimized for the ActionScript Virtual Ma-
chine for significantly improved performance [1,2]. By
utilizing the dynamic audio capabilities recently added to
Flash 10 and the computational benefits of Alchemy, ALF
provides Flash developers with a library of common au-
dio processing routines that can be incorporated into ap-
plications, such as spectral feature extraction and analysis,
filtering and reverberation.

By including real-time audio processing capabilities to
Flash, ALF provides web applications with an additional
degree of sound interaction that has previously only been
available on native PC platforms. For example, ALF is
capable of supporting music-based games in Flash requir-
ing responses from the player precisely timed to music.
Although ALF can be used to enhance the audio of any
Flash application, our goal is to enable a new form of web
apps that can be driven by user-supplied audio. This poten-
tially allows a user to choose a wide range of customized
musical inputs, such as selections from their personal col-
lection or completely user-generated music content (song
remixes and mashups, which are becoming increasingly
commonplace). As we will demonstrate, ALF facilitates
the development of games that are dynamically driven by
the acoustic features of songs from a user’s music library,
thus creating unique game play experiences depending on
the provided audio content.

2. RELATED WORK

There are many software packages available that provide
libraries for feature extraction and audio synthesis that
exist as open source projects for research and develop-
ment. While many provide similar functionality, each li-
brary was developed to address particular implementation
issues, such as cross-platform support, computational ef-

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

ficiency and ease of implementation. In this section, we
provide a brief description of some existing libraries.

Marsyas (Music Analysis, Retrieval and Synthesis for
Audio Signals) is an audio processing and MIR framework
built in C++ with a GUI based on Qt4 [3]. The project in-
cludes a wide variety of functions for analysis and synthe-
sis as well as audio features and classification algorithms.
Being one of the first such projects, the scope of Marsyas is
significant and it has been used in many research projects
as well as commercial endeavors.

JAudio was developed to be an easy to use Java-based
system for feature extraction. The cross-platform nature
of Java and GUI tools were the motivating factors for the
choice of development language. The creators attempted to
make the system as easily extensible as possible, avoid re-
dundant computation, and ensure the algorithms were sep-
arate from other functionality to increase ease of portabil-
ity [4].

M2K is a project under the International Music Infor-
mation Retrieval System Evaluation Laboratory which is
based off of the Data to Knowledge (D2K) machine learn-
ing and data mining environment [5]. D2K is employs
a visual programming environment in which users con-
nect modules together to prototype algorithms. The M2K
project has taken this framework and built in an array of
MIR tools for rapid development and testing of MIR sys-
tems.

The MIRToolbox is an audio feature extraction library
built in MATLAB that emphasizes a modular, parameter-
izable framework [6]. The project offers a wide range of
low-level and high-level features as well as tools for statis-
tical analysis, segmentation and clustering.

CLAM is an analysis/synthesis system written in C++
designed to be entirely object-oriented to allow for signif-
icant re-usability of code and functionality [7]. It provides
audio and MIDI input/output, supports XML and provides
tools for data visualization.

FEAPI is a platform-independent programming appli-
cation interface for low-level feature extraction written in
C [8]. In contrast to the previously described systems,
FEAPI allows developers to create their own applications
using C/C++ without being required to use the interfaces
designed to work with the above libraries.

3. IMPLEMENTATION

The driving force behind the development of ALF was to
provide developers with an efficient, cross-platform and
open source MIR and audio synthesis library. By choosing
Flash as the development platform, we target developers
seeking to rapidly develop and deploy web-based and/or
cross-platform desktop applications. As we will discuss,
the multi-layered and open source architecture of ALF also
permits ease of development for programmers with various
expertise and does not require prior knowledge or experi-
ence in audio programming.

644

| hopSize | hopSize | hopSize | oo

Write hopSize samples ‘Write hopSize samples ‘Write hopSize samples
to input buffer to input buffer to input buffer

Y ®

copy samples
to fitFrame

Analysis Computation Scheme

.
Lol Compute magnitude
P spectrum
l \ l

Spectral
Features

DSP/Feature

Function Calls

Chroma

Synthesis?
Yes

Synthesis Computation Scheme

Figure 1. Frame-based computation and processing flow
in ALF.

Y . Determine if

Perform alternate frame
Processing
.
Output N
.

rate/size is needed
Audio

Execute
synthesis
algorithm

Check if needed
FFT size is already
N computed

.

