
International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 310

Secure Real-Time Streaming Protocol (RTSP)
for Hierarchical Proxy Caching

Yeung Siu Fung, John C. S. Lui, and David K. Y. Yau

(Corresponding author: John C. S. Lui)

Department of Computer Science & Engineering The Chinese University of Hong Kong

Shatin, Hong Kong (Email: cslui@cse.cuhk.edu.hk)

(Received Aug. 26, 2006; revised Oct. 6, 2006; and accepted May 1, 2007)

Abstract

Proxies are commonly used to cache objects, especially
multimedia objects, so that clients can enjoy better
quality-of-service (QoS) guarantees such as smaller start-
up latency and lower loss rate. But the use of multime-
dia proxies increases the risk that data are exposed to
unauthorized access by intruders. In this paper, we pro-
pose an enhancement of the Internet IETF’s Real-time
Streaming Protocol (RTSP) which employs a notion of
“asymmetric reversible parametric sequence” (ARPS) to
provide the following security properties: (i) data confi-
dentiality during transmission, (ii) end-to-end data confi-
dentiality, (iii) data confidentiality against proxy intrud-
ers, and (iv) data confidentiality against member collu-
sion. We present the Secure Multimedia Library (SML)
which is based on ARPS and then realize these security
features on a production video streaming server: Apple’s
Darwin Streaming Server. Our framework guarantees the
system resilience against attacks is provably strong given
the standard computability assumptions. To reduce the
computation demand on the receiving client, our scheme
only requires the client to perform a “single decryption
operation” to recover the original data even though the
data packets have been encrypted by multiple proxies
along the delivery path. To tradeoff between degree of
confidentiality and computational overhead, we also pro-
pose the use of a set of “encryption configuration param-
eters” (ECP) to trade off proxy encryption throughput
against the presentation quality of audio/video obtained
by unauthorized parties. Our implementation prototype
shows that one can simultaneously achieve high encryp-
tion throughput and extremely low audio/video quality
(in terms of audio fidelity, and peak signal-to-noise ratio
and visual quality of decoded video frames) for unautho-
rized access.

Keywords: Security, asymmetric parametric sequence
functions, multi-key RSA, video proxy, real-time stream-
ing protocol

1 Introduction

Recently, the transition from modem network to broad-
band network has proceeded at an amazing pace. Most
urban areas are now within the broadband coverage as
the availability of broadband services increase continu-
ously. At the same time, subscription fees of broadband
services have dropped to a very comparable and rea-
sonable rate that modem connections begin to fade out
the market. The major broadband technologies such as
Asymmetric Digital Subscriber Line (ADSL), Very-High-
Data-Rate DSL (VDSL) and Cable-Modem provide Inter-
net connections with bandwidth sufficient for high quality
digital entertainment applications such as MPEG-4 video
streaming, which offers a near DVD quality at a bit-rate
of around 1 Mb/sec. However, the increasing capability
at the client side imposes challenges at the server side and
the Internet Infrastructure.

For a streaming server equipped with a gigabit network
interface, the maximum number of concurrent clients that
can be served is limited at around the order of hundreds.
However, compared to conventional or non-multimedia
applications, the total traffic generated by these multi-
media streams is extremely large and will be very likely
to congest the Internet. Deploying multimedia proxies is a
very effective means to support a large number of concur-
rent clients while cutting down Internet traffics. However,
some multimedia streaming applications require data con-
fidentiality, which prohibit the caching of plain-text data.
Moreover, these applications would like to use end-to-end
encryption technique on the multimedia data that makes
caching of the data impossible unless the proxies have
knowledge on the decryption keys, which is undesirable
for security reasons.

To protect data from intruders, end-to-end encryption
is used so that one cannot reveal any meaningful data
by eavesdropping on any intermediate channels between
the server and the clients. Since data is encrypted with
a specific session key where only the dedicated client has
the proper decryption key for decryption, a proxy which
caches the encrypted data cannot provide the QoS guar-



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 311

antees to other clients since these clients do not possess
the same session decryption key. To enable secure proxy
caching while not sacrificing any data confidentiality nor
encryption security, the multimedia data should be en-
crypted using an encryption scheme which satisfies all of
the following requirements:

• Data confidentiality during transmission - be-
cause intruders may eavesdrop on the transmission
paths, therefore, multimedia data need to be trans-
mitted across the network in encrypted form.

• Data confidentiality against member collusion
- to avoid compromise of the system by a compro-
mised client, each decryption keys should only be
valid for a specific session. And the knowledge of
the decryption key for any particular session should
not lead to any knowledge of other decryption keys.

• Data confidentiality against proxy intruders -
for the purpose of data proximity to different clients,
proxies are intended to distribute over the Internet
on different local domains. The system can be com-
promised by a compromised proxy. However, it is im-
practical to control all proxies by the content owner.
Therefore, the proxies must be assumed unauthentic
and the data confidentiality features should not rely
on the security level of these proxies. A proxy should
not perform any decryption operation and it will not
have any knowledge of the decryption keys.

• Data encryption security - although satisfying the
above requirements, intruders may still gain access to
an encrypted copy of the multimedia data, e.g. by
eavesdrop on the communication channels or break
into the proxies. Hence, the encryption algorithm
used must be proven to be secure, or at least, com-
putational infeasible to break.

• Encryption scalability - since the proxy infras-
tructure on the Internet are hierarchical in nature,
a proxy may fetch multimedia data from another
proxy. This hierarchy should be transparent to the
end-clients. And for scalability reason, the number
of proxy layers should not affect the computational
complexity of the decryption operations at the end-
clients.

