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ABSTRACT

In this publication we describe a novel two-dimensional
approach for automatic music genre classification.
Although the subject poses a well studied task in Music
Information Retrieval, some fundamental issues of genre
classification have not been covered so far. Especially many
modern genres are influenced by manifold musical styles.
Most of all, this holds true for the broad category “World
Music”, which comprises many different regional styles
and a mutual mix up thereof. A common approach to
tackle this issue in manual categorization is to assign mul-
tiple genre labels to a single recording. However, for com-
monly used automatic classification algorithms, multi-
labeling poses a problem due to its ambiguities. Thus,
we propose to break down multi-label genre annotations
into single-label annotations within given time segments
and musical domains. A corresponding multi-stage evalu-
ation based on a representative set of items from a global
music taxonomy is performed and discussed accordingly.
Therefore, we conduct 3 different experiments that cover
multi-labeling, multi-labeling with time segmentation and
the proposed multi-domain labeling.

1. INTRODUCTION

In the field of Music Information Retrieval, automatic genre
classification has been covered in numerous publications.
Although genre labels as being used in online music stores
or music journals mostly represent marketing terms, genre
itself embodies both a culturally relevant term and an in-
tuitive concept to categorize music. Single genre labels
usually reflect some sort of stylistic elements inherent to a
piece of music. Especially nowadays, music is influenced
by an increasing amount of different musical styles. This
leads to the necessity of describing single recordings with
multiple genre labels. At the same time, this increases am-
biguity in case a distinct genre classification result is in-
tended. We stumbled across this problem while attempting
to train supervised classifiers for a given sub-genre classifi-
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cation taxonomy of global music content. It is obvious that
the broad term “World Music” is one of the most ill-defined
tags when being used to lump all “exotic genres” together.
It lacks justification because this category comprises such
a huge variety of different regional styles, influences, anda
mutual mix up thereof. On the one hand, retaining the strict
classification paradigm for such a high variety of musical
styles inevitably limits the precision and expressivenessof
a classification system that shall be applied to a world-wide
genre taxonomy. On the other hand, multi-labeling is not
straight forward to deploy for automatic supervised classi-
fication since data sets with multiple class assignments are
not well suited as training data due to their inherent ambi-
guity. To tackle these issues, we considered to break down
the multi-label genre classification problem into a set of
single-label genre classification tasks, where each classi-
fier can be trained and optimized using well-defined data.
The novelty of the proposed 2-dimensional approach for
multi-label genre classification consists in the combination
of segment-wise and domain-specific genre classifications.
The term “domain” refers to the perceived semantic di-
mensions of music in which the classification is performed,
in our case timbre, rhythm and tonality, which represents
melody and harmony. We call the introduced approach
“multi-domain labeling”. In this paper we evaluate and
discuss the potential of a more detailed approach directly,
compared to multi-label genre classification. The rest of
this paper is organized as follows. We give an overview
over related work to this topic in the subsequent section.
Then, after explaining our novel approach in section 3, we
give an overview over the utilized databased as well as the
manual genre annotations corresponding to the proposed
method in section 4. In the following section, we describe
the 3 evaluation experiments that we performed. Details on
feature extraction, feature selection, feature space transfor-
mation as well as on the applied classification algorithms
are presented in section 6. After discussing the results of
the experiments in section 7, we conclude our work and
provide perspectives for future directions in section 8.