3.1 Architecture

The dynamic audio functionality in the current version of
Flash is somewhat asynchronous, allowing sound to be
processed outside of the main application thread. Thus the
DSP routines can execute independently of the Flash script
rather than having to wait for C/C++ functions to finish
executing, allowing front-end UI and other operations to
continue if they are not dependent on data computed using
ALF functions.

There are several layers of abstraction in ALF provid-
ing a flexible framework with various levels of control de-
pending on the needs of the developer. The heavy compu-
tation is executed by the C/C++ functions which are com-
piled using the Adobe supplied Alchemy compiler for use
with ActionScript (AS). We provide a basic AS wrapper to
properly handle the shared memory management between
C/C++ and ActionScript for those wishing to have basic
access to the C functionality. The top layer streamlines
audio input/output and provides simple calls to perform
feature extraction and analysis-synthesis tasks. The entire
project is open source so that a developer may customize
the architecture to meet application-specific needs. ALF is
fully documented and is currently available via a subver-
sion repository online ! .

To ensure tight synchrony between the video and au-
dio output in Flash, the processing flow was developed ac-
cording to the diagram shown in Figure 1. The frame size
is set by the the video frame rate since ALF is designed
with graphical oriented applications in mind, thus the time-
frequency resolution of the system is also determined by
this parameter. Whenever possible, a single FFT is used in
computing the features returned to the user, however, cer-
tain algorithms require transforms of sizes other than the

!http://music.ece.drexel.edu/ALF

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Table 1. ALF Functions

Function Name |

Description

Spectrum Computes the magnitude spectrum using the FFT algorithm
Harmonics Finds the harmonics of the frequency spectrum
MFCC Calculates the Mel-Frequency Cepstral Coefficients
LPC Performs Linear Prediction and returns the coefficients and gain
Bandwidth The frequency range present in the signal
Centroid The center of gravity of the frequency spectrum
Analysis Flux The change in energy from the previous frame
Intensity Calculates the energy of the spectrum
Rolloff The frequency below which %85 of the spectral energy lies
Autocorrelation | Computes the autocorrelation via the FFT
Chroma An representation of the spectral energy present in the 12 individual semitones
Beat Tracking Returns whether a beat occurs on each frame (based on bandwise autocorrelation)
Filter Filters the audio signal - FIR and IIR implementation
Synthesis Reverb Applies reverb by using a room impulse response (RIR) as an FIR filter
Phase Vocoder | Alters the tempo and/or pitch of the audio

default size. A shared buffer system is also used so that we
can perform operations at variable frame rates and over-
lap lengths without having to read in the data again using
different frame sizes.

3.2 Performance

As previously mentioned, the computationally inten-
sive routines in ALF are implemented in the Alchemy-
optimized C code to avoid the limitations of ActionScript.
While slightly slower than native C code, the Alchemy-
optimized code provides significant performance gains
over identical algorithms implemented with ActionScript.
In a related paper, we performed a benchmark analysis
of the FFT algorithm using the ActionScript as3mathlib
implementation versus our Alchemy-compiled C imple-
mentation as well as Java’s JTransforms. Averaging the
computation speed over 10,000 iterations, we showed our
implementation to be nearly 30 times faster than the Ac-
tionScript version [1]. The results of this performance
comparison are outlined in Table 2. These computational
gains open up myriad possibilities for developing interac-
tive music-IR driven applications in the Flash framework.

Table 2. Comparison of FFT Computation Time for Ac-
tionScript and Alchemy-compiled C code in milliseconds.

Target FFT Size
Platform 8192 4096 2048 1024 512 256
ActionScript | 45.157 20.818 9.276 4.460 2.041 0.925
Java 20.703 9393 4345 1956 0.901 0.385
Alchemy-C | 1.371 0.628 0.297 0.139 0.067 0.034

3.3 ALF Functions

The functions available in ALF are categorized as either
“analysis” or “synthesis” and are outlined in Table 1. The
analysis functions include several spectral processing rou-
tines and features, such as partial extraction and MFCCs,
that are useful in many MIR tasks [9]. Synthesis functions

645

are also available so that the developer can dynamically
modify the audio output stream to achieve a desired effect.
In a related paper, we discuss the implementation and al-
gorithms used for the reverb and filter functions [2]. The
remainder of this section will briefly discuss the implemen-
tation of two additional synthesis functions added to ALF:
phase vocoding and beat tracking.