In our previous paper [12] , we proposed a secure proxy
architecture which is based on the concept of asymmetric
reversible parametric sequence (ARPS) that can achieve
the goals listed above. In this paper, we present an imple-
mentation of this proxy architecture as an extension of the
Internet IETF’s Real-time Streaming Protocol (RTSP).
We also present an implementation of the proposed se-
curity features as the Secure Multimedia Library (SML)
which is based on ARPS and then realize these security
features on a production video streaming server: Apple’s
Darwin Streaming Server. Our framework guarantees the
system resilience against attacks is provably strong given

the standard computability assumptions. To reduce the
computation demand on the receiving clients, our scheme
only requires the client to perform a “single decryption op-
eration” to retrieve the original data even though the data
packets have been encrypted by multiple proxies along the
delivery path. To tradeoff the degree of confidentiality for
computational overhead, we also propose the use of a set
of “encryption configuration parameters” (ECP) to trade
off proxy encryption throughput against the presentation
quality of audio/video obtained by unauthorized parties.

The outline of this paper is as follows. In Section 2, we
present some related works in the field of proxy caching of
multimedia objects and secure multimedia proxy caching,
and we give a brief review on the secure multimedia proxy
architecture we proposed in the paper [12]. In Section
3, we present an overview of the RTSP and RTP proto-
cols. In Section 4, we present our security extension of
the RTSP protocol. In Section 5, we present the exper-
iments that were carried out on our prototype system.
Conclusion is given in 6.

2 Background and Related Work

Recent research on video proxies has mainly focused on
caching and multimedia object replacement algorithms.
In [11], authors present how prefix caching at a proxy can
reduce large start-up delay, low throughput and packet
loss. In [5] , Guo et al. propose the use of a prefix-caching
proxy in conjunction with a periodic broadcasting tech-
nique to improve system scalability. Cruber et al [4] fo-
cus on implementation and protocol issues and show how
to realize proxy prefix caching by using the Real-Time
Streaming Protocol (RTSP). Rejaie et al. [10] present
a fine-grained replacement algorithm for a multimedia
proxy, which targets layered-encoded streams. The fine-
grained replacement algorithm enables the proxy to per-
form more effective quality adaptation while the quality
of the delivered stream can be maximized. Kangasharju
et al. [7] present a caching model of layered-encoded mul-
timedia streams, and propose utility heuristics whose per-
formance are evaluated through their caching model.

There are only a small set of papers emphasize on se-
curity issues in a video proxy. Griwodz et al. [3] propose
an approach in which the proxy stores the major part
of the video streams which are intentionally corrupted.
The proxy can distribute the corrupted part via multi-
cast transmission, while the origin server will supply the
part for data reconstruction in an unicast manner. How-
ever, because the original server must perform data en-
cryption for each client, this is not a scalable solution.
Tosun and Feng [15] propose a much more scalable ap-
proach based on a lightweight encryption algorithm for
multimedia streams. When a client makes a request, the
proxy will decrypt the locally stored encrypted data and
encrypt it again using the client’s encryption key. The
major drawback with their approach is that the use of
light-weight encryption offers no proven resilience against



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 312

attacks on data confidentiality, and the system can be
compromised by a compromised proxy. Furthermore, the
need for decryption operations at the proxy results in
higher computational overhead. Shi and Bhargava [13]
present an MPEG video encryption algorithm called VEA
such that one can encrypt a video stream multiple times
(each with, say, a client-specific key) and one can still de-
crypt the video only by a single operation using a compos-
ite decryption key. However, VEA is not resilient against
plain-text attack. Therefore, determined adversaries can
obtain the VEA secret key with feasible efforts.

2.1 Asymmetric Reversible Parametric
Sequence

In [12], we used the notion of Asymmetric Reversible
Parametric Sequence (ARPS)[8] to support a multime-
dia streaming system and fulfills all of the above require-
ments. In the proposed proxy architecture, a proxy only
stores encrypted multimedia objects, and the proxy does
not hold the proper key required to decrypt the encrypted
objects. However, a proxy needs to perform re-encryption
on the multimedia objects before delivers it to a client or
another proxy. As a property of the ARPS, no matter
how many proxies are along the streaming path, only a
single decryption operation is required on the client side.
Since different keys are used to re-encrypt the multimedia
objects, a client cannot decrypts the encrypted content
received by another client.

In this paper, we provide the software tools required
to implement a secure proxy system supported by ARPS.
To demonstrate the usage of the software tools and the
feasibility of the proposed proxy architecture, we realize
all of the security features into a production multime-
dia streaming system. We developed a C language API
that provides the tools required to realize all of the ARPS
operations. The API provides low level functions such
as session key generation and encryption/decryption on
block data. It also provides high level functions such as
network connections and encryption/decryption on TCP
streams or UDP packets. Using this API, one can easily
develop a secure proxy system supported by ARPS, or
easily add ARPS features into an existing proxy system.
We demonstrate this by extending a production RTSP
streaming system with the ARPS functions provided by
the API. The extended system is compatible with stan-
dard RTSP client software on un-protected multimedia
objects, and supports both client-server and client-proxy-
server architectures simultaneously.

3 RTSP and RTP Overview

The Real-Time Streaming Protocol (RTSP) is an
application-level protocol for control over the delivery of
data with real-time properties. RTSP provides an exten-
sible framework to enable controlled, on-demand delivery
of real-time data, such as multimedia data. The stream

controlled by RTSP may use Real-Time Transport Proto-
col (RTP), but RTSP and the underlying protocol used to
carry the media stream will not have any dependence over
each other. RTSP is a text-based protocol that makes it
easily to be extended. Two ways to extend RTSP are:

• Extending existing methods with new parameters.
Recipient would ignore these new parameters if they
do not recognize them.

• Adding new methods. If the recipient does not un-
derstand the request, it would responds with error
code 501.

