
ISMIR 2008 – Session 5b – Feature Representation

COMBINING FEATURE KERNELS FOR SEMANTIC MUSIC RETRIEVAL

Luke Barrington Mehrdad Yazdani Douglas Turnbull∗ Gert Lanckriet
Electrical & Computer Engineering, ∗Computer Science & Engineering

University of California, San Diego
lbarrington@ucsd.edu myazdani@ucsd.edu dturnbul@cs.ucsd.edu gert@ece.ucsd.edu

ABSTRACT

We apply a new machine learning tool, kernel combination,
to the task of semantic music retrieval. We use 4 different
types of acoustic content and social context feature sets to
describe a large music corpus and derive 4 individual kernel
matrices from these feature sets. Each kernel is used to train
a support vector machine (SVM) classifier for each seman-
tic tag (e.g., ‘aggressive’, ‘classic rock’, ‘distorted electric
guitar’) in a large tag vocabulary. We examine the individual
performance of each feature kernel and then show how to
learn an optimal linear combination of these kernels using
convex optimization. We find that the retrieval performance
of the SVMs trained using the combined kernel is superior
to SVMs trained using the best individual kernel for a large
number of tags. In addition, the weights placed on indi-
vidual kernels in the linear combination reflect the relative
importance of each feature set when predicting a tag.

1 INTRODUCTION

A significant amount of music information retrieval (MIR)
research has focused on signal processing techniques that
extract features from audio content. Often, these feature
sets are designed to reflect different aspects of music such
as timbre, harmony, melody and rhythm [15, 9]. In addition,
researchers use data from online sources that places music
in a social context [6, 16]. While individual sets of audio
content and social context features have been shown to be
useful for various MIR tasks (e.g., classification, similarity,
recommendation), it is unclear how to combine multiple
feature sets for these tasks.

This paper presents a principled approach to combining
multiple feature sets by applying a useful machine learning
technique: kernel combination [7]. A kernel function for
each feature set measures the similarity between pairs of
songs. Kernel functions can be designed to accommodate
heterogeneous feature representations such as vectors [8],
sets of vectors [4], distributions [10], or graphs [1]. We use
the kernel function to compute a kernel matrix that encodes
the similarity between all pairs of songs. From multiple
feature sets, we compute multiple kernel matrices for a set
of songs. We find the optimal linear combination of the
kernel matrices using quadratically-constrained quadratic-

programming (i.e., convex optimization). The result is a
single kernel matrix that is used by a support vector machine
(SVM) to produce a decision boundary (i.e., a classifier).

In this paper, we use kernel combination to integrate music
information from two audio content and two social context
feature sets. For each semantic tag (e.g., “aggressive”, “clas-
sic rock”, “distorted electric guitar”) in our vocabulary, we
learn the linear combination of the four kernel matrices that
is optimal for SVM classification and rank-order songs based
on their relevance to the tag. The weights that are used to
produce the combined kernel reflect the importance of each
feature set when producing an optimal classifier.

In the following subsection, we discuss related work on
music feature representations, kernel methods in MIR re-
search, and the origins of kernel combination. We continue
in Section 2 with an overview of kernel methods and the ker-
nel combination algorithm. Section 3 introduces a number of
features that capture information about musical content and
context and describes how to build song-similarity kernels
from these features. Section 4 describes our experiments
using individual and combined heterogenous feature kernels
for semantic music retrieval. Section 5 concludes with a
discussion of our findings.

1.1 Related Work

McKinney and Breebaart [9] use 4 different feature sets to
represent audio content and evaluate their individual per-
formance on general audio classification and 7-way genre
classification. They determine that features based on the tem-
poral modulation envelope of low-level spectral features are
most useful for these tasks but suggest that intelligent combi-
nations of features might improve performance. Tzanetakis
and Cook [15] present a number of content-based features
and concatenate them to produce a single vector to represent
each song for use in genre classification.

Knees et al. [6] use semantic data mined from the results
of web-searches for songs, albums and artists to generate
a contextual description of the music based on large-scale,
social input, rather than features that describe the audio con-
tent. Using this context data alone achieves retrieval results
comparable to the best content-based methods. Whitman and
Ellis [16] also leverage web-mined record reviews to develop
an unbiased music annotation system.

614



ISMIR 2008 – Session 5b – Feature Representation

Flexer et al. [3] combine information from two feature
sources: tempo and MFCCs. They use a nearest-neighbor
classifier on each feature space to determine an independent
class-conditional probability for each genre, given each fea-
ture set. Using a naı̈ve Bayesian combination, they multiply
these two probabilities and find that the resulting probability
improves 8-way genre classification of dance music.

