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Abstract

In this paper we consider an online recommendation
setting, where a platform recommends a sequence
of items to its users at every time period. The users
respond by selecting one of the items recommended
or abandon the platform due to fatigue from seeing
less useful items. Assuming a parametric stochastic
model of user behavior, which captures positional
effects of these items as well as the abandoning be-
havior of users, the platform’s goal is to recommend
sequences of items that are competitive to the sin-
gle best sequence of items in hindsight, without
knowing the true user model a priori. Naively ap-
plying a stochastic bandit algorithm in this setting
leads to an exponential dependence on the number
of items. We propose a new Thompson sampling
based algorithm with expected regret that is poly-
nomial in the number of items in this combinatorial
setting, and performs extremely well in practice.

Introduction
In this paper, we consider the following setting: the
platform needs to learn a sequence of items (from
a set of N items) by interacting with its users in
rounds. In particular, it wants to maximize its ex-
pected utility when compared to the best sequence
in hindsight. When a user is presented with a se-
quence of items, they view it from top-to-bottom
and at each position, we can have the following
stochastic outcomes:
1. The user is satisfied with the current item (per-

haps clicks the item’s link and navigates to a
target page). In this situation, the platform gets
a reward.

2. The user is not satisfied with the current item and
is willing to look at the next item (for instance,
the next notification) if it exists. Note that, it
may happen that the user did not select any item
and has reached the end of the sequence. In this
case, the platform does not get a reward but is
also not explicitly penalized.

3. The user has lost interest in the platform (pre-
sumably after viewing un-interesting items) and
s/he decides to abandons the platform (for in-
stance, by uninstalling the app). In this situation,
we ascribe a penalty cost to the platform.

In our setting, the platform can choose both the
length of the sequence as well as the order of the
items, and this is essentially a combinatorial prob-
lem in each round. The recommended sequence of
items should balance the penalty of user abandon-
ment versus the upside of user choosing a high rev-
enue item. The probability of a user choosing a high
revenue item is not independent of other items in
the recommended list. We assume that the afore-
mentioned user behavior has a particular parametric
form , whose parameters are not known a priori. Our
main contribution is the design of a fatigue-aware
online recommendation solution, which we call the
Sequential Bandit Online Recommendation System
(SBORS). SBORS, which is based on Thompson
sampling, comes with attractive regret guarantees
and makes an ordered list of item recommendations
to users by carefully exploring their suitability and
exploiting learned information based on previous
user feedback.

The key contributions of this paper are as fol-
lows: First, we design a Thompson sampling (TS)
based algorithm for the online fatigue-aware recom-
mendation problem with unknown user preference
and abandonment distributions. Second, we formally
present SBORS by modifying the above algorithm
with posterior approximation and correlated sam-
pling to control exploration-vs-exploitation trade-
off. We give detailed analysis of SBORS, and prove
that the regret upper bound is C1N

2√NT log TR+
C2N

√
T log TR · log T + C3N/R (here C1, C2 and

C3 are constants, T is the horizon length, and R
is a tunable algorithm parameter that captures
exploration-exploitation tradeoff via sampling).

There are many approaches to solve the stochas-
tic bandit problem. One of the mainstream meth-
ods is the Upper Confidence Bound (UCB) algo-
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rithm (Auer 2002; Bubeck, Cesa-Bianchi, and oth-
ers 2012; Chen, Wang, and Yuan 2013) (and its
many variations). An alternative approach that is
different from the UCB family, is the Thompson
sampling (TS) approach (Agrawal and Goyal 2012;
Russo et al. 2018; Kaufmann, Korda, and Munos
2012). Extensions of these to contextual settings
have also been investigated (Li et al. 2010; Cheung
and Simchi-Levi 2017) that allow for richer decision
making models and algorithms. While some prior
work (Wang and Chen 2018; Durand and Gagné
2014) has studied the application of the TS method-
ology to the stochastic combinatorial multi-armed
bandit problem, the combinatorial structure they
exploit is not enough to be useful in out setting,
or their regret upper bounds or too loose. In our
setting, the feasible decisions are sequences of items,
which are richer than other objects such as sets.