2. RELATED WORK

Various classification schemes for automatic genre clas-
sification have been proposed during the last years. [17]
provides a comprehensive overview over existing publi-
cations in the domain. There different approaches related
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to expert systems, unsupervised classification, and super-
vised classification systems have been covered. Consider-
ing the general confusion between similar genres, relaxing
the strict classification paradigm and allowing for multiple-
genre classification seemed to be a reasonable future direc-
tion to the authors to implement a more realistic classifi-
cation system. The earlier work of [3] gave a more pes-
simistic outlook by considering the term genre to be intrin-
sically ill-defined and hardly grounded in timbre character-
istics. Already in one of the basic works on music genre
classification by Tzanetakis [21], separate feature sets rep-
resenting timbre, rhythm, and tonality were introduced that
allowed for different types of similarity measures. How-
ever, separate domain-specific genre models have not been
proposed there. [17] provides also an overview of different
classifier approaches applied in genre classification, such
as Support Vector Machines (SVM), Hidden Markov Mod-
els (HMM) or Artificial Neural Networks (ANN). Other
publications such as [21] utilized Gaussian mixture mod-
els (GMM) for this purpose. Among others, the authors
of [18] used ensemble-based decision approaches namely
a one-against all and a round-robin algorithm to combine
binary classifiers. Different feature-space transformation
methods such as Linear Discriminant Analysis are applied
to increase discrimination between the classes resulting in
better classifications scores [17]. Novel musically moti-
vated low- and mid-level features such as the Octave-based
Modulation Spectral Contrast [11] or multiscale spectro-
temporal modulation features [15] were reported to outper-
form conventional features such as Mel-Frequency Cep-
stral Coefficients (MFCCs). Moreover, an increasing
amount of publications focused on high-level features that
are supposed to better characterize musicological proper-
ties as described for instance in [14], [16], and [1]. Fur-
ther relevant publications regarding feature design are ref-
erenced in Section 6.1.

While most research has been conducted using west-
ern popular music, only a few works were related to more
diverse global music content. A study on the applicabil-
ity of different classifiers for automatic genre classification
of traditional Malaysian music was conducted in [7]. The
general issue of multi-label annotations has been addressed
only in a few publications so far. In [13], the authors exper-
imented with SVM-based “binary relevance” multi-label
genre classification in conjunction with MARSYAS-based
features [21]. This approach was continued in [23], where
the authors modified a k-Nearest Neighbors classifier in or-
der to handle multi-label data directly. In [20], automatic
mood estimation was modeled as a multi-label classifica-
tion task where every item may belong to more than one
class. To the current knowledge of the authors, no publica-
tion so far discussed an approach similar to multi-domain
labeling, that will be explained in detail in the following
section.

3. MULTI-DOMAIN-LABELING

As explained in Section 1, while dealing with musical con-
tent from various regional music genres (often referred to

as “World music”), the problem frequently arises that songs
cannot solely be labeled with one single genre label. In-
stead, various rhythmic, melodic and harmonic influences
conflate into multi-layered mixtures. Common classifier
approaches fail because of their immanent assumption that
for all song segments, one dominant genre exists and thus
is retrievable.

To overcome these problems, we introduce a novel ap-
proach called “multi-domain labeling”. We aim at break-
ing down multi-label annotations towards single-label an-
notations within different musical domains, namelytimbre,
rhythm, andmelody / harmonythat are well-known aspects
of perceivable music similarity. Furthermore, a separate
annotation of each temporal segment of the overall song
is enabled. This leads to a more meaningful and realis-
tic two-dimensional description of multi-layered musical
content. In addition, the approach facilitates a more pre-
cise training of a classifier by avoiding fuzzy multi-labeled
data samples.
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Figure 1. Structure of the database

4. DATABASE & ANNOTATIONS

The music collection that we used for our investigations
consists of 430 full-length tracks from the 16 world mu-
sic genres. For each genre, the database includes approx-
imately two hours of music on average (see Fig. 1 for de-
tails). This music data collection was provided by the con-
tent partner of the research projectGlobalMusic2One1 .
The research project involves educated musicologists work-
ing with a world music label and being in regular contact
with musicians associated with the applied genres. Anno-
tations were manually made by using an annotation soft-
ware allowing to label music genres in different domains
with regard to an arbitrary amount of time segments. This
annotation software includes automatic segmentation algo-
rithm, which makes the first suggestion in order to speed
up the annotation process. The experts had a fully freedom
to modify borders and assessments of the segments in each
of domains.