Lanckriet et al. [7] propose a more sophisticated method
for combining information from multiple feature sources.
They use a kernel matrix for each feature set to summarize
similarity between data points and demonstrate that it is
possible to learn a linear combination of these kernels that
optimizes performance on a discriminative classification task.
They show that, for a protein classification task, an optimal
combination of heterogenous feature kernels performs better
than any individual feature kernel.

Discriminative SVM classifiers have been successfully
applied to many MIR tasks. Mandel and Ellis [8] use pat-
terns in the mean and co-variance of a song’s MFCC features
to detect artists. Meng and Shawe-Taylor [10] use a multi-
variate autoregressive model to describe songs. Using Jebara
et al.’s probability product kernels [5], they kernelize the
information contained in these generative models and then
use an SVM to classify songs into 11 genres.

2 KERNEL METHODS

A simple solution for binary classification problems is to find
a linear discriminant function that separates the two classes
in the data vector space. In practice, the data may not lie in a
valid vector space or may not be linearly separable. A linear
discriminant may still be learned using a kernel function to
map the data items into a new kernel-induced vector (Hilbert)
space, called the feature space F.

If we consider mapping a pair of data items xi, xj ∈ Ω
with Φ : Ω → F, kernel methods only require the inner
product of the data features Φ(xi), Φ(xj) ∈ F. The kernel
function K(xi, xj) = 〈Φ(xi), Φ(xj)〉 completely specifies
this inner product relationship. Thus, a data set {xi, i ∈
1, ..., n} can be specified in the feature space with the kernel
matrix K where each element (i, j) is obtained by the kernel
function K(xi, xj). See [12] for details.

If we use a valid kernel function, the resulting kernel
matrix K must be positive semi-definite. Henceforth, kernel
matrix and kernel function will be referred to as “kernel” with
the meaning being clear from the context. Many different
kernels are used in practice and we have experimented with
several of them. A natural question that arises is which kernel
to use. Our work and the work of Lanckriet et al. [7] suggests
that settling for a single kernel may not be optimal and that a
combination of kernels can improve results.

2.1 Kernelizing Feature Data

2.1.1 Radial Basis Function

The Radial Basis Function (RBF) kernel is one of the most
commonly used kernels. It is defined as:

Ki,j = exp(−‖xi − xj‖2
2σ2

).

The hyper-parameter σ is learned by cross validation [12].

2.1.2 Probability Product Kernel

The Probability Product Kernel (PPK) is a natural candi-
date for data items that have been modeled with probability
distributions [5]. We have found experimentally that the
PPK tends to outperform other distribution-capturing kernels
(such as the Kullback-Leibler divergence kernel space[11]),
and is easier and more elegant to compute. We model each
data item xi with a distribution p(x; θi) specified by parame-
ters θi and compute the PPK as:

Ki,j =
∫

p(x; θi)ρp(x; θj)ρdx,

where ρ > 0. When ρ = 1/2, the PPK corresponds to the
Bhattacharyya distance between two distributions. This case
has a geometric interpretation similar to the inner-product be-
tween two vectors. That is, the distance measures the cosine
of the angle between the two distributions. Another advan-
tage of the PPK is that closed-form solutions for Gaussian
mixture models (GMM’s) are available [5], whereas this is
not the case for the Kullback-Leibler divergence.

2.1.3 Normalized Kernels

It can also be useful to “normalize” the kernel matrix. This
projects each entry in the kernel matrix onto the unit sphere
and entries can be geometrically interpreted as the cosine of
the angle between the two data vectors. Furthermore, when
combining multiple kernels, normalized kernels will become
“equally” important. We normalize K by setting:

Knorm
i,j =

Ki,j√
Ki,iKj,j

.

The resulting kernel matrix has all ones on its diagonal, help-
ing ensure numerical stability in the combination algorithm
below. Henceforth all kernels are assumed to be normalized.

2.2 Support Vector Machine (SVM)

The SVM learns the separating hyperplane that maximizes
the margin between two classes. We present the SVM here
to establish notation and clarify the formulation of kernel
combination. The algorithm considered is the 1-norm soft

615



ISMIR 2008 – Session 5b – Feature Representation

margin SVM which can be cast as the following optimization
problem:

min
w,b,ζ�0

wT w + C

n∑
i=1

ζi

subject to: yi(wT Φ(xi) + b) ≥ 1− ζi,∀i,
(1)

where xi is the data point we wish to classify and yi ∈
{+1,−1} is its corresponding label. Φ(xi) is the data point
mapped to the feature space. w is the normal vector to
the hyperplane that defines the discriminant boundary in
the feature space and b is the hyperplane offset. C is a
regularization parameter that penalizes misclassifications or
within-margin points and ζi are slack variables that “relax”
the hard-margin constraints of the SVM.