For a particular combinatorial problem, namely
the assortment optimization problem, (Agrawal et
al. 2017a) and (Agrawal et al. 2017b) provide UCB
and TS based approaches with attractive regret
guarantees. Assortment optimization is the task
of choosing a set of items that maximizes the ex-
pected revenue assuming a user behavior model
(similar to our setting). A particular variant of this
problem was initially studied in (Rusmevichien-
tong, Shen, and Shmoys 2010; Sauré and Zeevi
2013) and further discussed by (Davis, Gallego,
and Topaloglu 2013; Désir, Goyal, and Zhang 2014;
Gallego and Topaloglu 2014; Agrawal et al. 2017a;
Agrawal et al. 2017b; Agrawal et al. 2016). Since the
number of sets is exponential in the number of items,
direct application of a MAB solution turns out to be
suboptimal. Similar to (Agrawal et al. 2017b), we
develop a new algorithm for our online recommen-
dation problem (called SBORS) that comes with
attractive regret guarantees. The key difference with
assortment optimization is that the problem is poly-
nomially solvable in each round whereas in our case
the computational problem in each round is NP-
hard. We also consider fatigue, which is not present
in assortment optimization. Our analysis builds on
the machinery developed by (Agrawal et al. 2017b)
and uses correlated sampling to control exploration-
exploitation trade-off.

The basic form of sequential choice bandit prob-
lem, developed by (Craswell et al. 2008), is a cascade
model where a user views search results displayed by
web engine from top to bottom and clicks the first
attractive one. (Kveton et al. 2015) present an on-
line learning version of the cascade model where the
platform receives a reward if a user clicks one item,
and solve it using a UCB based algorithm. (Katariya
et al. 2016) proposed the DCM bandit, a variant
that extends the cascade problem to multiple clicks,
and proposed the dcmKL-UCB algorithm. In (Zoghi
et al. 2017), the authors present the BatchRank al-
gorithm for a class of click models encompassing

the cascading and position-sensitive user behaviors.
(Lattimore et al. 2018) build on the work of (Zoghi
et al. 2017) and present the TopRank algorithm to
find the most attractive list in an online setting.
(Cheung, Tan, and Zhong 2019) propose a Thomp-
son Sampling based algorithm to minimize regret
under the cascade model. Similarly, the setting in
(Cao and Sun 2019) takes the probability of aban-
doning the platform into consideration, which can
be regarded as an extension of the basic cascade
model.

Model
Consider a platform containing N different items
indexed by i. let its corresponding revenue be ri
if selected. User’s intrinsic preference for an item
i is denoted by ui. After viewing each item from
a recommended list, the user has a probability p
of abandoning the platform, and the occurrence of
this event causes the platform to incur a penalty
cost c. Note that ri, ui, p, c ∈ [0, 1]. We represent
the sequence of items at time/round t as St =
(St1, St2, ..., Stm), where Sti denotes the ith item, and
m represents the length of the sequence.

After the user at time t sees item i, s/he has three
options based on behavior parameters u and p: (1)
The user is satisfied with the item i, then no further
items are presented to the user. In this situation,
the platform earns revenue ri. (2) The user is not
satisfied with item Sti and decides to see the fol-
lowing item Sti+1 in the sequence of items. When
the sequence runs out, the user exits the platform.
In this situation, the platform will neither earn a
reward nor pay a penalty cost. (3) The user is un-
satisfied with the platform altogether after looking
at some items, and s/he abandons the platform. In
this situation, the platform incurs a penalty c.