In this paper, we applied a flat taxonomy with all afore-
mentioned genres considered to be situated at the same
hierarchical level. Above all, for our experiments we se-
lected tracks that have been annotated with multi-labels

1 http://www.globalmusic2one.net
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in at least one time segment. To evaluate our new anno-
tation approach, the data set was annotated following the
principles of multi-domain-labeling as described in Sec. 3.
Music experts were allowed to assign up to 4 different
genre concepts for each segment - a global genre, a timbre-
related genre, a rhythm-related genre, and a genre related
to the melodic and harmonic content. The three domain
specific annotations were not mandatory. If there were
multiple genre influences audible in a single segment, the
experts were only allowed to assign one genre label for
each domain. This proceeding ensured single-label anno-
tations within each segment and domain. One observation
that we made was that these domain-specific genre influ-
ences seem to be stable for each segment. The resulting
label cardinality (average number of labels per track) of
multi-labeled songs per genre was between 1.1 and 2.0 for
the selected genres, with 1.0 being a genre that has never
been assigned in conjunction with another genre. The la-
bel cardinality appeared to be different depending on the
music genres.

5. THREE EVALUATION EXPERIMENTS

To evaluate the improvement of the classifier performance,
we perform three different experiments as depicted in Fig.
2(a) - 2(c). Therefore, we are moving stepwise from the
fuzzy case of multi-labeled songs towards single-labeled
segments within different musical domains as described in
the previous section.

Multi-labeling (Exp.1)
In the first experiment, all multi-labeled songs are gener-
ally used to train multiple classifiers, more precisely all
classifier related to the annotated genres.

Multi-labeling with time segmentation (Exp.2)
Bearing the temporal structure of music in mind, we fur-
thermore consider single segments in the second experi-
ment. Multi-labeled segments are repeatedly used as class
instances according to their assigned genre labels.

Multi-domain-labeling with time segmentation (Exp.3)
In the third experiment, we are using temporal segments to
train three different domain-related classifiers. Therefore,
we restricted ourselves to features that can be semantically
assigned towards the particular musical domain, as will be
detailed in 6.1.

6. SYSTEM WORK-FLOW

6.1 Feature extraction

For the experiments conducted in this paper, we utilize
a broad palette of features commonly reported in the lit-
erature (see Sec. 2). Besides low-level acoustic features,
several mid-level representations [4] are extracted. These
measures are computed from excerpts of approximately 5
seconds duration by deriving specialized descriptive mea-
sures (including musical knowledge) from the observed
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Figure 2. Evaluation experiments

evolution of low-level features. Besides indifferent usage
of all features (in Exp. 1 and Exp. 2), groups of features
are assigned to the aforementioned domains in the follow-
ing manner.

Timbre
In addition to common features, such as Mel-Frequency
Cepstral Coefficients (MFCC), Audio Spectrum Centroid
(ASC), Spectral Crest Factor (SCF) or Spectral Flatness
Measurement (SFM), modulation spectral features [2] have
proved to be extremely useful to capture short term dynam-
ics of the low-level features. We applied a cepstral low-
pass filtering to the modulation coefficients to reduce their
dimensionality and decorrelate them as described in [6].

Rhythm
All rhythmic features used in the current setup are derived
from excerpts of the different bands of the Audio Spectrum
Envelope (ASE) feature. Part of the measures, such as the
Percussiveness [22] and the Envelope Cross-Correlation,
are based on the envelope signals. The other part is de-
rived from the Auto Correlation Function (ACF) domain.
Besides the measures described in [6], the log-lag ACF and
its descriptive statistics are extracted according to [10].

Tonality
Tonality descriptors are computed from a Chromagram
based on Enhanced Pitch Class Profiles (EPCP) [12], [19].
The EPCP undergoes a statistical tuning estimation and
correction to account for tunings deviating from the equal
tempered scale. Most important, the so-called symmetry
model, a pitch-space representations as described in [9]
are derived from the Chromagram as mid-level features.
The model provides an analytic description of aspects of
musical consonance and dissonance, as well as functional
relationships between probable notes.
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6.2 Dimension Reduction

MIR systems usually use a multitude of low-level and mid-
level acoustic features. Each feature is designed to corre-
late with one of the aspects of perceptual similarity, e.g.
timbre, tempo, loudness or harmony. The distinct acous-
tical features are joined together into so called acousti-
cal feature vectors. While temporal changes in one fea-
ture often correspond to temporal changes in the other fea-
ture (for instance, timbre is changing along with loudness),
the individual dimensions of the feature vectors can often
be strongly correlated and cause information redundancy.
These raw feature vectors could cause various problems
on classification stage. One of the usual ways to suppress
redundant information in the feature matrix is to utilize
dimension reduction techniques. Their purpose is to de-
crease the feature dimensionN while keeping or even re-
vealing the most characteristic data properties. Generally,
all dimension reduction methods can be divided into su-
pervised and unsupervised ones. Among the unsupervised
approaches the one most often used isPrincipal Compo-
nent Analysis(PCA). The key idea of PCA [8] is to find a
subspace whose basis vectors correspond to the maximum-
variance directions in the original feature space. Dimen-
sion reduction is obtained then by simply discarding those
column vectors with the smallest eigenvalues.