The the dual formulation of 1-norm soft margin optimiza-
tion in Equation 1 is:

max
0≤α≤C,αT y=0

2αT e− αT diag(y)Kdiag(y)α, (2)

where e is an n-vector of ones and α ∈ Rn is the vector of
Lagrange multipliers. The solution to this dual problem is a
function of K and results from the point-wise maximum of
a series of affine functions in alpha. Because the point-wise
maximum of affine functions is convex, the solution to the
dual problem is convex in K.

The SVM classifies a new, unlabeled data point xnew

based on the sign of the linear decision function:

f(xnew) = wT Φ(xi) + b =
n∑

i=1

αiK(xi,xnew) + b. (3)

For example, the classification task might be to determine
whether a given song represents the tag “guitar” or not. It is
common to associate positive examples (e.g. those classified
as “guitar”) with the label “+1” and negative examples with “-
1.” This labeling is achieved by taking the sign of the decision
function sign(f(x)).

2.3 Kernel Combination SVM

Lanckriet et al. [7] propose a linear combination of m differ-
ent kernels, each encoding different features of the data:

K =
m∑

i=1

μiKi,

where Ki are the individual kernels formulated via feature ex-
traction methods described in Section 3. A useful property of
kernel matrices is that, since they are positive semi-definite,
a positive linear combination of a set of kernels will also be
a positive semi-definite kernel [12]. That is,

K =
∑

i

μiKi, μi > 0, Ki ' 0 ∀i ⇒ K ' 0.

The kernel combination problem reduces to learning the set
of weights, μ, that combine the feature kernels, Ki, into the
“optimum” kernel. To ensure the positive semi-definiteness
of K, the weights are restricted to be positive, μi ≥ 0.

We wish to ensure that the weights μ sum to one. This
prevents any weight from growing too large, forces the kernel
matrices to be combined convexly and gives interpretability
to the relative importance of each kernel. We can achieve
this with the constraint μT e = 1. The optimum value of the
dual problem in Equation 2 is inversely proportional to the
margin and is convex in K. Thus, the optimum K can be
learned by minimizing the function that optimizes the dual
(thereby maximizing the margin) with respect to the kernel
weights, μ.

min
μ

{
max

0≤α≤C,αT y=0
2αT e− αT diag(y)Kdiag(y)α

}
subject to: μT e = 1

μi ≥ 0 ∀i = 1, ...,m,
(4)

where K =
∑m

i=1 μiKi.

Since the objective function is linear in μ, and hence
convex, we can write this min-max problem equivalently
as a max-min problem [2]. We may recast this problem
in epigraph form and deduce the following quadratically
constrained quadratic program (QCQP)[7]:

max
α,t

2αT e− t

subject to: t ≤ αT diag(y)Kidiag(y)α, i = 1, . . . , m

0 ≤ α ≤ C, αT y = 0.

(5)

The solution to this QCQP will return the optimum convex
combination of kernel matrices. For a more complete deriva-
tion of the kernel combination algorithm, see [7].

3 KERNEL CONSTRUCTION FROM AUDIO
FEATURES

We experiment with a number of popular MIR feature sets
which attempt to represent different aspects of music: timbre,
harmony and social context.

3.1 Audio Content Features

Audio content features are extracted directly from the audio
track. Each track is represented as a set of feature vectors,
X = {x1, ...,xT}, where each feature vector xt represents
an audio segment, and T depends on the length of the song.
We integrate the set of feature vectors for a song into a single
representation by estimating the parameters of a probability
distribution, approximated with a Gaussian mixture model,
over the audio feature space. Finally, we compute a kernel
matrix using set of song GMMs with the probability product
kernel technique [5] described in Section 2.1.2.

616



ISMIR 2008 – Session 5b – Feature Representation

3.1.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are a popular
feature for a number of music information retrieval tasks
[8, 10, 3]. For a 22050Hz-sampled, monaural song, we com-
pute the first 13 MFCCs for each half-overlapping short-time
(∼23 msec) segment and append the first and second instan-
taneous derivatives of each MFCC. This results in about
5,000 39-dimensional MFCC+delta feature vectors per 30
seconds of audio content.