The behavior parameters u and p parameterize
the following distributions. Consider a random vari-
able W t following a distribution FW . W t measures
the tth user’s patience, capturing the number of
unsatisfied items the user sees without abandon-
ing the platform. In particular, FW is a geomet-
ric distribution with parameter p. Let q = 1 − p.
Then qk−1(1 − q) denotes the probability that a
user abandons the platform after receiving kth un-
satisfying item. Further, let F̃W (k) = P (W > k) =
1 − P (W ≤ k) = qk denote the probability that a
user does not abandon the platform after receiving
the kth unsatisfying item. The probability of each
item i being selected is ui, which is only determined
by its content. The probability of each item i being
selected when it belongs to the sequence of items
S (dropping the superscript t for simplicity) is de-
noted as Pri(S). Pri(S) not only depends on the
item’s intrinsic value to the user, but also depends
on its position and the other items shown before it.
The probability of total abandonment is denoted



as Pra(S), and represents the sum of the probabili-
ties that the platform is abandoned after receiving
k unsatisfying items. We denote U(S,u, q) as the
total utility (payoff) that the platform receives from
a given sequence of items S. Define the expected
utility as E[U(S; u, q)] =

∑
i∈S Pri(S)ri − cPra(S).

The goal is to find the optimal sequence of items
that can optimize E[U(S; u, q)]:

max
S

E[U(S; u, q)]

s.t. Si ∩ Sj = ∅,∀i 6= j.
(1)

We denote the optimal sequence of items for a
given u, q pair using S∗ = arg max

S
E[U(S; u, q)],

which we assume is unique for simplicity. For a time
horizon T , we define the pseudo-regret as below:

Reg(T ; u, q) = E

[
T∑
t=1

E[U(S∗; u, q)]− E[U(St; u, q)]
]
,

where St is the sequence offered to the user arriving
at time t. Our goal of maximizing expected util-
ity across the rounds is equivalent to minimizing
Reg(T ; u, q). Extensions such as making the aban-
donment probability parameter dependent on the
sequence St (such as its length as well as the items
in it) are left for future work.

Algorithm
We first describe an algorithm that captures the TS
approach. Unfortunately, a direct analysis of this
version is difficult, so we modify it suitably to design
our proposed algorithm SBORS later on.

Denote gi(t) as the total number of users selecting
item i, and fi(t) as the total number of users observ-
ing item i without selection. Let Ti(t) = gi(t)+fi(t).
Denote na(t) as the number of users who abandon
the platform by time t, ne(t) as the number of times
that users do not select an item and do not aban-
donment by time t. Let Nq(t) = ne(t) + na(t). As
shown in (Cao and Sun 2019) (Lemma 5), we can
get unbiased estimates of the true parameters as
follows:
Lemma 1. Unbiased estimates: ûi(t) = gi(t)

Ti(t) is an
unbiased estimator for ui and q̂i(t) = ne(t)

Nq(t) is an
unbiased estimator for q.

In this version of the algorithm, we maintain a
Beta posterior distribution for the selection parame-
ter ui and the abandonment distribution parameter
q, which we update as we observe the user’s feed-
back to our current recommended list. Beta distri-
butions are a natural choice for Bernoulli feedback
(likelihood) due to computational gains that can be
achieved due to conjugacy. Note that u and q remain
the same across time, which means our recommenda-
tion system interact with i.i.d. users in each round.
At the initial state, ui and q are unknown to the

platform, ri and c are known to the platform. For
a user arriving at time t, we calculate the current
optimal sequence of items based on samples u′(t)
and q′(t). When the sequence of items is shown, the
user has three options: (1) select one item and leave
the interface; (2) see all the items without selection
and abandonment; or (3) abandon the platform. Af-
ter each round, we update the parameters of the
relevant Beta distributions.

Algorithm 1 TS-based algorithm (precursor to
SBORS)

Initialization: Set gi(t) = fi(t) = 1 for all i ∈ X;
ne(t) = na(t) = 1; and t = 1;
while t ≤ T do

(a) Posterior sampling:
For each item i = 1, ..., N , sample u′i(t) and
q′(t)
u′i(t) ∼ Beta(gi(t), fi(t))
q′(t) ∼ Beta(ne(t), na(t))
(b) Sequence selection:
Compute St = arg max

S
E[U(S; u′(t), q′(t))];

Observe feedback upon seeing the kt ≤ |St|
items;
(c) Posterior update:
for j = 1, · · · , kt do

Update (gSj (t), fSj (t), ne(t), na(t))