Some RTSP methods are only recommended (or op-
tional) in practical implementation, a fully functional
RTSP application may only implement some of the RTSP
methods. Three of the required RTSP methods are
SETUP, PLAY and TEARDOWN. These three methods
are necessary and sufficient for a client from initiation of
multimedia data streaming to termination of the stream-
ing session. A client issues a SETUP request to initiate
a server to start a new streaming session, and then is-
sues a PLAY request to initiate streaming of multimedia
data, and finally issues a TEARDOWN request to close
the streaming session. The sequence of requests and re-
sponses, and the corresponding RTSP methods involved
in a typical RTSP session, where an RTSP proxy is in be-
tween the path of the RTSP server and the RTSP client,
are as follows:

1) The client sends a SETUP request to the proxy. The
request specifying the destination address the client
will use to receive the media stream and the absolute
URI of the requesting media object.

2) The proxy replaces the destination address with its
own one. And then forwards the modified request
packet to the appropriate server by observing the ab-
solute URI insides the request.

3) The server replies the proxy with a SETUP response,
specifying the source address of the requested stream
and a unique identifier used to associate the stream-
ing session. The proxy allocates all resources and
sockets required to relay the media stream, and then
forwards the respond to the client.

4) The client sends a PLAY request to the proxy to initi-
ate the streaming of media data. The proxy forwards
the request to the server.

5) If the server uses RTP to carry the media data, it
will start sending RTP packets to the destination
address, which is the address replaced by the proxy.
The proxy receives the RTP packets and caches them
in its local storage, and at the same time relays the
packets to the client.

Each RTP data packet will contain an RTP header
that includes a sequence number. The initial value of



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 313

the sequence number is random and unpredictable, which
makes known plaint-text attack more difficult. The se-
quence number then increases by one for each RTP data
packet sent. The server continues to send RTP packets
until reaching the end of the media, or the client issues a
PAUSE, STOP or TEARDOWN request. The server and
the proxy will close the streaming session and release all
allocated resources and sockets when the client issues a
TEARDOWN request.

4 RTSP with ARPS Extension

To realize our secure system, we integrate new ARPS pa-
rameters into existing RTSP methods. In this section, we
will describe the implementation details of our extended
RTSP with secure proxy extensions based on ARPS.

We use a scenario to illustrate. Let an RTSP client re-
quest for a media object “sample.mpeg” from the RTSP
server at rtspserver.com. The client requests through an
RTSP proxy where the media object is not yet cached.
Figure 1 illustrates the operations between the RTSP
server and the RTSP proxy, as well as the operations be-
tween the RTSP proxy and the RTSP client in this sce-
nario. Throughout the remaining of this article, the terms
client, proxy and server refer to RTSP client, RTSP proxy
and RTSP server respectively.

4.1 Authentication

We assume that the server has a list of user names of its
certificated users and proxies. However, the server must
have a mean to obtain the client’s public key and the
proxy’s public key with creditability. We use the X.509
authentication service [2] to perform public key authenti-
cation. Suppose that all clients, all proxies and the server
subscribe to the same certificate authority (CA). The cer-
tificate of a particular entity I is denoted by CA � I �,
which includes the following fields:

• Version: Version number of this X.509 certificate.

• Serial number: An unique integer value within
the issuing CA.

• Signature algorithm identifier: The algorithm
used to sign the certificate.

• Issuer name: X.500 name of the CA that created
and signed this certificate.

• Period of validity: The first date and the last
date on which the certificate is valid.

• Subject name: The user name to whom this cer-
tificate refers.

• Subject’s public-key: The public key of the sub-
ject.

• Issuer unique identifier: The unique identifier of
the issuing CA.

• Subject unique identifier: An unique identifier
of the subject.

• Extensions: A set of one or more extension fields.

• Signature: The hash code of the other fields in
this certificate that encrypted with the CA’s private
key.

The client will include its X.509 certificate in the
SETUP request using the extended parameter Signature.
The client establishes a transport layer connection to the
proxy and then sends the following SETUP request:

SETUP rtsp://rtspserver.com/sample.mpeg RTSP/1.0

CSeq: 1004

Transport: RTP/AVP;unicast;client_port=4588-4589

Signature: (x.509 certificate of client-1)

The proxy modifies the value of the client port parame-
ter to the port range that it will use to receive media data
from the server. The proxy adds its public key certificate
using the extended parameter ProxySignature. The proxy
then establishes a transport layer connection to the media
server at rtspserver.com and sends the following SETUP

request:

SETUP rtsp://rtspserver.com/sample.mpeg RTSP/1.0

CSeq: 1004

Transport: RTP/AVP;unicast;client_port=4588-4589

Signature: (x.509 certificate of client-1)

ProxySignature: (x.509 certificate of proxy-1)

Because the server subscribes to the same CA, thus it
must have a copy of the CA’s public key. The server
retrieves the hash codes by decrypting the Signature
field of the proxy’s certificates and that of the client’s
certificate using the CA’s public key. The server can then
verify the integrity of the two certificates, and thus the
integrity of the two public keys, using the corresponding
hash codes.

4.2 Session Key Distribution

Once the SETUP request is granted, the server will gen-
erate an encryption key e0, a re-encryption key ei, and
a decryption key di. The server associates e0 and the
set of encryption configuration parameters with a unique
identifier S and keeps a record of the values using S as
the index. The keys ei and di will be distributed to the
proxy and the client respectively. To ensure security, ei

will be encrypted using the proxy’s public key so that only
the proxy can retrieve it. The decryption key di will be
encrypted using the client’s public key so that only the
client can retrieve it, but any proxy along the commu-
nication path cannot decrypt the data. The server then
replies a SETUP response to the proxy including these
two encrypted values, using the extended parameter Ses-
sionKey. The server will also include the index S and the
encryption configuration parameters, using the extended
parameter ECP.