We summarize an entire song by modeling the distribution
of its MFCC+delta features with an 8-component GMM. We
sample 5,000 feature vectors from random times throughout
a song, learn a MFCC+delta GMM for each song and convert
the GMM parameters of every song into a probability product
kernel matrix. For our semantic music retrieval task, we find
that using GMMs with diagonal covariances results in bet-
ter performance than using single, full-covariance Gaussian
distributions.

3.1.2 Chroma

Chroma features [4] represent of the harmonic content of
a short-time window of audio by computing the spectral
energy present at frequencies that correspond to each of the
12 notes in a standard chromatic scale. We extract a 12-
dimensional chroma feature every 1

4 second and, as with the
MFCCs above, model the distribution of a song’s chroma
features with a GMM and create a probability product kernel
matrix. We also investigated features that describe a song’s
key (estimated as the mean chroma vector) and tempo (in
beats per minute) but found that these features performed
poorly for semantic music retrieval.

3.2 Social Context Features

We can also summarize each song in our dataset with a
semantic feature vector. Each element of this vector indicates
the relative strength of association between the song and a
semantic tag. We propose two methods for collecting this
semantic information: social tags and web-mined tags. Given
these semantic feature vectors, we compute an RBF kernel
for each data source as described in Section 2.1.1. The
semantic feature vectors tend to be sparse as most songs are
annotated with only a few tags. When tags are missing for a
song, we set that dimension of the semantic feature to zero.
In addition to being sparse, many semantic context features
are noisy and do not always reflect an accurate semantic
relationship between a song and a tag. Songs which have
not been annotated with any tags are assigned the average
semantic feature vector (i.e., the estimated prior probabilities
of the tags in the vocabulary).

3.2.1 Social Tags

For each song in our dataset, we attempt to collect two
lists of social (raw-text) tags from the Last.fm website
(www.last.fm). The first list relates the song to a set of
tags where each tag has a score that ranges from 0 (low) to
100 (high) as a function of both the number and diversity
of users who have annotated that song with the tag. The
second list associates the artist with tags and aggregates the
tag scores for all the songs by that artist. We find the scores
for all relevant song and artist tags as well as their synonyms
(determined by the authors). For example, a song is consid-
ered to be annotated with “down tempo” if it has instead been
annotated with “slow beat”. We also allow wildcard matches
for tags so that, for example, “blues” matches with “delta
electric blues” and “rhythm & blues”. To create the Last.fm
semantic feature vector, we add the song and artist tag scores
into a single vector.

3.2.2 Web-Mined Documents

We extract tags from a corpus of web documents using the
relevance scoring (RS) algorithm [6]. To generate tags for a
set of songs, RS works by first repeatedly querying a search
engine with each song title, artist name and album title to
obtain a large corpus of relevant web-documents. We restrict
the search to a set of musically-relevant sites (see [13] for
details). From these queries, we retain the (many-to-many)
mappings between the songs and the documents. Then we
use each tag as a query string to find all the relevant docu-
ments from our corpus, each with an associated relevance
weight. By summing the relevance weights for the docu-
ments associated with a song, we calculate a score for each
song-tag pair. The semantic feature vector for a song is then
the vector of song-tag scores for all tags in our vocabulary.

4 SEMANTIC MUSIC RETRIEVAL EXPERIMENTS

We experiment on the CAL-500 data set [14]: 500 songs
by 500 unique artists, each annotated by a minimum of 3
individuals using a 174-tag vocabulary representing genres,
instruments, emotions and other musically relevant concepts.
The kernel combination algorithm requires at least 50 data
points (and often more) from each class to learn a reliable
classifier so, for the experiments reported here, we require
that each tag be associated with at least 50 songs and remove
some redundant tags, reducing the vocabulary to 61 tags 1 .

Given a tag (e.g., “jazz”), the goal is to rank all songs
by their relevance to this query (e.g. jazz songs at the top).
We learn a decision boundary for each tag (e.g., a boundary
between jazz / not jazz) and rank all test songs by their
distance (positive or negative) from this boundary, calculated
using Equation 3. The songs which most strongly embody
the query tag should have a large positive distance from

1 For the list of tags used, see http://cosmal.ucsd.edu/cal

617



ISMIR 2008 – Session 5b – Feature Representation

the boundary. Conversely, less semantically relevant songs
should have a small or negative distance from the boundary.