=



(gSj (t) + 1, fSj (t), ne(t), na(t))
if select and leave

(gSj (t), fSj (t) + 1, ne(t) + 1, na(t))
if not select and not abandon

(gSj (t), fSj (t) + 1, ne(t), na(t) + 1)
if not select and abandon

gi(t+ 1) = gi(t), fi(t+ 1) = fi(t) for all i ∈ [N ]
ne(t+ 1) = ne(t), na(t+ 1) = na(t)
t = t+ 1

SBORS: Sequential Bandit for Online
Recommendation System

Motivated by (Agrawal et al. 2017b), we modify
Algorithm 1 by: (a) introducing a posterior approx-
imation by Gaussians, and (b) performing corre-
lated sampling (which boosts variance and allows
for a finer exploration-exploitation trade-off). Algo-
rithm 2, Sequential Bandit Online Recommendation
System (SBORS), empirically performs similar to
Algorithm 1 while being amenable to theoretical
analysis.

Posterior approximation: We approximate
the posteriors for ui, q by Gaussian distributions
with approximately the same mean and variance as



the original Beta distributions. In particular, let

ûi(t) = gi(t)
gi(t) + fi(t)

= gi(t)
Ti(t)

,

σ̂ui(t) =

√
αûi(t)(1− ûi(t))

Ti(t) + 1 +

√
β

Ti(t)
,

(2)

q̂(t) = ne(t)
ne(t) + na(t) = ne(t)

Nq(t)
, and

σ̂q(t) =

√
αq̂(t)(1− q̂(t))
Nq(t) + 1 +

√
β

Nq(t)
,

(3)

where α > 0, β ≥ 2 are constants, be the means and
standard deviations of the approximating Gaussians.

Controlling exploration via correlated sam-
pling: Instead of sampling u′ and q′ independently,
we correlate them by using a common standard
Gaussian sample and transforming it. That is, in the
beginning of a round t, we generate a sample from
the standard Gaussian θ ∼ N(0, 1), and the poste-
rior sample for item i is computed as ûi(t)+θσ̂ui(t),
while the posterior sample for abandonment is com-
puted as q̂(t) + θσ̂q(t). This allows us to generate
sample parameters for i = 1, · · · , N that are highly
likely to be either simultaneously high or simul-
taneously low. As a consequence, the parameters
corresponding to items in the ground truth S∗, will
also be simultaneously high/low. Because correlated
sampling decreases the joint variance of the sample,
we can counteract by generating multiple Gaussian
samples. In particular, we generate R independent
samples from the standard Gaussian, θ(j) ∼ N(0, 1),
j ∈ [R], and the jth sample of parameters is gener-
ated as:

u
′(j)
i = ûi + θ(j)σ̂ui , and q

′(j) = q̂ + θ(j)σ̂q.

We then use the highest valued samples by sim-
ply taking the maximums u′i(t) = max

j=1,··· ,R
u
′(j)
i (t),

and q′(t) = max
j=1,··· ,R

q′(j)(t). These are then

used in the optimization problem to get St =
arg max

S
E[U(St; u′(t), q′(t))].

Algorithm 1 samples from the posterior distribu-
tion of u and q independently in each round, which
makes the probability of being optimistic (i.e. the
optimal sequence of items S∗ has at least as much
reward on the sampled parameters as on the true
parameters) exponentially small. We use correla-
tion sampling to ensure that the probability of an
optimistic round is high enough.

Regret Analysis for SBORS
Our main result is the following:

Algorithm 2 SBORS algorithm
Initialization: Set gi(t) = fi(t) = 1 for all i ∈ X;
ne(t) = na(t) = 1; t = 1;
while t ≤ T do

Update ûi(t), q̂(t), σ̂ui(t), σ̂q(t) from (2) and
(3);
(a) Correlated sampling:
for j = 1, ..., R do

Get θ(j) ∼ N(0, 1) and compute
u
′(j)
i (t),q′(j)(t)

For each i ≤ N , compute u′i(t) =
max

j=1,··· ,R
u
′(j)
i (t) and q′(t) = max

j=1,··· ,R
q′(j)(t).

(b) Sequence selection: Same as step (b) of
Algo. 1.
(c) Posterior update: Same as step (c) of Algo.
1.