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 314

RTSP Server RTSP Proxy RTSP Client

SETUP requestSETUP request

SETUP response SETUP response

PLAY requestPLAY request

PLAY response PLAY response

RTP packets RTP packets

Certificate
Authentication

&
Session Key
Generation

Multimedia
Data

Encryption

Multimedia
Data

Re-Encryption

Multimedia
Data

Decryption

Time

Figure 1: Operations between the RTSP server and the RTSP proxy, as well as the operations between the RTSP
proxy and the RTSP client when an RTSP client request an un-cached multimedia object through an RTSP proxy

RTSP/1.0 200 OK

CSeq: 1004

Date: 23 Jan 1997 15:35:06 GMT

Server: PhonyServer 1.0

Session: 47112344

Transport: RTP/AVP;unicast;

client_port=4588-4589;

server_port=6256-6257

SessionKey: e=uz80989zlkxc01a9zo;

d=8800x018a83bxc74b5

ECP: S=8012;I=10;P=5;B=1

Upon receiving the SETUP response, the proxy ex-
tracts the encrypted value of ”e” inside the SessionKey
parameter and decrypts it using its own private key to re-
trieve the re-encryption key ei. The proxy then forwards
the SETUP response to the client without any modifica-
tion. The client extracts the value of the encrypted key
”d” and decrypts it using its own private key, which pro-
duces the decryption key di.

4.3 Media Data Encryption and Decryp-
tion

Now, the client may send the PLAY request to initiate
the streaming of the media data. The proxy forwards the
PLAY request to the server without any modification. The
server replies with the PLAY response and starts to stream
the RTP packets. According to the encryption configura-
tion parameter Ei and the original sequence number in the

RTP header in each RTP packet, the server determines
whether the payload of the RTP packet will be encrypted
or not, but always leave the header part unencrypted.

The proxy caches the RTP packets directly and asso-
ciate the cache with the index S given by the server, it
observes the sequence number in the unencrypted RTP
header to determinate whether to perform re-encryption
on the payload or not. The proxy then relays the RTP
packets, re-encrypted or not, to the client. The client also
observes the sequence number to determinate whether the
payload of the RTP packet requires decryption or not.

4.4 Access to Cached Media Object

Referring to figure 2, another client requests for the same
media object, “sample.mpeg”, that is now in the proxy’s
cache. The client sends a SETUP request to the proxy and
the proxy replaces the destination address in the request
as in the previous example. However, the proxy examines
the request message and knows that the requesting media
object is cached. Hence, the proxy retrieves the media
object ’s index S and adds it in the SETUP request using
the extended parameter Index:

SETUP rtsp://rtspserver.com/SAMPLE.MPEG RTSP/1.0

CSeq: 1004

Transport: RTP/AVP;unicast;client_port=4588-4589

Signature: (certificate of client-1)

ProxySignature: (certificate of proxy-1)

Index: 8012



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 315

RTSP Server RTSP Proxy RTSP Client

SETUP requestSETUP request

SETUP response SETUP response

PLAY request
TEARDOWN request

TEARDOWN response
PLAY response

RTP packets

Certificate
Authentication

&
Session Key
Generation

Load Cache &
Multimedia

Data
Re-Encryption

Multimedia
Data

Decryption

Time

Figure 2: Operations between the server and the RTSP proxy, as well as the operations between the RTSP proxy
and the RTSP client when an RTSP client request an cached multimedia object from an RTSP proxy

The server receives the SETUP request and generates
a new pair of re-encryption key ej and decryption key dj

bases on the previous encryption key e0 associated by the
specified index S, and also retrieves the corresponding en-
cryption configuration parameters associated with S. The
server then sends back the SETUP response containing ej

encrypted using the proxy’s public key, dj encrypted using
the client’s public key, and the encryption configuration
parameters.

Because the RTP packets are cached at the proxy lo-
cally, after receiving the SETUP response successfully, the
proxy can send a TEARDOWN request to the server to
release all resources allocated by the server and termi-
nate the connection between the proxy and the server.
The proxy retrieves the cached RTP packets and uses the
new re-encryption key to perform re-encryptions. And
the proxy acts as a server to self-control the sending of
the cached RTP packets to the client.

4.5 Extension to Hierarchical Multi-
Layer Proxy

Here we use a scenario to illustrate how to further extend
the system to support multiple layers of hierarchical prox-
ies in-between of the client and the server. Assume that a
client requests a media object through a proxy, say proxy
A, where the media object has not been cached. How-
ever, proxy A in turn request the media object through
another proxy, say proxy B, which has a cached copy of
the media object.

Referring to Figure 3, proxy A sends the SETUP re-
quest to proxy B as it is sending to an origin server, but
with the extra parameter HopCount set to 1. When proxy
B receives the SETUP request, it adds its public signature
to the SETUP request and increases the HopCount by 1.
Because the media object is cached, proxy B also retrieves
the index S associated to the media object, and then sends
the following SETUP request to the server:

SETUP rtsp://rtspserver.com/sample.mpeg RTSP/1.0

CSeq: 1004

Transport: RTP/AVP;unicast;client_port=4588-4589

Signature: (certificate of client-1)

HopCount: 2

ProxySignature: (certificate of proxy-A)

ProxySignature2: (certificate of proxy-B)

Index: 8012

After authenticating all of the identities of the involved
parties, the server retrieves the encryption configuration
parameters and the encryption key e0 associated by the
index S. The server then generates two re-encryption
key ek and ek+1, and a corresponding decryption key dk.
All session keys need to be protected for their dedicated
recipients, that is, encrypts ek, ek+1 and dk with proxy B’s
public key, proxyA’s public key and the client’s public key
respectively. The server includes the encrypted session
keys in the SETUP response, also a HopCount value set
to 0, and a new index S2 used to associate this ARPS that
involved two layers of encryption with encryption keys e0