The most important consideration in developing the
beat tracking algorithm was the stipulation that it run in
real-time. Our beat tracking algorithm is based off of
that proposed by Klapuri but uses an autocorrelation as
opposed to a bank of comb filters for computational ef-
ficiency [10]. We first compute the power spectrum and
separate it into six octave-based sub-bands. The energy
envelope in each sub-band is calculated and the bandwise
autocorrelation of these vectors is computed. Summing the
resulting six autocorrelations and finding the highest peak
after the zeroth lag yields an estimate of the tempo.

The phase vocoder is based on a popular, FFT-based
implementation in which overlapping frames (specified by
ALF’s frame rate) are analyzed and re-synthesized using
overlap-add in order to perform pitch and/or time-scale
modification in real-time [11]. Each frame is processed
by a FFT, which is used to determine the phase offset for
each frequency bin and thus the estimated, true bin fre-
quency. Pitch modification is achieved by multiplying the
bin frequencies by a pitch shift factor, which shifts the
audio’s pitch in the desired manner after performing the
IFFT. Time stretching is achieved by first applying the ap-
propriate pitch-shift factor, performing an IFFT and and
re-sampling the audio frame in the time domain to achieve
the desired speed.

4. DEVELOPING WITH ALF

Many of the applications developed with ALF thus far have
followed the same basic program structure, which is de-
tailed in Figure 3. Input audio is analyzed on a per frame
basis and feature values are returned in real-time for the

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

developer to incorporate into their application. Any addi-
tional processing required for synthesis functions is exe-
cuted in a separate processing chain, which eliminates any
computational overhead when synthesis functions are not
required.

ALF: Aupio PROCESSING |_IBRARY FOR I LASH

Created by: MET| 15

Quitar sting T Loading Audio.... Complete!

Select an audio file below Audio Controls

Features
Brightness:

Reverb Simulator
193.86 Hz Strength
0.66
2417 Hz

24.77

Flux:
Bandwidth:
Intensity:
Rolloff: 236.87 Hz
Complex Spectrum

Magnitude Spectrum

Pres the note and
specify the number
of harmonics you
wish to extract

K-b
Active Memory Use: 55.534 MB |

Figure 2. Application demonstrating ALF functionality.

Vocoder

Pitch x

Tempo — =&

The flexible nature of the architecture shown in Figure
3 combined with the low learning curve of Flash allows
developers to rapidly create audio and music-based appli-
cations to serve a variety of target audiences and purposes.
Possible applications include:

e Music-centric games requiring real-time feature ex-
traction to drive the game environment

e Music exploration interfaces that group user li-
braries into categories (emotional, genre, etc.) based
on extraction and comparison of audio features

e Educational activities for enhancing K-12 curricula
in natural science and/or mathematics [12]

Currently, we have several applications developed using
ALF for the purpose of audio-based experimentation, anal-
ysis/synthesis and music-driven games for entertainment,
which we will discuss in the subsequent sections.

4.1 ALF Workbench

Figure 2 demonstrates the ALF Workbench, which allows
developers to interactively experiment with different au-
dio files and some of the functions available in ALF. The
left panel of the interface showcases the spectral features,
which are updated during audio playback and can be ex-
ported in a CSV file when the file completes. A pitch wheel
is also shown, which allows the user to determine the chro-
matic notes present in the spectrum of tonal audio. The
right panel of the work bench features the room reverb and
phase vocoding functions. The reverb interface allows the
user to manipulate the positions of the source and listener
in a virtual room to simulate immersive environments.

646

SOUND /A NALYSIS AND S YNTHESIS

Select an audio file below Audio Controls

Analysis

Impulse

o
2
[}
°
2
=
o
©
=

Noise

Impulse
+ Frequency

S Toggle Spectrum &

Figure 4. Sound analysis-synthesis app showing linear
predictive analysis and magnitude spectrum of speech.