Theorem 1. (Main Result) Over T rounds, the
regret of SBORS (Algorithm 2) is bounded as:

Reg(T ; u, q) ≤ C1N
2
√
NT log TR

+ C2N
√
T log TR · log T + C3N

R
,

where C1, C2 and C3 are constants and R is an
algorithm parameter.

Proof Sketch: We provide a proof sketch below
and refer the reader to (Wang and Tulabandhula
2019) for a more detailed treatment. The pseudo-
regret can be expressed as:

Reg(T ; u, q) = E

[
T∑
t=1

E[U(S∗; u, q)]− E[U(St; u, q)]
]
,

where S∗ is the optimal sequence when u and q
are known to the platform, while St is the se-
quence offered to the user arriving at time t. Adding
and subtracting

∑T
t=1 E[U(St,u′(t), q′(t))], we can

rewrite the regret as Reg(T ; u, q) = Reg1(T,u, q) +
Reg2(T,u, q) where: Reg1(T,u, q)
= E

[∑T
t=1 E[U(S∗; u, q)]− E[U(St; u′(t), q′(t))]

]
,

and Reg2(T,u, q)
= E

[∑T
t=1 E[U(St; u′(t), q′(t))]− E[U(St; u, q)]

]
.

We say that a round t is optimistic if the optimal
sequence of items S∗ has at least as much reward on
the sampled parameters as on the true parameters,
i.e. E[U(S∗; u′(t), q′(t))] ≥ E[U(S∗; u, q)].

The first term Reg1(T,u, q) is the difference be-
tween the optimal reward given the true parame-
ters u, q, and the optimal reward of the sampled
sequence of items St with respect to the sampled pa-
rameters u′, q′. Thus this term would contribute no
regret if the round was optimistic, as defined above.
So, we are left to consider only “non-optimistic”
rounds, which we will show they are not too many



in number. Thus, we first prove that at least one of
our R samples is optimistic with high probability.
Then, we also bound the instantaneous regret of any
“non-optimistic” round by relating it to the closest
optimistic round before it.

The second term Reg2(T,u, q) is the difference in
the reward of the offer sequence of items St when
evaluated on sampled parameters and the true pa-
rameters, which can be bounded by the concentra-
tion properties of our posterior distributions. The
idea is that the expected reward corresponding to
the sampled parameters will be close to that on the
true parameters. Before elaborating further on the
proof details, we first highlight some key lemmas
involved in proving Theorem 1 below.

Key Lemmas: To analyze the regret, we first
provide the concentration results for the relevant
quantities. To be specific, the posterior distribu-
tions concentrate around their means, which in turn
concentrate around the true parameters.

Lemma 2. (Concentration bound) For all i =
1, · · · , N , for any α, β, ρ ≥ 0, and t ∈ {1, 2, · · · , T},
we have
P
(
|ûi(t)− ui| ≥

√
αûi(t)(1−ûi(t)) log ρ

Ti(t)+1 +
√

β log ρ
Ti(t)

)
≤ 2

ρ2β ,

P
(
|q̂(t)− q| ≥

√
αq̂(t)(1−q̂(t)) log ρ

Nq(t)+1 +
√

β log ρ
Nq(t)

)
≤ 2

ρ2β .

Lemma 3. For any t ≤ T and i ∈ {1, · · · , N}, we
have for any r > 1,

P (|u′i(t)− ûi(t)| > 4σ̂ui(t)
√

log rR) ≤ 1
r8R7 , and

P (|q′(t)− q̂(t)| > 4σ̂q(t)
√

log rR) ≤ 1
r8R7 ,

where σ̂ui(t), σ̂q(t), R, u′i(t), q′(t), û, q̂ are defined
in Section .

Next we establish two important properties of
the optimal expected payoff. The first property is
referred to as restricted monotonicity. Simply put,
with the optimal sequence of items S∗v determined
under some parameters v and qv, its expected payoff
is no larger than the payoff under the same sequence
of items S∗v when preference parameter w and the
abandonment parameter qw are element-wise larger
than v and qv. The second property is a Lipschitz
style bound on the deviation of the expected payoff
with change in the parameters v and qv. To be
specific, the difference between the two expected
payoffs is bounded by a linear sum of the items’
preference and abandonment parameters.