We compare the SVM results to the human-annotated
labels provided in the CAL-500 dataset where a song is
positively associated with a tag if 80% of test subjects agree
that the tag is relevant. We quantify the ranking returned
by the discriminative SVM classifier using the area under
the receiver operating characteristic (ROC) curve. The ROC
compares the rate of correct detections to false alarms at
each point in the ranking. A perfect ranking (i.e., all the
relevant songs at the top) results in an ROC area equal to one.
Ranking songs randomly, we expect the ROC area to be 0.5.
We also compute mean average precision (MAP) by moving
down the ranked list of test songs and averaging precisions
at every point where we correctly identify a new song.

One benefit of using ROC area as a metric to evaluate
rankings is that it is immune to differences in the tags’ prior
probabilities. The tag frequencies in the data set roughly
follow an exponential distribution with most terms having
far more negative than positive examples. The average prior
probability over all tags is 16.9%. While measuring binary
classification performance would have to overcome a bias
towards the negative class, evaluating ranking performance
(using ROC area) is a better measure of what’s important
for real MIR applications and does not suffer from this im-
balance. For example, 339 of the 500 songs were annotated
as having “Male Lead Vocals” while only 56 songs were
judged to be from the “Electronica” genre. In the latter case,
a classifier could achieve 88% accuracy by never labeling
any songs as “Electronica” while its average ROC area would
be 0.5 (random).

4.1 Single Kernel Results

For each of the four features described in Section 3, we con-
struct a kernel and train a one-vs-all SVM classifier for each
tag where the negative examples are all songs not labeled
with that tag. We train SVMs using 400 songs, optimize reg-
ularization parameter, C, using a validation set of 50 songs
and use this final model to report results on a test set of 50
songs. The performance of each kernel, averaged over all
tags and 10-fold cross validation (so that each song appears
in the test set exactly once), is shown in Table 1. The right-
most column of Table 1 shows the number of tags for which
each of the different features resulted in the best single ker-
nel for ranking songs. The bottom row of Table 1 shows
the theoretical upper bound that an ‘oracle’ could achieve
by choosing the single best feature for each tag, based on
test-set performance.

Table 1 demonstrates that the MFCC content features are
most useful for about 60% of the tags while social context
features are best for the other 40%. However the facts that
all kernels individually perform well above random and that
three of four perform best for many tags indicate that all
features can be useful for semantically ranking songs.

Feature ROC area MAP Best Kernel

MFCC 0.71 0.50 37
Chroma 0.60 0.40 0
Last.fm 0.68 0.49 16
Web Docs 0.67 0.48 8

Single Oracle 0.73 0.54

Table 1. Individual feature kernel SVM retrieval results and
the number of tags for which each kernel was the best.

4.2 Kernel Combination Results

The kernel combination SVM can integrate the four sources
of feature information to enhance our music retrieval system.
In practice, we find that some tags do not benefit from this
integration since they have reached maximum performance
with their individual best feature kernel. With appropriate
setting of the regularization parameter, C, it is generally
possible to get the combined kernel to correctly place all
weight on this single best kernel and the result in these cases
is the same as for the single best kernel. 31 of the 61 tags
(51%) show an improvement in ROC area of 0.01 or more
while 14 tags (23%) show no significant change. 16 tags
(26%) get worse, we suspect due to insufficient data to train
and optimize the parameters of the combined kernel SVM.

Table 2 shows the average retrieval ROC area and MAP
results for the combined kernel as well as those that could
be obtained if the single best feature were known in advance.
We break down results by tag category and show how many
tags from each category benefit from kernel combination.
Despite the facts that some tags perform worse using kernel
combination and that knowing which single feature is best
requires looking at the test set, the combined kernel improve-
ment is significant (paired t-test, N = 61, α = 0.05).

Though all kernels are normalized, the absolute value of
a weight does not give direct insight into the relevance of
that feature to the classification task. If its weight is zero
(as happens if we include a randomly-generated kernel), the
feature is truly useless but even a small positive weight can
allow a feature kernel to have a large impact. However,
examining the relative feature weights in Figure 1 for the 45
words where the algorithm succeeds does allow us to make
some interesting comparisons of how the features’ utility
varies for different tags. The simplex in Figure 1 shows that
the MFCC kernel tends to get most weight, unsurprising since
it is the single most reliable feature. We also see a preference
for Last.fm over Web Docs and both get more weight than
Chroma, in accordance with their individual performances
in Table 1. The spectral MFCC features are most useful for
genres like “Rock” as well as the ubiquitous “Drum Set”
which most web users neglect to tag. The human-derived
context information gets more weight for nebulous tags like
“Powerful” as well as both “Male” & “Female Lead Vocals”
which, while only represented in a few MFCC vectors, are
easily identified by human listeners.