6.3 Classification

In this section we shortly describe the applied classifier
and bring the architecture details regarding all three ex-
periments.

Gaussian Mixture Models
Gaussian Mixture Models (GMM) is a commonly used
generative classifier. Single data samples of the class are
thought of as generated from various sources and each
source is modeled by a single multivariate Gaussian. The
probability density function (PDF) of the feature frames is
estimated as a weighted sum of the multivariate normal dis-
tributions. Each singlei-th mixture is characterized by its
mean vectorµi and covariance matrixΣi. Thus, a GMM
is parametrized inΘ = {ωi, µi, Σi}, i = 1, M , whereωi

is the weight of thei-th mixtures and
∑

i
ωi = 1. The

generalization properties of the model can be adjusted by
choosing the number of Gaussian mixturesM . The param-
eters of the GMM can be estimated using the Expectation-
Maximization algorithm [5].

Classifier architecture for three experiments
On the classification stage for each data frame the likeli-
hoods of all class models are calculated. We do not use
prior distribution information. The classification decision
is therefore made using maximum likelihood rule. In a
case of Exp. 1 and Exp. 2 the same data samples may be-
long to multiple data classes. To tackle the problem, here
the classification task is reduced to a set a binary classifica-
tion decisions, where every binary classifierHc is trained
to make a binary decision (if the data sample belong to a
classc or not). These decisions of binary classifiers are

joined together to form the multi-label classification. In a
case of Exp. 3 as described above only single labels are
used within each domain and time segment. Thus for each
domain we train one GMM classifier. On the classification
stage firstly each domain is classified and post-processed
(see Sec. 6.4 for details) independently, and later the re-
sults for all domains are joint together.

6.4 Post-processing

Classification with GMM results in class decision for each
frame of the feature vector. Thus we apply the following
post-processing procedure to reduce frame-level classifica-
tion to the full-track multi-labels. For Exp. 1 and Exp. 2 the
procedure is identical. For all frames of the track for each
of the genres we sum up the number of frames associated
to these genres. Then be build the normalized histogram
of these data. The maximum of this histogram is pointing
out the most probable genre for this track. As we are ex-
pecting more then single label per track, probably, we also
have to accept the second maximum of the normalized his-
togram. This decision is made by a simple thresholding of
the normalized histogram. The track is considered to be
associated to those genres, where the values of the normal-
ized histogram are above the threshold. As the histogram
is normalized, the threshold is set to(0, . . . , 1). The choice
of the threshold crucially influences the performance of the
system. For instance, too low threshold causes high recall
values, but might lead to poor precision. Thus the threshold
values have to be optimized for each of the experiments. In
a case of Exp. 3 we first perform the thresholding for each
of domains independently, and then joint the results.

6.5 Evaluation Measures

In multi-label classification each data sample (in our case
each song or song segment) is associated with a set of la-
belsY ⊆ L, whereL is a full set of labels. LetD be a
multi-label dataset, consisting of|D| multi-label examples
(Xi, Yi), i = 1 . . . |D|, Yi ⊆ L, whereXi is a feature ma-
trix of the data examplei andYi is a set of (ground-truth)
labels associated to the data examplei. The label cardinal-
ity of D is defined as follows:

LC(D) =
1

|D|

|D|∑

i=1

|Yi| . (1)

Given the multi-label classifierH , the estimated set of la-
bels for samplei is Zi = H(Xi). The traditional informa-
tion retrieval evaluation measures for multi-label case are
written as:

Precision(H, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|

|Zi|
, (2)

Recall(H, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|

|Yi|
, (3)