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 316

RTSP Server RTSP Proxy B RTSP Proxy A

SETUP requestSETUP request

SETUP response SETUP response

PLAY request
TEARDOWN request

TEARDOWN response
PLAY response

RTP packets

Certificate
Authentication

&
Session Key
Generation

Time

RTSP Client

SETUP request

SETUP response

PLAY request

PLAY response

RTP packets

Multimedia
Data

Decryption

Multimedia
Data

Re-Encryption

Load Cache &
Multimedia

Data
Re-Encryption

Figure 3: Operations between the RTSP server and the RTSP proxy, as well as the operations between the RTSP
proxy and the RTSP client when there are multi-layer of proxy in-between the client and the server

and ek. The server then replies proxy B with the following
SETUP response:

RTSP/1.0 200 OK

CSeq: 1004

Date: 23 Jan 1997 15:35:06 GMT

Server: RTSPServer 1.0

Session: 11146612

Transport: RTP/AVP;unicast;client_port=4588-4589;

server_port=6256-6257

HopCount: 0

SessionKey: e1= ii77761huajzzzzz73;

e2=v91110001kzaa9a9xz;

d=761axzx8gg3bx19283

ECP: S=8013;I=10;P=5;B=1

Proxy B uses its own private key to decrypt e1 and
retrieves the re-encryption key ek. It then increases the
HopCount by 1 before forwards the SETUP response to
proxy A. Now proxy A receives the SETUP response with
a HopCount value equals to 2, so it decrypts e2 with
its own private key and retrieves the re-encryption key
ek+1. Finally, proxy B forwards the SETUP response to
the client and the client retrieves the decryption key dk.

Once the PLAY request is received after the SETUP

process, proxy B will retrieve cached RTP packets, per-
forms re-encryption according to the sequence number of
each RTP packet and the corresponding encryption con-
figuration parameters, using re-encryption key ek. And
then delivers the RTP packets to proxy A. At the mean-
while, proxy A caches the RTP packets and associates
the cache with index S2, performs re-encryption using re-
encryption key ek+1 and deliveries the re-encrypted pack-
ets to the client.

5 Experiments on the Darwin

Prototype

We have implemented an application-programming inter-
face in C language, which we called Secure Media Library
(SML), which provides all of the necessary routines for
the ARPS and ECP operations, and provides session key
and public key manipulations. We have used SML to im-
plement a prototype of the ARPS-extended RTSP system
described in Section 4. Our implementation is based on
the Apple’s Darwin Streaming Server [1], the client soft-
ware included in the MPEG4IP project [14] and the proxy
reference implementation provided by RealNetworks [9].
We modified the source codes such that the whole sys-
tem still maintains compatibility to other standard RTSP
software, while the ARPS extended client is able to ac-
cess secure multimedia objects from the ARPS extended
server through the ARPS extended proxy.

Our server allows an administrator to set the per-
mission of each individual multimedia object, either
be public accessible or only be available to a list of
certificated users. To access a secure multimedia object,
a user must use the extended client software and specify
a file containing a pair of public key and private key. The
use of a proxy is configurable at the client side, it can be
a standard RTSP proxy, or must be our ARPS extended
proxy when accessing a secure multimedia object. Apart
from this, the existence of the proxy is totally transparent
to the end-user. We carry out the following experiments
to quantify the merit and performance of our system.

Experiment 1 (Encryption Throughput Analysis):
In this experiment, we consider the effect of varying



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 317

Table 1: Effect of Ep and Ei on the encryption throughput ρ (in unit of MBytes/s) and the corresponding average
number of clients M when Eb keeps at 1

Ei\Ep 0.257 0.214 0.171 0.120 0.086 0.043
ρ M ρ M ρ M ρ M ρ M ρ M

1 1.75 9.33 2.23 11.89 2.79 14.88 3.92 20.91 5.73 30.56 10.04 53.55
2 3.43 18.29 4.02 21.44 5.90 31.47 7.59 40.48 8.27 44.11 10.30 54.93
5 7.50 39.99 8.72 46.51 9.82 52.37 10.54 56.21 9.83 52.43 11.18 59.63
10 9.53 50.83 11.71 62.45 11.64 62.08 11.77 62.77 11.39 60.75 11.72 62.51

Table 2: Effect of Ei and Eb on the encryption throughput ρ (in MBytes/s) for (a) Ep = 0.257 and (b) Ep = 0.171

encryption throughput ρ (MB/sec)
Eb\Ei 1 2 5 10

1 1.75 3.43 7.50 9.53
2 1.85 3.75 8.29 11.67
3 1.96 3.81 8.17 11.63

encryption throughput ρ (MB/sec)
Eb\Ei 1 2 5 10

1 2.79 5.90 9.82 11.64
2 2.32 4.56 11.17 11.69
4 2.87 5.46 11.37 11.73

(a) Ep = 0.257 (b) Ep = 0.171

the encryption parameters Ep and Ei on the encryption
throughput, which is denoted as ρ (in MBytes/s). We
turned off the rate control at the server side and measured
the maximum encryption throughput of the server for en-
crypt and deliver a QuickTime video stream of 54MB in
size. Assume that all multimedia objects are encoded
into 1.5 Mb/s, the corresponding average number of con-
current clients that a server can support is M , where
M = ρ/(1.5/8). The experiment runs on an 800 MHz
Pentium-III Linux server with 256 MBytes main memory.
We have repeated the experiment three times and the av-
erage values are taken. Table 1 illustrates the encryption
throughput ρ and the corresponding average number of
concurrent clients (M) under different values of Ep and
Ei, while Eb keeps at 1.