618



ISMIR 2008 – Session 5b – Feature Representation

Tag Single Oracle Kernel Combo Improve
Category ROC MAP ROC MAP / Total

All tags 0.73 0.54 0.74 0.54 31 / 61

Emotion 0.71 0.51 0.72 0.52 14 / 28

Genre 0.80 0.58 0.82 0.58 3 / 5

Instrument 0.74 0.55 0.76 0.56 8 / 10

Song 0.73 0.60 0.73 0.60 5 / 15

Usage 0.70 0.34 0.69 0.35 0 / 1

Vocals 0.69 0.37 0.69 0.39 1 / 2

Table 2. Music retrieval results for 61 CAL500 tags. “Sin-
gle Oracle” picks the single best feature for each tag, based
on test set performance. “Kernel Combo” learns the optimum
combination of feature kernels from the training set.

It may be possible to enhance these results by adding even
more feature kernels. In practice however, as the number
of kernels grows, over-fitting can be a problem. Keeping
C low ensures the optimum solution is well regularized.
In the experiments reported here, optimum results for both
single and combined kernel SVMs are found by optimizing
a different value of C for the positive and negative class
examples.

5 DISCUSSION

This paper uses a novel machine learning tool to combine a
number of existing MIR features in a manner that optimizes
retrieval performance for a variety of semantic tags. The re-
sults show significant improvement in retrieval performance
for 51% of the 61 tags considered. Although discriminative
SVM classification may not be the best solution for semantic
retrieval problems, the results reported here (ROC area of
0.71 for MFCC+delta, 0.73 for the single best feature, 0.74
for kernel combination) compare favorably to the genera-
tive framework in [14] which reports retrieval ROC area of
0.71 on the CAL-500 data using the MFCC+delta features
(although that work used a larger vocabulary of 174 tags).

6 ACKNOWLEDGEMENTS

Thanks to Shlomo Dubnov, Lawrence Saul and our reviewers
for helpful comments. LB and DT are supported by NSF
IGERT fellowship DGE-0333451. We also acknowledge
support from NSF grant DMS-MSPA 062540922.

7 REFERENCES

[1] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-

scale evalutation of acoustic and subjective music-similarity

measures. Computer Music Journal, pages 63–76, 2004.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, March 2004.

[3] A. Flexer, F. Gouyon, S. Dixon, and G. Widmer. Probabilistic

combination of features for music classification. ISMIR, 2006.

Figure 1. Optimal feature weights for 45 tags from the CAL-
500 data set. Five tags are named for illustrative purposes.

[4] M. Goto. A chorus selection detection method for musical audio

singals and its application to a music listening station. IEEE
TASLP, 2006.

[5] T. Jebara, R. Kondor, and A. Howard. Probability product ker-

nels. Journal of Machine Learning Research, 5:819–844, 2004.

[6] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, and K. Seyerlehner.

A Document-centered Approach to a Natural Language Music

Search Engine. European Conference on Information Retrieval,
2008.

[7] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I.

Jordan. Learning the kernel matrix with semi-definite program-

ming. Journal of Machine Learning Research, 5:27–72, 2004.

[8] M.I. Mandel and D.P.W. Ellis. Song-level features and support

vector machines for music classification. ISMIR, 2005.

[9] M.F. McKinney and J. Breebaart. Features for audio and music

classification. ISMIR, 2003.

[10] A. Meng and J. Shawe-Taylor. An investigation of feature mod-

els for music genre classification using the support vector clas-

sifier. ISMIR, 2005.

[11] P.J. Moreno, P.P. Ho, and N. Vasconcelos. A Kullback-Leibler

divergence based kernel for SVM classification in multimedia

applications. NIPS, 2004.

[12] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, New York, USA, 2004.

[13] D. Turnbull, L. Barrington, and G. Lanckriet. Five approaches

to collecting tags for music. ISMIR, 2008.

[14] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Seman-

tic annotation and retrieval of music and sound effects. IEEE
TASLP, 16(2):467–476, February 2008.

[15] G. Tzanetakis and P. Cook. IEEE Transactions on Speech and
Audio Processing, 10(5), 2002.

[16] B. Whitman and D. Ellis. Automatic record reviews. ISMIR,

2004.

619