Lemma 4. Suppose S∗v is an optimal sequence
of items given v and qv. That is, S∗v ∈
arg maxE[U(S,v, qv)].

Then for any v,w ∈ [0, 1]N , qv, qw ∈ [0, 1], we
have

1. (Restricted Monotonicity) If vi ≤ wi for all
i ∈ [N ], and qv ≤ qw, then E[U(S∗v; w, qw)] ≥
E[U(S∗v; v, qv)].

2. (Lipschitz)
|E[U(S∗v,v, qv)]− E[U(S∗v,w, qw)]|

≤
∑
i∈S∗v

(2|vi − wi|+ (N + 1)|qv − qw|) .

From Lemma 2, 3 and 4, we can prove that the
difference between the expected payoff of the offered
sequence St corresponding to the sampled param-
eters and the true parameters becomes smaller as
time increases.
Lemma 5. For any round t ≤ T , we have

E
{
E[U(St,u′(t), q′(t))]− E[U(St,u, q)]

}
≤ E

[
C ′1
∑
i∈St

√
log TR
Ti(t)

+ C ′2(N + 1)

√
log TR
Nq(t)

]
,

where C ′1 and C ′2 are universal constants.
We will now discuss how these lemmas can be put

together to bound Reg1(T,u, q) and Reg2(T,u, q).
Bounding the first term Reg1(T,u, q): Since
St is an optimal sequence of items for the sam-
pled parameters, we have E[U(St; u′(t), q′(t))] ≥
E[U(S∗; u, q)] if round t is optimistic. This suggests
that as the number of optimistic round increases,
the term Reg1(T,u, q) decreases.

Next, we prove that there are only a limited num-
ber of non-optimistic rounds (this is a key step).
Using a tail bound for the Gaussian distribution, we
can control the probability mass associated with the
event that a sampled parameter u′(j)i (t) for any item
i will exceed the posterior mean by a few standard
deviations. Since our Gaussian posterior’s mean is
equal to the unbiased estimate ûi, and its stan-
dard deviation is close to the expected deviation
of estimate ûi from the true parameter ui, we can
conclude that any sampled parameter u′(j)i (t) will
be optimistic with at least a constant probability,
i.e., u′(j)i (t) ≥ ui. The same reasoning also holds
for q′(j)(t). However, for an optimistic round, sam-
pled parameters for all items in S∗ needs to be
optimistic. This is where the correlated sampling
aspect of SBORS is crucially utilized. Using the de-
pendence structure between samples for items in S∗,
and the variance boosting provided by the sampling
of R independent copies, we prove an upper bound
of roughly O(1/R) on the number of consecutive
rounds between two optimistic rounds. Lemma 6
formalizes this intuition.
Lemma 6. (Spacing of optimistic rounds) For any
p ∈ [1, 2], we have

E1/p[|εAn(τ)|p
]
≤ e12

R
+ (C ′3N)1/p + C

′1/p
4

where C ′3 and C ′4 are constants. εAn(τ) is defined
as the group of rounds after an optimistic round τ



and before the next consecutive optimistic round. A
formal definition of optimistic round is in Section .

Next, we bound the individual contribution of any
“non-optimistic” round t by relating it to the closest
optimistic round τ before it. By the definition of an
optimistic round,

E[U(S∗,u, q)]− E[U(St,u′(t), q′(t))]
≤ E[U(Sτ ,u(τ), q(τ))]− E[U(St,u′(t), q′(t))],

and by the choice of St we get:

E[U(Sτ ,u(τ), q(τ))]− E[U(St,u′(t), q′(t))]
≤ E[U(Sτ ,u(τ), q(τ))]− E[U(Sτ ,u′(t), q′(t))].