4.2 Beat-Sync-Mash-Coder

Recently, so-called artist “mashups”, blending two or
more songs in a creative way, have emerged as a popular
form of expression for musicians and hobbyists. To this
end, the Beat-Sync-Mash-Coder is a tool developed for
semi-automated, real-time creation of beat-synchronous
mashups [13]. This application utilizes the beat-tracking
and phase vocoding functions available in ALF along with
an intuitive, Flash-based GUI to help automate the task
of synchronizing various clips without the complexities
incurred with traditional digital audio workstations. The
Beat-Sync-Mash-Coder is capable of sustaining real-time
phase vocoding on 5-9 audio tracks, depending on the
available hardware, thus allowing the user to create dy-
namic, intricate and musically coherent soundscapes.

4.3 Sound Analysis and Synthesis Application

The application depicted in Figure 4 uses ALF’s analy-
sis and synthesis capabilities to perform linear-predictive
analysis on speech signals in order to re-synthesize it using
different excitation signals. Linear prediction coefficients
are extracted at each frame using the Levinson-Durbin re-
cursion to obtain a time-varying model of the vocal tract
[14]. The user can then simulate the effect of various exci-
tation sources by using ALF’s filtering function to sample
the vocal tract with impulsive, noisy or mixed-spectra sig-
nals.

4.4 Applications For Music-Driven Gameplay

We present two novel music-driven games which resulted
from a collaboration between departments at our univer-
sity. Both games harness MIR functionality in ALF to cre-
ate unique and immersive gameplay experiences.

4.4.1 Pulse

Pulse is a musically reactive, side-scrolling platform game
that utilizes a player’s personal music collection to drive
the gameplay. Unlike other music games, which rely on

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Music Library

Developer Application

A

Track 2

Playlist ActionScript ALF
f] (Audio Analysis Audio Processing
[:Tracm > |-> ExtrFactAudlo S U O AP Y- R
; rame v Reverb

Spectral Analysis Phase Vocoding

y o

Feature Extraction

. Parameter] -
. : Mapping :

)
Additional | |+ (Render Video °
> Lo
Tracks . Frame) L —/:)

v v

[Visual Output J [Audio Output]

Figure 3. Typical implementation of an application using ALF.

off-line audio analysis to determine the gaming environ-
ment, Pulse utilizes ALF functionality to update the game
environment in real-time, mapping the quantitative fea-
tures extracted from the audio to changes in the game’s
environment variables. This concept increases the replay
value of Pulse, since the gamer’s experience is limited only
by the number of tracks in their music library.

By employing ALF’s frame-based processing structure,
ALF maps features extracted from the user-selected au-
dio to environment parameters so they are updated in sync
with the user-specified frame rate. To permit ample render-
ing time for the graphics, a “frame-look-ahead” parame-
ter is specified which delays audio playback while features
are accumulated from ALF functions. Game environment
variables that react to changes in the game’s audio include
the background scenery, enemies and obstacles of the Pulse
character as well as the slope of platform supporting the
character. The effect of the audio on the gameplay is ev-
ident in Figure 5 where (a) shows the game screen when
there is no audio playing and (b) is typical realization of
the parameter mapping to game output.

4.4.2 Surge

The concept behind Surge is to facilitate exploration of
one’s own music library though an interactive, DJ-style
beat matching game. This expands the concept of audio
feature-based gaming environments to include tempo anal-
ysis and modification of the game’s music. Whereas game-
play in Pulse depends on audio features to dictate the envi-
ronment, Surge uses game environment parameters to alter
the audio in real-time.

The Surge game environment, shown in Figure 6, con-
sists of planets that represent songs the player has provided
from their music library. Each song is analyzed with ALF’s
beat tracker function so that the planet is associated with a
song tempo. The game audio depends on which planet the
player is on and their proximity to nearby planets. As the
player nears a new planet, they will hear the music asso-
ciated with the new planet. In order to move from planet-

(®)

Figure 5. Pulse game environment during static (a) and
dynamic (b) moments in the game’s music.

to-planet, the player (by moving their character) must ad-
just the rotation of their current planet (altering tempo and
beats of the song) to match that of the target planet. That
is, the music tempo is adjusted using ALF’s phase vocoder
according to the planet’s rotation, which is dependent upon
the player’s actions in the game environment.

5. FUTURE WORK

There are several features we would still like to add to ALF
including spectral contrast features and other less com-

647

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Figure 6. Surge game environment.

monly used statistical spectrum descriptors. The most sig-
nificant component that would augment the usefulness of
ALF for the music-IR community would be classification.
There are many open source classification libraries avail-
able to perform common classification methods such as
GMM, SVM, and naive Bayes classification that can be
integrated into the current framework.