As we can observe from Table 1, if we encrypt 25.7% of
each video packet (i.e., Ei = 1), the encryption through-
put achieved is only around 1.75 MBytes/s, which im-
plies that we can concurrently handle about 9 MPEG-1
streams. On the other hand, if we encrypt one video
packet for every 10 packets (i.e., Ei = 10) and for each
video packet encrypted, we encrypt only 4.3% of its data
(i.e., Ep = 0.043), then the encryption throughput im-
proves to 11.72 MBytes/s, which implies that we can con-
currently support about 62 MPEG-1 streams. In general,
the smaller the value of Ep and the higher the value of
Ei, the higher the achieved encryption throughput, and
the higher the number of concurrent video streams that
can be supported.

Table 2 illustrates the effect of varying Ei and Eb

under two different encryption percentage parameters
Ep. As we can observe, the parameter Eb has little effect
on the encryption throughput.

Experiment 2 (Peak Signal-to-Noise Analysis):
In this section, we consider the effect on the video quality
as we vary the parameters Ei, Ep, and Eb. One way to
quantitatively evaluate the video quality is by the peak

signal-to-noise ratio. In general, for a frame size of m×n
with a total of l frames and 3 color channels (i.e., red,
green, and blue, each represented by a 8-bit number), the
peak signal-to-noise ratio (SNRpeak) is calculated using
the following equation:

SNRpeak =

10 × log10

2552

(

∑

m
x=1

∑

n
y=1

∑

l
z=1

∑

3

c=1
(P1(x,y,z,c)−P2(x,y,z,c))2

3mnl

)

where P1(x, y, z, c) means that the pixel value at coordi-
nates (x, y) in the z-th frame for color channel c, where
c = 1, c = 2, and c = 3 corresponds to the color channels
red, green, and blue, respectively. In our experiment, the
values of m,n, and l are 640, 480 and 1000 respectively.
Values of P1 are obtained from the video frames decoded
by a client which does not have access to the decryp-
tion key, while values of P2 are obtained from the original
video frames. Note that a lower value of SNRpeak indi-
cates that the encrypted stream is more distorted from
the original video stream.

Tables 3 and 4 illustrate the peak signal-to-noise ratio
SNRpeak for different values of Ep and Ei with Eb = 1
for MPEG-1 and Quicktime video, respectively. The ex-
periment result shows that the value of SNRpeak is pro-
portional to the amount of data we encrypt, which can
be controlled by adjust Ep and/or Ei, for both MPEG1
and Quicktime video. For example, if we only want to
encrypt 4.3% of the whole video stream, we can choose
either Ep = 0.043 and Ei = 1, or Ep = 0.086 and Ei = 2,
or Ep = 0.171 and Ei = 5, where each ECP combina-
tion will produce a similar SNRpeak value. If we dou-
ble the amount of data to be encrypted (i.e. 8.6% of the
whole video stream), we can choose either Ep = 0.086 and
Ei = 1, or Ep = 0.171 and Ei = 2 and either ECP combi-
nation will product a similar SNRpeak value that implies
a more distorted video than encrypts 4.3% of the whole



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 318

Table 3: Effect of Ep and Ei on the peak signal-to-noise ratio SNRpeak on MPEG-1 video when Eb = 1
peak signal-to-noise ratio SNRpeak

Ei\Ep 0.257 0.214 0.171 0.120 0.086 0.043

1 9.5966 9.9205 10.124 10.215 10.419 10.238
2 8.8358 10.106 10.419 10.164 10.133 10.545
5 8.2106 8.1195 9.4196 9.7872 8.3017 9.9224
10 10.600 12.317 11.426 9.9980 8.9169 12.278

Table 4: Effect of Ep and Ei on the peak signal-to-noise ratio SNRpeak on Quicktime video when Eb = 1
peak signal-to-noise ratio SNRpeak

Ei\Ep 0.257 0.214 0.171 0.120 0.086 0.043

1 11.774 12.053 12.340 12.552 12.970 13.397
2 12.509 12.704 12.939 13.084 13.397 13.875
5 13.298 13.396 13.636 13.953 14.175 14.727
10 13.953 13.878 14.177 14.517 14.728 14.973

video stream. Therefore, one can expect the degree of
data confidentiality (in terms of SNRpeak) decreases pro-
portionally when decreasing the amount of data to protect
in order to trade-off for a higher throughput, and with-
out the need to take care of the video’s encoding format.
Note that even when we encrypt one out of ever 10 video
packets, and for the selected packets, we only encrypt
4.3% of the data, we can still obtain a very low value of
SNRpeak. This experiment indicates that (1) we can ap-
ply this encryption technique for different video formats
(e.g., MPEG1 or Quicktime) and, (2) we only need to en-
crypt a small fraction of the video data to achieve both
high encryption throughput and high video distortion.

Table 5 illustrates the effect of varying Ei and Eb under
two different encryption percentage parameter Ep. As we
can observe, the parameter Eb has little effect on the peak
signal-to-noise ratio SNRpeak.

Experiment 3 (Comparison of visual quality of
encrypted video):
In this experiment, we consider the effect of varying the
ECP parameters Ei, Ep and Eb on the visual quality
of the video. Figure 4 illustrates the quality of five
consecutive MPEG-1 video frames. Figure 4(a) is the
original video frames that a client can decode given
access to the decryption key. Figures 4(b)-(e) are the
corresponding five video frames when decoded without
the decryption key. Note that the video quality is the
worst when the ECP parameters are set to Ei = 1 and
Ep = 0.043, which corresponds to encrypting 4.3% of
the data for every video packet (this corresponds to
Figure 4(e)), the original content of the video is nearly
indiscernible. The visual quality of the decoded video
improves gradually from Ei = 1 to Ei = 10 while the
value of Ep and Eb is not changed. Note that when we
select Ei = 10, Ep = 0.043 (this corresponds to Figure
4(b)), the visual quality of the video is still unacceptable
for viewing. This shows that we can achieve high
encryption throughput (i.e., around 11.82 MBytes/s or
about 63 concurrent MPEG-1 streams from Table 1)
and, at the same time, ensure that those clients which do

not possess the decryption keys will get an unacceptable
video quality on viewing. Therefore, one may choose a
lightweight ECP combination (e.g. Ei = 10, Ep = 0.043)
for a casual video-on-demand service in order to support
more concurrent clients, but one may choose a heavy-
weight ECP combination (e.g. Ei = 1, Ep = 0.043) for a
private video conferencing session in order to achieve the
maximum affordable data confidentiality. Figure 5 shows
the corresponding results for five consecutive Quicktime
video frames. Similar conclusions can be drawn from the
Quicktime results.