F−measure(H, D) =
1

|D|

|D|∑

i=1

2 ∗ |Yi ∩ Zi|

|Yi| + |Zi|
. (4)

462



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

7. RESULTS

First of all we detail the settings of the system. The feature
extraction procedure results in233 dimensions for timbre
features,768 dimension for rhythmic features, and187 di-
mensions for tonal features. All in all it leads to1188
dimensions of the feature vector. It is well known that
GMMs are sensitive to the curse of dimensionality. As the
available annotated database is relatively small, we applied
PCA to reduce the dimensionality of feature vectors within
each of domains to100 dimensions. The PCA algorithm
has been trained on the randomly chosen training set (70%
of the database) and then applied to the test set (30% of the
database). This PCA-transformed data have been used in
all 3 experiments. The GMMs have been trained with1,
5, 20, and50 mixtures, only diagonal covariance matrices
have been used. The threshold for the post-processing (as
described in Sec. 6.4) has been varied within a range of0
and1 for Exp. 1, Exp. 2, and for each of three domains in
Exp. 3. Figure 3 depicts the dependency of the F-measure
on the thresholding for all above mentioned cases. It is
interesting to note, that for Exp. 1 and Exp. 2 achieved
F-measure significantly differs depending on the amount
of mixtures in the GMM, while in all domains for Exp. 3
the values of F-measure become comparable. Using5 mix-
tures results into highest F-measure values for all experi-
ments. The optimal thresholds values are within a range of
0.15 and0.25.

Within Exp. 3 we found out, that the optimal thresholds
for each of domains separately do not form the optimal
combination of the thresholds leading to the best
F-measure performance when the domains are joined to-
gether. Thus, in a case of GMM1 (using only one gaussian
to model the class) the optimal thresholds in all domains
are found within a range of0.20 and0.25, while in a case
of GMM20 the optimal thresholds lies within a range of
0.30 and0.35. Figure 4 depicts the F-measure performance
for all three experiments. The F-measure values for each
number of mixtures in GMM are increased for Exp. 3 in
comparison to Exp. 1 and Exp. 2. The best performance
is achived in Exp. 1 for GMM with 5 mixtures reaching
the F-measure of 0.61. The significant performance raise
of about10% is observed for the case of using only one
gaussian to model the class information. It can be explain
with a fact, that in a case of Exp. 3 the classes are less
overlapped and easier to model then in a case of the set of
binary classifiers (as in Exp. 1 and Exp. 2).

Note that for Exp. 3 the involved GMMs include about
two times less free parameters than in a case of Exp. 1
and Exp. 2. As we used only diagonal covariance matri-
ces, the number of free parameters for each GMM can be
approximated asm · (2d + 1), wherem is a number of
mixtures andd is the dimensionality of the feature vector.
Thus for Exp. 3 the number of all free parameters com-
prises3 · k · m (2d′ + 1), wherek is a number of classes
andd′ is the features dimensionality within one domain;
GMMs are trained within each of three domains. Whilst in
a case of Exp. 1 and Exp. 2 the amount of free parameters
for the set of binary classifiers reaches2k ·m (2 · 3d′ + 1).
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Figure 3. Dependency of F-measure on the thresholding
while post-processing as described in Sec. 6.4. For Exp. 1
and Exp. 2 the F-measure performance strongly depends
on the number if mixtures in GMM.

8. CONCLUSIONS & FUTURE WORK

The paper presented a novel two dimensional approach
to music genre classification. It allows to decompose the
multi-label classification problem into multiple single-class
classification problems by breaking it down in two dimen-
sions. First results demonstrate high potential of the pro-
posed approach. Future work will be directed towards ap-
plying Support Vector Machines as alternative classifica-
tion technique, as it has been proved to perform better than
GMM for binary classification. In a case of multi-domain
classification we shall make use of supervised feature se-
lection and feature space transformation methods, which
can not be utilized in a case of multi-label classification.
Furthermore, in the context of the research projectGlob-
alMusic2One, we are going to usevocalsand instrumen-
tationas additional domains. We believe the presented ap-
proach to be extensible to other music genres as the seman-
tic partitioning of music into different musical domains is
universal for most of the world’s regional music styles.
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Figure 4. F-measures for all three experiments
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