We will continue to emphasize the real-time capabili-
ties of ALF and optimize the algorithms and architecture
to ensure additional algorithms operate in real-time. The
newest version of the Flash Player (10.1) will allow byte
level access to the audio input creating potential for even
further user interaction via real-time analysis and process-
ing of voice/music input to a microphone or other audio
device connected to a computer.

6. CONCLUSIONS

The Audio processing Library for Flash affords music-IR
researchers the opportunity to generate rich, interactive,
real-time music-IR driven applications. The various lev-
els of complexity and control as well as the capability to
execute analysis and synthesis simultaneously provide a
means to generate unique programs that integrate content
based retrieval of audio features. We have demonstrated
the versatility and usefulness of ALF through the variety
of applications described in this paper. As interest in mu-
sic driven applications intensifies, it is our goal to enable
the community of developers and researchers in music-IR
and related fields to generate interactive web-based media.

7. REFERENCES

[1] T. M. Doll, R. Migneco, J. J. Scott, and Y. Kim, “An
audio DSP toolkit for rapid application development in
flash,” in IEEE International Workshop on Multimedia
Signal Processing, 2009.

[2] R. Migneco, T. Doll, J. Scott, C. Hahn, P. Diefenbach,
and Y. Kim, “An audio processing library for game de-
velopment in Flash,” in Proc. of the IEEE Games Inno-
vations Conference (ICE-GIC 2009), Aug. 2009, pp.

201 -209.

[3] G. Tzanetakis and K. Lemstrom, “Marsyas-0.2: A case

[4]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

(13]

[14]

648

study in implementing music information retrieval sys-
tems,” in Intelligent Music Information Systems: Tools
and Methodologies. Information Science Reference,
2008, pp. 31-49.

D. McEnnis, C. McKay, 1. Fujinaga, and P. Depalle,
“jAudio: A feature extraction library,” in Proc. of the
6th International Conference on Music Information
Retrieval. London, U.K.: ISMIR, 2005.

J. S. Downie, A. F. Ehmann, and X. Hu, “Music-to-
knowledge (M2K): a prototyping and evaluation envi-
ronment for music digital library research,” in Proc. of
the 5th ACM/IEEE-CS Joint Conf. on Digital Libraries.
New York, NY, USA: ACM, 2005, pp. 376-376.

O. Lartillot, P. Toiviainen, and T. Eerola, A Matlab
Toolbox for Music Information Retrieval., ser. Studies
in Classification, Data Analysis, and Knowledge Orga-
nization. Springer, 2007, pp. 261-268.

X. Amatriain, M. De Boer, and E. Robledo, “CLAM:
An OO framework for developing audio and music ap-
plications,” in Proc. of the 17th Annual Conference on
Object-Oriented Programming, Systems, Languages
and Applications, 2002.

A. Lerch, G. Eisenberg, and K. Tanghe, “FEAPI: A low
level feature extraction plugin api,” in In Proc. of 8th
Int. Conference on Digital Audio Effects (DaFX ’05),
2005.

G. Tzanetakis and P. Cook, “Musical genre classifica-
tion of audio signals,” IEEE Transactions on Speech
and Audio Processing, vol. 10, no. 5, pp. 293-302,
2002.

A. P. Klapuri, A. J. Eronen, and J. T. Astola, “Analy-
sis of the meter of acoustic musical signals,” in /EEE
Transactions Speech and Audio Processing, 2004, pp.
342-355.

M. Dolson, “The phase vocoder: A tutorial,” in Com-
puter Music Journal, vol. 10, no. 4. MIT Press, 1986,
pp. 14-27.

T. M. Doll, R. V. Migneco, and Y. E. Kim, “Online
activities for music informatioin and acoustics educa-
tion and psychoacoustics data collection,” in Proc. of

the International Conference on Music Information Re-
trieval. Philadelphia, PA: ISMIR, 2008.

G. Griffin, Y. E. Kim, and D. Turnbull, “Beat-sync-
mash-coder: A web application for real-time creation
of beat-synchronous music mashups,” in Proc. of the
IEEE Conf. on Acoustics, Speech, and Signal Process-
ing, 2010.

T. F. Quatieri, Discrete-Time Speech Signal Process-
ing, A. V. Oppenheim, Ed. Prentice Hall Signal Pro-
cessing Series, 2002.