Experiment 4 (Discarding encrypted data analy-
sis):
In this experiment, we consider the effect on the video
quality when an unauthorized party just try to discard
all of the encrypted data before decoding an encrypted
stream without having the proper decryption key. We
consider two different ways to discard those encrypted
data. The first one is to drop all of the encrypted data,
and the second one is to fill all of the encrypted data with
zeros.

Table 6 illustrates the peak signal-to-noise ratio
SNRpeak for dropping encrypted data and filling
encrypted data with zeros under four different ECP
encryption schemes. Note that we get similar, or even
lower values of SNRpeak when discarding encrypted
data, compared to direct decoding of the encrypted
streams. Figure 4(f-g) and 5(f-g) show the five video
frames decoded in each of the streams respectively, they
suggested that discarding encrypted data does not help in
improving the visual quality. This experiment indicates
that an unauthorized party cannot get a better decoding
quality by means of discarding the encrypted video data.

Experiment 5 (Signal-to-Noise Analysis for Audio
Streaming Application):
In this experiment, we consider the effect on the audio
quality as we vary the parameters Ei, Ep and Eb. The
audio clip used in this experiment is a MPEG-1 layer 3 (or
MP3) [6] audio file encoded at a bit-rate of 128 kb/s. We
compute the signal-to-noise ratio (SNR) with a Matlab



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 319

(a) Original frames

(b) Encrypted frames with Ei = 10, Ep = 0.043 and Eb = 1.

(c) Encrypted frames with Ei = 5, Ep = 0.043 and Eb = 1.

(d) Encrypted frames with Ei = 2, Ep = 0.043 and Eb = 1.

(e) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1.

(f) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1 (zeroize encrypted data.)

(g) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1 (drop encrypted data.)

Figure 4: Quality of five consecutive MPEG-1 video frames under different ECP parameters



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 320

(a) Original frames

(b) Encrypted frames with Ei = 10, Ep = 0.043 and Eb = 1.

(c) Encrypted frames with Ei = 5, Ep = 0.043 and Eb = 1.

(d) Encrypted frames with Ei = 2, Ep = 0.043 and Eb = 1.

(e) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1.

(f) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1 (zeroize encrypted data.)

(g) Encrypted frames with Ei = 1, Ep = 0.043 and Eb = 1 (drop encrypted data.)

Figure 5: Quality of five consecutive Quicktime video frames under different ECP parameters



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 321

Table 5: Effect of Ei and Eb on the peak signal-to-noise ratio SNRpeak for (a) Ep = 0.257 and (b) Ep = 0.171

peak signal-to-noise ratio SNRpeak

Ei\Ep 1 2 5 10

1 11.77 12.51 13.30 13.95
2 11.89 12.52 13.30 13.95
3 12.01 12.50 13.29 13.95

peak signal-to-noise ratio SNRpeak

Ei\Ep 1 2 5 10

1 12.34 12.94 13.64 14.18
2 12.53 12.95 13.63 14.18
4 12.79 12.96 13.63 14.18

(a) Ep = 0.257 (b) Ep = 0.171

Table 6: Effect of discarding encrypted data on the peak signal-to-noise ratio SNRpeak when Eb = 1 and Ep = 0.043

SNRpeak

direct drop fillzero

Ei = 1 10.24 9.10 8.33
Ei = 2 10.55 9.10 8.97
Ei = 5 9.92 11.35 10.56
Ei = 10 12.28 12.76 12.76

SNRpeak

direct drop fillzero

Ei = 1 13.40 13.36 13.27
Ei = 2 13.88 13.67 13.81
Ei = 5 14.73 13.40 14.70
Ei = 10 14.97 13.58 14.95

(a) MPEG-1 streams (b) QuickTime streams

(direct: decode directly;

drop: drop encrypted data;

fillzero: fill encrypted data with zeros.)

program using the following equation:

SNR =

∑n

i=1 original(i)2
∑n

i=1(original(i) − cipher(i))2

where original(i) denotes the i-th sample in the waveform
decoded from the original audio stream, and cipher(i) de-
notes the i-th sample in the waveform decoded from the
encrypted audio stream without the decryption key. In
this experiment, n equals to 44100, which means that
samples from the first second of the audio stream are
used. Note that a lower value of SNR indicates that
the encrypted audio stream is acoustically more distorted
from the original audio stream, while an SNR value of
infinity indicates that the measured samples are exactly
identical to those in the original audio stream.

Table 7 illustrates the signal-to-noise ratio SNR for
different values of Ei and Ep, when Eb = 1. Again, we
observe that one does not need to encrypt all the audio
packets to sufficiently distort the audio signal. In general,
our proposed ECP method allows one to simultaneously
achieve high encryption throughput and low audio fidelity
during unauthorized access.