What remains to be shown is a bound on the
difference in the expected payoff of Sτ for u(τ), q(τ)
and for u′(t), q′(t). Over time, as the posterior dis-
tributions concentrate around their means, which
in turn concentrate around the true parameters, we
can show that this difference becomes smaller. As
a result, Reg1 can be bounded as: Reg1(T,u, q) ≤
O(N

√
T log TR log T ) +O(N/R).

Bounding the second term Reg2(T,u, q): Simi-
lar to the discussion above, using the Lipschitz prop-
erty (Lemma 4) and Lemma 5, this term can be
bounded as: Reg2(T,u, q) ≤ O(N2√NT log TR).
Overall, the above analysis on Reg1 and Reg2 im-
plies the following bound on the overall regret:

Reg(T ; u, q)
≤ C1N

2
√
NT log TR+ C2N

√
T log TR · log T .

Comparison with UCB-V algorithm
In this section we compare SBORS with UCB-V (Au-
dibert, Munos, and Szepesvári 2009) due to the sim-
ilarities in the way both these techniques maintain
estimated means and variances (ûi(t), q̂(t), σ̂ui(t)
and σ̂q(t)). The UCB-V algorithm, designed for the
vanilla MAB setting, takes the variance of the dif-
ferent arms into consideration while choosing the
next action. By estimating the variance explicitly,
UCB-V has the ability to reduce the exploration
(bonus) budget spent on certain arms, drastically
reducing the regret incurred. In particular, it can
be shown that the regret of UCB-V is smaller if the
variance of suboptimal items is small.

Although UCB-V algorithm shares some simi-
larities with SBORS algorithm since both these
consider variance of the parameters involved, they
are fundamentally different. In the SBORS algo-
rithm, parameters u, q are random variables that
are sampled from Gaussian distributions, whereas
for the UCB-V algorithm, these are fixed unknowns
and their estimates are maintained as ûi, q̂. SBORS
achieves exploration via sampling, whereas UCB-V
achives exploration via explicit bonus terms and
does not rely on randomization.

Nonetheless, we design an extension of UCB-V
that uses variance estimates to improve recommen-
dations in our setting based on ideas from (Cao and
Sun 2019) and (Audibert, Munos, and Szepesvári
2009). This algorithm (Algorithm 3) is different from
the algorithm proposed by (Cao and Sun 2019) in
that it considers the variance of the parameters re-
lated to different items, as shown in Equation (4).
The update for q (5) is left unchanged:

uUCBi,t = ûi(t) +

√
2Var(ûi(t)) log t

Ti(t)
+ b log t
Ti(t)

, (4)

and

qUCBt = q̂(t) +

√
2 log t
Nq(t)

, (5)

where ûi(t), q̂(t) can be computed by Lemma 1,
Var(ûi(t)) is the estimated variance of ûi(t) at time
t, and b is the upper bound on the support of uis.

Algorithm 3 UCB-V algorithm
Initialization: Set uUCBi,0 = 1 for all i ∈ [N ] and
qUCB0 = 1. Set ci(t) = fi(t) = 1 for all i ∈ [N ],
ne(t) = na(t) = 1; and t = 1.
while t ≤ T do

Compute St = arg max
S

E[U(S; uUCBt−1 , qUCBt−1 )]

Offer sequence St, observe feedback of user who
sees kt ≤ |St| items.
for i = 1, · · · , [N ] do

Update uUCBI(i),t according to Equation (4).
Update ci(t), fi(t), ne(t) and na(t).
Update qUCB according to Equation (5).
t = t+ 1.

Conclusion
In this paper, we present a new Thompson sam-
pling based algorithm for making recommendations
where users experience fatigue. We use techniques
such as posterior approximation using Gaussians,
correlate sampling and variance boosting to con-
trol the exploration-exploitation trade-off and de-
rive rigorous regret upper bounds. Our bounds de-
pend polynomially on the number of items and sub-
linearly on the time horizon (C1N

2√NT log TR +
C2N

√
T log TR · log T +C3N/R). Future directions

include extensive experiments, generalizing the
abandonment model, tackling the computational
complexity of the combinatorial problem in each
round, tightening the regret upper bound, and ex-
tending the machinery to recommendation systems
with a variety of other user behavior models.
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