6 Conclusion

We present the design and implementation of a secure
RTSP multimedia streaming architecture that enables se-
cure and hierarchical proxy caching. Our design is based

on the notion of an asymmetric reversible parametric se-
quence (ARPS). We discussed how ARPS could be applied
to general client-proxy-server architecture and we pro-
vided the tools required to realize ARPS as a C language
API, the SML. To demonstrate the usefulness of our sys-
tem model, we have described in detail an extended RTSP
with ARPS integration that can provide secure proxy
caching and meanwhile compatible to standard RTSP sys-
tem. We have implemented such a secure RTSP multi-
media streaming system consisting of an RTSP server,
an RTSP proxy and an RTSP client. Our experimental
results empirically demonstrated how a set of four ECP
parameters can be used to trade off encryption through-
put against the amount of data to protect, for a number of
standard MPEG-1 and QuickTime video sequences, and
a number of MP3 audio sequences. Our results indicate
that it is possible to simultaneously achieve high encryp-
tion throughput and extremely low audio/video quality
(in terms of decoded audio SNR and both PSNR and the
visual quality of decoded video frames) during unautho-
rized accesses.

References

[1] Apple Computer Inc., Darwin Streaming Server
4.1.3, 2003. (http://developer.apple.com/darwin/
projects/streaming/)

[2] I. E. T. Force, Public-Key Infrastructure
(X.509), 2003. (http://www.ietf.org/html.charters/



International Journal of Network Security, Vol.7, No.3, PP.310–322, Nov. 2008 322

Table 7: Effect of Ep and Ei on the signal-to-noise ratio SNR on MP3 audio when Eb = 1
signal-to-noise ratio SNR

Ep = 0.214 Ep = 0.171 Ep = 0.120 Ep = 0.086 Ep = 0.043

Ei = 1 0.9104 0.7720 0.8571 0.8429 0.8264
Ei = 2 0.5831 0.5608 0.5614 0.5585 0.5707
Ei = 5 0.5479 1.0334 1.0360 13.6172 2.3095
Ei = 10 1.0494 1.0494 1.0494 25.1848 25.1849

pkix-charter.html)
[3] C. Griwodz, O. Merkel, J. Dittmann, and R. Stein-

metz, ”Protecting vod the easier way,” Proceeding of
the 6th ACM International Multimedia Conference,
pp. 21–28, 1998.

[4] S. Gruber, J. Rexford, and A. Basso, ”Protocol con-
siderations for a prefix-caching proxy for multimedia
streams,” Computer Networks, vol. 33, no. 1–6, pp.
657–668, 2000.

[5] Y. Guo, S. Sen, and D. Towsley. ”Prefix caching as-
sisted periodic broadcast: Framework and techniques
to support streaming for popular videos,” IEEE In-
ternational Conference on Communications (IEEE
ICC 2002), vol. 4, pp. 2607–2612, Marriott Marquis,
New York, 2002.

[6] International Organisation for Standardisation,
Short MPEG-1 description, 1996. (http://mpeg.
telecomitalialab.com/standards/mpeg-1/mpeg-
1.htm)

[7] J. Kangasharju, F. Hartanto, M. Reisslein, and
K. W. Ross, ”Distributing layered encoded video
through caches,” Proceedings of IEEE INFOCOM
2001, pp. 1791–1800, Anchorage, Alaska, 2001.

[8] R. Molva and A. Pannetrat, ”Scalable multicast se-
curity in dynamic groups,” Proceeding of the 6th
ACM Conference on Computer and Communications
Security (CCS1999), pp. 101–111, 1999.

[9] RealNetworks. RTSP Proxy Kit 2.0, 2001.
(http://www.rtsp.org/2001/proxy)

[10] R. Rejaie, M. Handley, H. Yu, and D. Estrin, ”Proxy
caching mechanism for multimedia playback streams
in the internet,” Proceedings of the 4th International
Web Caching Workshop, San Diego, CA., 1999.

[11] S. Sen and D. Towsley, ”Proxy prefix caching for mul-
timedia streams,” Proceedings of IEEE INFOCOM
1999, pp. 1310–1319, New York, 1999.

[12] D. K. Y. S.F. Yeung, John C.S. Lui, ”A multi-key
secure multimedia proxy using asymmetric reversible
parametric sequences: Theory, design, and imple-
mentation,” IEEE Transactions on Multimedia, vol.
7, no. 2, pp. 330–338, 2005.

[13] C. Shi and B. Bhargava, ”A fast mpeg video encryp-
tion algorithm,” Proceeding of the 6th ACM Inter-
national Multimedia Conference, pp. 81–88, Bristol,
United Kingdom, 1998.

[14] C. Systems, MPEG4IP, 2003. (http://mpeg4ip.
sourceforge.net/index.php)

[15] A. S. Tosun and W. chi Feng, ”Secure video transmis-
sion using proxies,” Technical Report, Computer and
Information Science, Ohio State Univeristy, 2002.

Yeung Siu Fung is a Ph.D. candidate at the Chinese
University of Hong Kong. He received his B.Eng. and
M.Phil. degree in the Computer Science and Engineering
Department from the Chinese University of Hong Kong.
His research are in multimedia technologies, particularly
network security and transport protocols. His personal
interests include sports and Christian music.

John C. S. Lui received his Ph.D. in Computer Sci-
ence from UCLA. After his graduation, he joined the IBM
Almaden Research Laboratory/San JoseLaboratory and
participated in various research and development projects
on file systems and parallel I/O architectures. He later
joined the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong. His re-
search interests encompass both systems and theory. His
current research interests include theoretic/applied top-
ics in data networks, dis-tributed multimedia systems,
network security, OS design issues, mathematical opti-
mization and performance evaluation. John received the
CUHK Vice-Chancellor’s Exemplary Teaching Award in
2001. He is an Associate Editor ofthe Performance Eval-
uation Journal, a member of the ACM, a senior member
of the IEEE and an elected member of the IFIP WG 7.3.
His personal interests include films and general reading.


